88教案网

平行四边形的性质(2)

做好教案课件是老师上好课的前提,大家应该在准备教案课件了。教案课件工作计划写好了之后,才能更好的在接下来的工作轻装上阵!哪些范文是适合教案课件?下面是小编精心收集整理,为您带来的《平行四边形的性质(2)》,欢迎您阅读和收藏,并分享给身边的朋友!

平行四边形的性质(2)

教学目标:

1、知识与技能:探索并掌握平行四边形对角线互相平分的性质,掌握平行线之间的距离的功概念。JaB88.coM

2、过程与方法:

利用平行四边形的对边相等的性质,借助三角形全等的知识,通过合理推理,探索平行四边形的对角线互相平分的性质。

3、情感态度与价值观:

在探索平行四边形的性质活动中,培养学生的探究、合作精神,增强推理的能力。

教学重点:

史学史掌握平行四边形的对角线互相平分的性质。

教学难点:

平行四边形性质的综合运用。

教学互动设计:

一、回顾、思考

1、定义与性质——

2、利用定义与性质解题————

①、已知平行四边形的一角,可求;

②、已知平行四边形的两邻边,可求;

3、练一练

二、情境导课

如图4—3,□ABCD的两条对角线AC、BD相交于点O。

(1)图中有哪些三角形是全等的?

(2)能设法验证你的结论吗?

想一想

由本题你又能得出平行四边形怎样的性质?

平行四边形的性质:

A

B

D

C

O

平行四边形的对角线互相平分。

三、利用定义、性质解题

1、例1如图,四边形ABCD是平行四边形,

DB^AD,求BC,CD及OB的长.。

分析:(1)在□ABCD中,BC是的对边;

CD是的对边;

因为AD、AB已知,

所以,利用平行四边形的性质“”可求出它们;

(2)点O是,

利用平行四边形的性质“”可知OB是BD的一半。

(3)求BD的长应摆在△中用定理来计算。

2、想一想

在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?(见P101图)

a

b

A

B

C

D

例2已知直线a∥b,过直线a上任意两点A、B分别向直线b作垂线,

交直线b于点C、点D.

(1)线段AC、BD所在的直线有怎样的位置关系?

(2)比较线段AC、BD的长短.

在例2中,线段AC的长是点A到直线b的距离;同样,线段BD的长是点B到直线b的距离,且AC=BD.

如果两条直线平行,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离..

平行线间的距离处处相等.

3、议一议

举出生活中的几个实例,反映“平行线之间的垂线段处处相等”的几何事实.

四、随堂练习

□ABCD的两条对角线相交O,OA,OB,AB的长度分别为3厘米,4厘米,5厘米,求其他各边以及两条对角线的长度.

A

B

D

C

O

A

B

D

C

O

A

B

D

C

O

五、作业

P102习题4.21、2、3

相关知识

平行四边形及其性质2


平行四边形及其性质2七、教学步骤
复习提问
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1,,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
引入新课
在证实“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证实的.假如把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
讲解新课
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性熟悉,然后引导学生写出已知,求证、证实.
(2)平行四边形性质,定理的综合应用:
同学们已经把握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2已知:如图3的对角线、相交于点,过点与、分别相交于点、.
求证:.
证实比较轻易,只须证出△≌△,或△≌△,这是学生自己可以完成的,但需注重及时应用新知识,防止思维定势.如这里可直接由定理3得出,而不再重复定理的推导过程证出.
图4
例3已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式:.
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为.
(4)学生自己完成解答.
图5
总结、扩展
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义




对角线
2.思考题:教材P144中B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题例2
小结(表格)
平行四边形性质3例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届.中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为,一对角线长为,则另一对角线的取值范围是_____________.
2.在中,,,,则.
3.已知是的边上任一点,则:的值为____.
A.B.C.D.不确定

平行四边形的性质———


平行四边形的性质———教学设计

山东省潍坊第五中学张字斓

(华东师大版八年级上)

学习目标:1、理解并熟记平行四边形的性质

2、灵活运用平行四边形的性质解决问题

突破措施:小组合作、讨论探究、变式训练、拓展拔高

教学过程:

一、自学交流:

请同学们先独立完成,遇到问题组内讨论解决(6分钟)

(一)请同学们看讲义96页——100页归纳总结出平行四边形的定义及平行四边形的性质,然后同桌相互交流,组长汇总归纳情况。

(二)巩固双基:请同学先独立完成,遇到问题组内讨论解决,完成后组内两两相互批阅,错的马上改正。

1、选择题:

(1)在平行四边形ABCD中,∠A::∠B::∠C:∠D的值可以是()

A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2::1

(2)下列不属于平行四边形的性质的是()

A.对边平行且相等B.对角相等

C.对角线互相平分D.既是中心对称图形,又是轴对称对称图形

(3)平行四边形ABCD的周长是40cm,ABC的周长是25cm,则对角线AC的长是()cm.

A.5B.15C.6D.16

2、填空题:

(1)在平行四边形ABCD中,∠A比∠B大20°,则∠C的度数是﹍﹍

(2)平行四边形的对角线长分别为10、16,则它的边长x的取值范围是﹍﹍

二、展示提升:

请同学先独立完成,遇到问题组内讨论解决,解决不了的可到其他组解决,讨论过程中选出你们组认为有代表性的题目派同学到黑板上做出来,并派另一名同学在班内讲解。(10分钟)

1、变式训练:

已知:如图,在平行四边形ABCD中,AECD于E,若∠B=55°,求∠D与∠DAE分别等于多少度?

AD

E

BC

变式:若将上题中∠B=55°改为∠B=45°,其他条件不变,判断AED的形状,并说明理由。

2、如图:在平行四边形ABCD中,对角线AC、BD相交于O,若AC+BD=18cm,AB:BC=2:3,AOB的周长为13cm,求AB、BC的长。还能求出哪些量?

O

AD

OOOOO

BC

3、已知:平行四边行ABCD,试用直线采用不同方法将平行四边形ABCD分成面积相等的四部分(请画出图形)

DCDC

ABAB

三、反馈矫正

把上述题目学会后认真完成,如还存在问题组内同学互相帮助。(3分钟)

四、归纳小结

组内同学两两相互交流,谈谈这节课你学到了什么?掌握了那些知识?你有哪些收获?各组派代表班内交流。(2分

练习题

1、选择题:

在平行四边形ABCD中,已知∠ABC=60°,则∠BAD的度数是()

A、60°B、120°C、150°D、不能确定

平行四边形的一条边为10,则两条对角线长可以是()

A、6,8B、8,10C、8,14D、6,14

2、填空题:

如图,平行四边形ABCD的周长为30厘米,AC、BD相交于点O,若AOB的周长比BOC的周长少3厘米,则AD=___厘米

平行四边形ABCD中,若∠A:∠B=2:3,则∠C=___

3、如图,平行四边形ABCD中,∠B、∠C的平分线交于O,则BO与CO有何位置关系?说明理由;若BO和CD的延长线交于E,试说明BO=EO

EAD

AD

O

O

BCBC

3题图2图

4、如图,在平行四边形ABCD中,AE、BE、CF、DF分别平分∠DAB、∠ABC、∠BCD、∠CDA,且AE、DF相交于点M,BE、CF相交于点N,在不添加其他条件的情况下,写出一个由上述条件推出的结论。(要求写出推理过程,并且在推理过程中必须用到平行四边形和角平分线的性质)

DEC

MN

AFB

平行四边形的性质(1)


第四章四边形性质探索
总课时:12课时使用人:
备课时间:开学第一周上课时间:第六周
第1课时:4、1平行四边形的性质(1)
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1.小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵四边形ABCD是平行四边形
∴AD//BC,AB//CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1.活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1如图:四边形ABCD是平行四边形。
(1)求∠ADC、∠BCD度数
(2)边AB、BC的度数、长度。
练2四边形ABCD是平行四边形
(1)它的四条边中哪些线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归纳:平行四边形的性质:平行四边形的对角线互相平分。

第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。
2.ABCD中,∠A比∠B大20°,则∠C=。
3.ABCD中,AB=3,BC=5,则AD=CD=。
4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。
布置作业
课本习题4.1
A组(学优生)1、2
B组(中等生)1、2
C组(后三分之一生)1、2
教学反思

文章来源:http://m.jab88.com/j/64648.html

更多

最新更新

更多