88教案网

做好教案课件是老师上好课的前提,大家正在计划自己的教案课件了。只有写好教案课件计划,可以更好完成工作任务!你们知道多少范文适合教案课件?为此,小编从网络上为大家精心整理了《矩形教案》,希望对您的工作和生活有所帮助。

矩形教案教学建议
知识结构
重难点分析
本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是非凡的平行四边形,非凡之处就是“有一个角是直角”,因而就增加了一些非凡的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是矩形性质的灵活应用。由于矩形是非凡的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。假如得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,经常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注重以下问题:
1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行预备或由学生预备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3.假如条件答应,教师在讲授这节内容前,可指导学生按照教材145页图430所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的把握更轻松些.
4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先预备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5.由于矩形的性质定理证实比较简单,教师可引导学生分析思路,由学生来进行具体的证实.
6.在矩形性质应用讲解中,为便于理解把握,教师要注重题目的层次安排。
矩形教学设计
教学目标
1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。
2.能运用以上性质进行简单的证实和计算。
此外,从矩形与平行四边形的区别与联系中,体会非凡与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。
引导性材料
想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上“四边形”和“平行四边形”的字样来说明这种关系:即平行四边形是非凡的四边形,又具有一般四边形的一切性质;具有一些非凡的性质。
小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等非凡性质,那么,假如在图4.51中再画一个圈表示矩形,这个圈应画在哪里?
(让学生初步感知矩形与平行四边形的从属关系。)
演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.52,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的非凡情况,这时的图形是什么图形(矩形)。
问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?
说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。
问题2:矩形是非凡的平行四边形,它除了“有一个角是直角”以外,还可能具有哪些平行四边形所没有的非凡性质呢?
说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”矩形的四个角都相等(矩形性质定理1),要学生给以证实(即课本例1后练习第1题)。
学生能探索得出“矩形的邻边互相垂直”的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。
学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证实,得出性质定理2。
问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?
说明与建议:(1)让学生先观察图4.53,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证实:
证实:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。
,AO=CO
∴在Rt△ABC中,BO是斜边AC上的中线,且。
∴直角三角形斜边上的中线等于斜边的一半。
例题解析
例1:(即课本例1)
说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:
如图4.5-4,欲求对角线BD的长,由于∠BAD=90°,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件∠AOD=120°出发,应用矩形的性质可知,∠ADB=30°,另外,还可以引导学生探究△AOB是什么非凡的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:
∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等)。
又。
∴OA=BO,△AOB是等腰三角形,
∵∠AOD=120°,∴∠AOB=180°120°=60°
∴∠AOB是等边三角形。
∴BO=AB=4cm,
∴BD=2BO=24×4cm=8cm。
例2:(补充例题)
已知:如图4.5-5四边形ABCD中,∠ABC=∠ADC=90°,E是AC的中点,EF平分∠BED交BD于点F。
(l)猜想:EF与BD具有怎样的关系?
(2)试证实你的猜想。
解:(l)EF垂直平分BD。
(2)证实:∵∠ABC=90°,点E是AC的中点。
∴(直角三角形的斜边上的中线等于斜边的一半)。
同理:。
∴BE=DE。
又∵EF平分∠BED。
∴EF⊥BD,BF=DF。
说明:本例是一道不给出“结论”,需要学生自己观察猜想讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。假如学生不适应,或有困难,教师可根据实际情况加以引导,这种练习,重要的不是猜对了没有?证实了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能能从复杂图形中分解出如图4.56所示的三个基本图形。
课堂练习
1.课本例1后练习题第2题。
2.课本例1后练习题第4题。
小结
1.矩形的定义:
2.归纳总结矩形的性质:
对边平行且相等
四个角都是直角
对角线平行且相等
3.直角三角形斜边上的中线等于斜边的一半。
4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。
作业
l.课本习题4.3A组第2题。
2.课本复习题四A组第6、7题。

精选阅读

矩形


教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件.
2.提高对矩形的性质和判别在实际生活中的应用能力.
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.
教学重点:矩形的性质和常用判别方法的理解和掌握.
教学难点:矩形的性质和常用判别方法的综合应用.
教学方法:分析启发法
教具准备:像框,平行四边形框架教具,多媒体课件.
教学过程设计:
一.情境导入:
演示平行四边形活动框架,引入课题.
二.讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)
结论:有一个内角是直角的平行四边形是矩形.
2.探究矩形的性质:
(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角.
(2).探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①.随着∠α的变化,两条对角线的长度分别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳.)
结论:矩形的两条对角线相等.
(3).议一议:(展示问题,引导学生讨论解决.)
①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能.)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米.求BD与AD的长.
(引导学生分析、解答.)
探索矩形的判别条件:(由修理桌子引出)
(1).想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(2).归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三.课堂练习:(出示P98随堂练习题,学生思考、解答.)
四.新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结.)
五.作业设计:P99习题4.6第1、2、3题.
板书设计:

4.矩形

矩形的定义:

矩形的性质:前面知识的小系统图示:三.矩形的判别条件:
例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

矩形的判定教案


一般给学生们上课之前,老师就早早地准备好了教案课件,大家在用心的考虑自己的教案课件。只有写好教案课件计划,才能促进我们的工作进一步发展!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“矩形的判定教案”,但愿对您的学习工作带来帮助。

20.2矩形的判定

预习导航学案激活思维1.请你画一个矩形,并画出它们的对角线.观察图形,你能说出它有哪些性质吗?试一试.2.__________________叫做矩形.3.矩形的对边________;四个角都是___________;对角线___________。4.____________________的平行四边形是矩形.对角线_____________的平行四边形是矩形.有三个角是直角的四边形是________________形信息鼠标1.(略)2.有一个内角是直角的平行四边形3.相等直角相等4.有一个角是直角相等矩

互动研学教练教材研学一。、矩形的性质回顾1.矩形的性质(1)矩形具有平行四边形的一切性质;(2)矩形对角线相等;(3)矩形的四个角都是直角;(4)矩形既是轴对称图形,又是中心对称图形.对称轴有两条,分别是每组对边中点连线所在的直线;对称中心是两对角线的交点.2.矩形性质的图形说明如图20—2—1,在矩形ABCD中,从边上看:AB∥CD,AB=CD;AD∥BC,AD=BC.从对角线上看:AC=BD且OA=OB=OC=OD。从角上看:∠ABC=∠BCD=∠CDA=∠DAB=90°.老师:根据上面矩形的性质分析可得直角三角形的一个什么性质?小弘:在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt△ABC中,O是斜边AC的中点,则AC=2OB.二、矩形的判定如图20-2-21.利用定义判别平行四边形矩形2.利用对角线判别对角线相等的平行四边形是矩形;对角线平分且相等的四边形是矩形.即:①在平行四边形ABCD中,若AC=BD,则平行四边形ABCD是矩形;②在四边形ABCD中,若AC=BD,且OA=OC、OB=OD,则四边形ABCD是矩形.3.利用角判别四个角是直角的四边形是矩形.即:在四边形ABCD中,若∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形.实际证明中,只要证明出三个角为直角即可.三、矩形的应用(1)用以证明线段相等或平分或倍数关系;(2)直角三角形两锐角互余;(3)直角三角形斜边上的中线等于斜边的一半;(4)直角三角形中30°角所对的直角边等于斜边的一半;(5)证明两条直线垂直.四、探究活动如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图20一2—3①,矩形ABEF即为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.问题:仿着上述叙述,画出直角三角形的“友好矩形”,并比较这些矩形面积的大小.分析:考察直角三角形的每一条边与矩形重合的情形,当以两条直角边为边作矩形时,这两个矩形重合,即为一个,所以直角三角形的“友好矩形”有两个.探究:如图20一2—3②,若△ABC为直角三角形,且∠C=90°,在图20—2—3②中画出△ABC的所有“友好矩形”,此时共有2个矩形,如图20—2—4中的BCAD、ABEF;易知,矩形BCAD、ABEF的面积等于△ABC面积的2倍,∴△ABC的“友好矩形”的面积相等.结论:直角三角形有两个“友好矩形”,且这两个矩形的面积相等.点石成金例1.如图20—2—5所示,在矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,则(1)图中与∠BAE相等的角有__________;(2)若∠AOB=60°,则AB:BD=_________。图中△DOC是___________三角形(按边分).解析:这是一道直接考查矩形特征的例题,在解答时,我们应充分考虑矩形的特征及与之相关的知识,例如在寻找与∠BAE相等的角时,看清∠BAE的形成,即为过A作AE⊥BD所形成,则∠BAE+∠EAD=90°,而∠ADB+∠EAD=90°,故∠BAE=∠ADB.又因为∠ADB=∠DBC=∠DAC,由此找与∠BAE相等的角就不难了;至于在第(2)问求AB:BD的方法,可根据题目的特殊条件及图形的特殊性找到结论.答案(1)∠ADB,∠DBC,∠ACB,∠DAC(2)1:2等边名师点金:找角时一定要找全,不能漏掉.例2.如图20—2—6所示,在矩形ABCD中,对角线AC、BD相交于点O,已知AC=6om,∠BOC=120°.求:(1)∠ACB的度数;(2)求AB、BC的长度.分析:本题是对矩形性质的考查(1)要求∠ACB的度数,而已知∠BOC=120°,△BOC中,由矩形的性质,知OB=OC,从而∠OBC=∠ACB.由此可求出∠ACB.(2)在Rt△ACB中,对角线AC=6cm,第(1)问已求出∠ACB=30°,因此AB即可求出.然后利用勾股定理求出BC的长.解:(1)在矩形ABCD中,对角线AC与BD互相平分且相等,于是OB=OC,所以∠OBC=∠ACB,故∠ACB=(180°一120°)=30°.(2)矩形ABCD中,∠ABC=90°,又∠ACB=30°,因此30°角所对直角边AB等于斜边AC的一半,即AB=AC=3cm,BC=(cm)名师点金:矩形问题通常通过对角线将其转化为等腰三角形或直角三角形来解决.例3.已知ABCD的对角线AC,BD相交于O,△ABO是等边三角形,AB=4cm,求这个平行四边形的面积(图20一2—71.)分析:(1)先判定ABCD为矩形。(2)求出Rt△ABC的直角边BC的长。(3)计算S=AB·BC解:∵四边形ABCD是平行四边形。∴△ABO≌△DCO又∵△ABO是等边三角形∴△DCO也是等边三角形,即AO=BO=CO=DO∴AC=BD∴ABCD为矩形。在Rt△ABC中,∠BAC=60°,∠ABC=90°∴BC=AB,即BC=4cmSABCD=AB·AC=16cm2名师点金:本题首先判定平行四边形是矩形,再利用矩形的面积公式来计算.例4.(1)利用左栏的探究结论说明什么是三角形的“友好平行四边形”.(2)若△ABC为锐角三角形,且BCACAB,在图20一2—8中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.分析:用类比联想的方法先构造出每一种情况下三角形的“友好矩形”,根据矩形的边和面积与其三角形的边和面积之间的关系,寻找其周长与面积.解:(1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)此时共有3个“友好矩形”,如图20—2—9中矩形BCDE,CAFG及ABHK,其中矩形ABHK的周长最小.证明如下:易知,这三个矩形的面积相等,令其为s.设矩形BCDE、CAFG及ABHK的周长分别为L1、L2、L3,△ABC的边长BC=a,CA=b,AB=c,则L1=+2aL2=+2b,L3=+2c。∴==2(a-b)而a>b,∴L1-L2>0,即L1>L2。同理可得L2>L3∴L3的周长最小,即矩形ABHK的周长最小。名师点金:在阅读理解的基础上,先画出图形,确定好每一种情形,利于进一步求解。

同步升级演练基础巩固题1.下列命题中错误的是()A.有三个角是直角的四边形是矩形B.两条对角线互相平分且相等的四边形是矩形C.对角线互相平分且有一个角是直角的四边形是矩形D.对角线相等的四边形是矩形2.如图20—2—10,在矩形ABCD中,E是BC上的点,且∠AED=90°,∠BAE=30°,AE=4,则矩形ABCD的周长为()A.8+2B.16+4C.8+4D.16+23.下列条件:①已知矩形的边和一条对角线长;②已知矩形一条对角线长和对角线的夹角;③已知矩形一边的长和对角线的夹角;④已知矩形的周长.能确定矩形的形状和大小的条件是()A.①②B.①③c.③④D.①②③4.矩形的两条对角线所夹的钝角为120°,短边长为5cm,则其对角线长为___________.5.如图20—2—11,在矩形ABCD中,作AE⊥BD于E,且∠DAE:∠BAE=3:1,求∠CAE的度数.探究提高题6.把矩形ABCD绕顶点A旋转90°后得到矩形AEFG(如图19—2—12),连接AF、AC、CF,则∠AFC=_________。7.现有一张长为40cm,宽为20cm的长方形纸片,要从中剪出长为18cm,宽为12cm的长方形纸片,则最多能剪拼_________张.8.如图20—2—13,工人师傅做铝合金窗框分下面j个步骤进行:(1)先截出两对符合规格的铝合金窗(如图①)使AB=CD、EF=GH;(2)摆放成(如图②)的四边形,则这时窗框的形状是______,根据的数学道理是__________;(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格这时窗框是__________,根据的数学道理是:__________9.已知:如图20—2—14,正方形ABCD的边长8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为________.10.如图20—2—15a,正方形ABCD和正方形BEFC.操作:M是线段AB上一动点,从A点至B点移动,DM⊥MN,交对角线BF于点M求:(1)线段DM和MN之间的关系,并加以证明;(2)如图b,当M是线段AE延长线上一动点,DM⊥MN,交对角线BF延长线于点N,探究线段DM和MN之间的关系,直接写出结果不必证明.拓展延伸题11.如图20一2—16,一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图③形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.中考模拟题12.(2006·黑龙江鸡西)如图20—2—17,在矩形ABCD中。EF∥AB,GH∥BC,EF、GB的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对13.(2006·山东青岛)已知:如图20—2—18,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

矩形、菱形、正方形


章节与课题3.5矩形、菱形、正方形(第1课时)
主备人课时1课时
使用人审核人
本课时学习目标或学习任务
1.理解矩形的概念.
2.掌握矩形的性质.
本课时重点难点或学习建议
矩形的性质的综合应用.
本课时教学资源的使用
一、复习巩固
1、能判断一个四边形是平行四边形的为()
A、一组对边平行,另一组对边相等
B、一组对边平行,一组对角相等
C、一组对边平行,一组对角互补
D、一组对边平行,两条对角线相等
2、ABCD中,已知∠A=80°,则∠C=°,
∠B=°,∠D=°.
3、在ABCD中,已知AB=6,周长等于22,则BC=__
CD=____,DA=_____.
二、探索新知:
1、操作题:BO是Rt△ABC的斜边AC上的中线,画出△ABC关于点O对称的图形。
结论:
(1)四边形ABCD是____图形,点____是对称中心.
2、如图,在矩形ABCD中,AE⊥BD,垂足为E,
∠DAE=2∠BAE,求∠BAE与∠DAE的度数。
3、如图,四边形ABCD是矩形,对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.AC和CE相等吗?为什么?
(2)四边形ABCD是平行四边形吗?是矩形吗?

2、矩形的概念:
有__个角是直角的__________形叫做矩形
3、矩形的性质:
(1)矩形是特殊的平行四边形,它具有
的性质
(2)由于矩形比平行四边形多了一个特殊条件:,因此,矩形应具有一些特殊的性质.它具有哪些特殊性质?

三、知识运用
1、如图,矩形ABCD的对角线AC、BD相交于O,AB=4,∠AOB=600.求对角线AC的长。
当堂检测:
1、矩形是轴对称图形,对称轴是_____又是中心对称图形,对称中心是___
2、矩形两对角线把矩形分成___个等腰三角形
3、矩形的面积为48,一条边长为6,则矩形的另一边长为,对角线为
4、下面性质中,矩形不一定具有的是().
(A)对角线相等;(B)四个角都相等;
(C)是轴对称图形;(D)对角线垂直
5、矩形的一条对角线长为10,则另一条对角线长为,如果一边长为8,则矩形的面积为
6、如图,在矩形ABCD中,点E在AD上,EC平分∠BED。
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠ABE=45°,求BC的长

课后反思:

章节与课题3.5矩形、菱形、正方形(2)
主备人课时1课时
使用人审核人
本课时学习目标或学习任务
1.理解掌握矩形的判定条件.
2.提高矩形的判定在实际生活中的应用能力.
本课时重点难点或学习建议
矩形的判定方法的理解和掌握.
矩形的判定方法的综合应用.
本课时教学资源的使用
四、复习巩固
如图,请写出矩形ABCD的所有性质。

1、对称性
是对称,对称是
是对称,对称是
2、边
==
∥∥
3、角
====90°
4、对角线
===
五、探索新知
1、判断题
有1个角是直角的四边形是矩形()
六、知识运用
1、在△ABC中,点D在AB上,且AD=CD=BD,DE、DF分别是∠BDC、∠ADC的平分线。四边形FDEC是矩形吗?为什么?

2、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.
当堂检测
1.下列说法错误的是()
(A)有一个内角是直角的平行四边形是矩形(B)矩形的四个角都是直角,并且对角线相等有2个角是直角的四边形是矩形()
有3个角是直角的四边形是矩形()
有4个角是直角的四边形是矩形()
2、矩形的判定定理1

3、如图,ABCD的对角线AC与BD相等,ABCD是矩形吗?为什么?
4、矩形的判定定理2

(C)对角线相等的平行四边形是矩形(D)有两个角是直角的四边形是矩形
2.下列四边形中不是矩形的是()
A、有三个角是直角的四边形是矩形
B、四个角都相等的四边形
C、一组对边平行且对角相等的四边形
D、对角线相等且互相平分的四边形
3、已知平行四边形ABCD中对角线AC,BD相交于o,△AOB是等边三角形,求∠BAD的度数。
解:∵△AOB是等边三角形
∴OA=_____=_____
∵四边形ABCD是平行四边形
∴AC=2OA,BD=2BO
∴AC=_____
∴平行四边形ABCD是矩形
∴∠BAD=90°
4、已知:如图,ABCD中,M为BC中点,∠MAD=∠MDA
求证:四边形是ABCD是矩形。

课后反思:

文章来源:http://m.jab88.com/j/64596.html

更多

最新更新

更多