88教案网

14.3等腰三角形

教案课件是老师不可缺少的课件,大家在认真写教案课件了。只有写好教案课件计划,这对我们接下来发展有着重要的意义!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“14.3等腰三角形”,供您参考,希望能够帮助到大家。

14.3等腰三角形
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题.
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律.
情感态度与价值观:
渗透实践--理论--实践的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯.

教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题.
难点:引辅助线证明定理和推论1的应用.

教学过程与流程设计
引导性材料:
1.学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2.教师用等腰三角形纸片演示两腰叠合,再把纸片展开.
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如图,△ABC中,AB=AC.
求证:∠B=∠C.

(方法1)证明:作顶角的平分线AD.
在△BAD和△CAD中.
AB=AC(已知)
∠1=∠2(辅助线作法)
AD=AD(公共边)
∴△BAD≌△CAD(SAS)
∴∠B=∠C(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边BC上的高AD.(证明过程由学生口述)
方法3:作底边BC上的中线AD.(证明过程由学生口述)m.jAb88.cOm

(演示):等腰三角形的性质定理等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1)在等腰△ABC中,如果AD是顶角的平分线,那么AD是否平分底边?是否垂直于底边?
(2)在等腰△ABC中,如果AD是底边上的高,那么AD是否平分顶角?是否平分底边?
(3)在等腰△ABC中,如果AD是底边上的中线,那么AD是否平分顶角?是否垂直于底边?
推论1等腰三角形顶角的平分线平分底边并且垂直于底边.
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合.)
练习:填空,在△ABC中,
(1)∵AB=AC,AD⊥BC,
∴∠=∠,=.
(2)∵AB=AC,AD是中线,
∴⊥,∠=∠.
(3)∵AB=AC,AD是角平分线,
∴⊥,=.
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如图,△ABC中,AB=AC=BC.
求证:∠A=∠B=∠C=60°
证明:∵AB=AC,
∴∠B=∠C(等边对等角),
∵AC=BC,
∴∠A=∠B(等边对等角),
∴∠A=∠B=∠C,
∵∠A+∠B+∠C=180°(三角形内角和定理),
∴∠A=∠B=∠C=60°
例题解析:
例1:填空,1.在△ABC中,AB=AC.
(1)若∠A=50°,则∠B=°,∠C=°;
(2)若∠B=45°,则∠A=°,∠C=°;
(3)若∠B=∠A,则∠A=°,∠C=°;
(4)若∠B=2∠A,则∠A=°,∠C=°.
2.等腰三角形的一个角是40°,则它的底角是.
3.等腰三角形的一个角是120°,则它的底角是.
例2:已知,如图(6),房顶的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.
解:在△ABC中,
∵AB=AC(已知),
∴∠B=∠C(等底对等角),
∴∠B=∠C=(180°-∠BAC)=40°,

(三角形内角和定理),
又∵AD⊥BC(已知),
∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),
∵∠BAC=100°,
(7)∴
课堂练习:
已知:如图(7)中的三角形测平架中,AB=AC,在BC的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上.
求证:(1)AD⊥BC;
(2)这时BC处于水平位置,为什么?
课堂小结:
1.等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;
2.等腰三角形性质定理的推论1、推论2;
3.由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”.
4.掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙.
作业:习题14.3第6、7题(作业本),其他课本

扩展阅读

等腰三角形


每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“等腰三角形”,仅供参考,欢迎大家阅读。

10.3等腰三角形(3)
2.等腰三角形的识别
教学目的
1.通过探索一个三角形是等腰三角形的条件,培养学生的探索能力。
2.能利用一个三角形是等腰三角形的条件,正确判断某个三角形是否为等腰三角形。
重点、难点
重点:让学生掌握一个三角形是等腰三角形的条件和正确应用。
难点:一个三角形是等腰三角形的条件的正确文字叙述。
教学过程
一、复习引入
等腰三角形具有哪些性质?
等腰三角形的两底角相等,底边上的高、中线及顶角平分线“三线合一”。
二、新课
对于一个三角形,怎样识别它是不是等腰三角形呢?我们已经知道的方法是看它是否有两条边相等。这一节,我们再学习另一种识别方法。
我们已学过,等腰三角形的两个底角相等,反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?
为了回答这个问题,请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
1.在半透明纸上画一个线段BC。
2.以BC为始边,分别以点B和点C为顶点,用量角器画两个相等的角,两角终边的交点为A。
3.用刻度尺找出BC的中点D,连接AD,然后沿AD对折。
问题1:AB与AC是否重合?
问题2:本实验的条件与结论如何用文字语言加以叙述?
如果一个三角形有两个角相等,那么这两个角所对的边也相等,简写成“等角对等边”。
也就是说,如果一个三角形中有两个角相等,那么它就是等腰三角形。一个三角形是等腰三角形的条件,可以用来判定一个三角形是否为等腰三角形。
例1.在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?
问题3:三个角都是60°的三角形是等边三角形吗?你能说明理由吗?
等腰直角三角形:顶角是直角的等腰三角形是等腰直角三角形,如图所示。
问题4:你能说出等腰直角三角形各角的大小吗?
问题5:请你画一个等腰直角三角形,使∠C=90°,CD是底边上的高,数一数图中共有几个等腰直角三角形?
三、练习巩固
练习l、2、3。
四、小结
这节课,,我们学习了一个三角形是等腰三角形的条件:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),此条件可以做为判断一个三角形是等腰三角形的依据。因此,要牢记并能熟练应用它。
五、作业
1.习题第5题。

八年级数学上册13.3.1等腰三角形1等腰三角形的性质学案新版新人教版


课题:13.3.1(1)等腰三角形的性质
【学习目标】
1、经历剪纸、折纸等活动,进一步认识等腰三角形;了解等腰三角形是轴对称图形;
能够探索、归纳、验证等腰三角形的性质,并学会应用等腰三角形的性质。
2、培养分类讨论、方程的思想和添加辅助线解决问题的能力。
【学习重难点】
重点:等腰三角形性质的探索和应用。
难点:等腰三角形的性质的验证。
一、知识链接
复习旧知:
1、等腰三角形的周长是35cm,腰长是底边的2倍,则该三角形的底边长是________cm,腰长是__________cm。
2、等腰三角形的两边长分别为8cm和6cm,那么它的周长为()
A、20cmB、22cmC、20cm或22cmD、都不对
3、已知等腰三角形的一个外角等于70°,那么底角的度数是()
A、110°B、55°C、35°D、以上都不对
4、已知等腰三角形的一个外角等于130°,那么底角的度数是()
A、50°B、65°C、50°或65°D、以上都不对

自主学习(新知):精读课本第75-76页,用红色的笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑。
如下图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的三角形有什么特点?
操作结论:剪刀剪过的两条边_______,即△ABC中的边____=_____,所以得到的三角形是_______三角形。
等腰三角形的定义:有_________相等的三角形是等腰三角形
等腰三角形中相等的两边叫做________,另一边叫做_________,两腰所夹的角叫做_________,底边与腰的夹角叫__________。
一、合作与探究
(一)如上图,把剪出的三角形ABC沿折痕对折,找出其中重合的线段与角,由这些重合的线段与角,你能发现等腰三角形的性质吗?
重合的角重合的线段

1、通过操作可以得到等腰三角形的以下性质:
性质1等腰三角形的两个_______相等(简写“等边对等_____”)
性质2等腰三角形的顶角_______线、底边上的_____线、底边上的_____相互重合(简写成“三线合一”)
2、如图,等腰三角形性质1用数学符号表示:
∵AB=AC
∴∠_____=∠_____

3.等腰三角形性质2你理解了吗?
思考:如图,在△ABC中,AB=AC,如何用数学符号表示性质2?
(1)等腰三角形底边上的高AD,既是底边上的,又是顶角;
即在等腰△ABC中,AB=AC,
∵AD⊥BC,∴____=____,∠_____=∠_____;
(2)等腰三角形的底边上中线AD,既是底边上的,又是顶角
即在等腰△ABC中,AB=AC,
∵AD是中线,∴____⊥____,∠_____=∠_____;
(3)等腰三角形的顶角的平分线AD,既是底边上的,又是底边上的,
即在等腰△ABC中,AB=AC,
∵AD是角平分线,∴_____=_____,____⊥____。
(二)你能利用三角形全等来证明性质1(等边对等角)吗?(你有几种方法?)
如右图△ABC中,AB=AC,求证:∠B=∠C

4、受性质1证明的启发,你能证明性质2(等腰三角形顶角平分线、底边上的中线、底边上的高重合)吗?请证之。
(三)等腰三角形性质的应用
例1如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD。求△ABC各角的度数。
三、巩固练习
基础练习:
1、等腰三角形一个底角为72°,它的顶角为______。
2、等腰三角形一个角为70°,它的另外两个角为分别为________________。
3、等腰三角形一个角为110°,它的另外两个角为___________。
4、如图,在△ABC中,AB=AC,∠A=30,DE垂直平分AC,
则∠BCD的度数为()
A、80°B、75°C、65°D、45°

拓展提升:
1、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为_______________。
2、如图,在△ABC中,AB=AC,点D、E在BC上,且AD=AE。求证:BD=CE

3、已知在△ABC中,AB=AC,∠BAD=30°,AD=AE。求:∠EDC的度数。

四、要点归纳
1.等腰三角形的定义
2.等腰三角形的性质:
性质1:等腰三角形的两个_______相等(简写“等边对等_____”)
性质2:等腰三角形的顶角_______线、底边上的_____线、底边上的_____相互重合(简写成“三线合一”)
课后反思:.

八年级数学上册13.3.1等腰三角形2等腰三角形的判定学案无答案新版新人教版


课题:13.3.1(2)等腰三角形的判定
【学习目标】
1、通过探索、归纳、验证等腰三角形的判定定理,学会应用等腰三角形的判定定理。
2、学会利用已有知识解决实际问题的能力
【学习重难点】
重点:等腰三角形的判定定理及其应用。
难点:探索等腰三角形的判定定理。
一、知识链接
复习旧知:1等腰三角形的性质:
性质1等腰三角形的两个_______相等(简写“等边对等_____”)
性质2等腰三角形的顶角_______线、底边上的_____线、底边上的_____相互重合(简写成“三线合一”)
2、平行线的性质:
两直线平行,则__________相等
两直线平行,则____________相等
两直线平行,则_____________互补
自主学习(新知):精读课本第77-79页,用红色的笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑。

思考1:如果一个三角形有两条边相等,那么它们所对的角相等。反过来,如果一个三角形有两个角相等,那么它们所对的边有什么关系呢?
如图,在△ABC中,∠B=∠C。求证:AB=AC(提示:添加辅助线,利用三角形全等的方法来证明)
证明:

结论:
等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的______也相等(简写成:“等角对等边”)

思考2:等腰三角形的性质与判定有区别吗?
二、合作与探究
(一)求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
已知:如图∠CAE是△ABC的外角,∠1=∠2,AD//BC。
求证:AB=AC

(二)作等腰三角形
已知等腰三角形底边长为,底边上的高长为h,求作这个等腰三角形。

作法:
1、作线段AB=____.
2、作线段AB的垂直平分线____,与AB相交于点.
3、在MN上取一点C,使DC=.
4、连接,,则△ABC即为所求作的等腰三角形.

三、巩固练习
基础练习:
1、如图,∠A=36,∠DBC=36,∠C=72。则∠1=_________,∠2=_________。图中的等腰三角形有____________________________。

2、如上图,把一张长方形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?
3、如图,AC和BD相交于点O,且AB//DC,OA=OB.求证OC=OD

拓展提升:
1、等腰三角形两底角的平分线相等吗?两腰上的中线呢?两腰上的高呢?证明其中的一个结论。

四、要点归纳
1.等腰三角形的判定:_____________________________________________________

____________________________________________________________________
2.等腰三角形性质与判定的区别

3.等腰三角形的作法(尺规作图)

课后反思:.

文章来源:http://m.jab88.com/j/64448.html

更多

最新更新

更多