88教案网

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《逆命题与逆定理》,欢迎大家阅读,希望对大家有所帮助。

§19.4.逆命题与逆定理
3.角平分线
教学目的:角平分线定理及逆命题的应用
重点与难点:角平分线定理及逆命题的应用
教学过程

回忆
我们知道角平分线上的点到这个角的两边的距离相等.角平分线的这条性质是怎样得到的呢?
如图19.4.4,OC是∠AOB的平分线,点P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为点D和点E.当时是在半透明纸上描出了这个图,然后沿着射线OC对折,通过观察,线段PD和PE完全重合.于是得到PD=PE.
与等腰三角形的判定方法相类似,我们也可用逻辑推理的方法加以证明.图中有两个直角三角形△PDO和△PEO,只要证明这两个三角形全等,便可证得PD=PE.

于是就有定理:
角平分线上的点到这个角的两边的距离相等.

此定理的逆命题是“到一个角的两边的距离相等的点在这个角的平分线上”,这个命题是否是真命题呢?即到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?我们可以通过“证明”来解答这个问题.

已知:如图19.4.5,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.
求证:点Q在∠AOB的平分线上.
分析:为了证明点Q在∠AOB的平分线上,
可以作射线OQ,然后证明Rt△DOQ≌Rt△EOQ,从而得到∠AOQ=∠BOQ.
于是就有定理:
到一个角的两边距离相等的点,在这个角的平分线上.

上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明:三角形三条角平分线交于一点.

从图19.4.6中可以看出,要证明三条角平分线交于一点,只需证明其中的两条角平分线的交点一定在第三条角平分线上就可以了.
请你完成证明.
课堂练习:
1.如图,在直线l上找出一点P,使得点P到∠AOB的两边OA、OB的距离相等.
2.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.
课堂小结:总结一下你所学过的知识

作业

延伸阅读

18.2勾股定理的逆定理(三)


18.2勾股定理的逆定理(三)
一、教学目标
1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。
2.灵活应用勾股定理及逆定理解综合题。
3.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:利用勾股定理及逆定理解综合题。
2.难点:利用勾股定理及逆定理解综合题。
三、例题的意图分析
例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。
例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。
例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。
四、课堂引入
勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
五、例习题分析
例1(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。
试判断△ABC的形状。
分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD的面积。
分析:⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);
⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面积公式可解,或利用三角形的面积。
例3(补充)已知:如图,在△ABC中,CD是AB边上的高,且CD2=ADBD。
求证:△ABC是直角三角形。
分析:∵AC2=AD2+CD2,BC2=CD2+BD2
∴AC2+BC2=AD2+2CD2+BD2
=AD2+2ADBD+BD2
=(AD+BD)2=AB2
六、课堂练习
1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()
A.等腰三角形;
B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。
3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。
求:四边形ABCD的面积。
4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=ADBD。
求证:△ABC中是直角三角形。

七、课后练习,
1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。
2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。
3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。
求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。

课后反思:

八、参考答案:
课堂练习:
1.C;
2.△ABC是等腰直角三角形;
3.
4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=
AD2+2ADBD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。
课后练习:
1.6;
2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。
3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。
4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2。

《勾股定理逆定理》导学设计


《勾股定理逆定理》导学设计

3.2勾股定理逆定理
班级姓名
一、教学目标:
1.会阐述勾股定理的逆定理。
2.会应用勾股定理的逆定理判定一个三角形是直角三角形
3.在探索勾股定理的逆定理的过程中,发展合情推理能力,体会“形”与“数”的内在联系。
二、教学重点:勾股定理的逆定理
三、教学难点:会应用勾股定理的逆定理解决一些简单的实际问题
四、教学过程
(一)、情境创设:温故知新
1.已知△ABC中,∠C=90°,a=7,c=25,则b=.
2.已知△ABC中,∠A=25°,∠B=65°,则∠C=°,此时△ABC为三角形.
3.勾股定理及它的逆命题,几何语言的阐述,思考它们都是真命题吗?
(二)、探究活动:
如图,已知△ABC中,a2+b2=c2,△ABC是否为直角三角形?您会证明么?
ac

b
勾股定理的逆定理:如果三角形的三边长a、b、C满足,那么这个三角形是直角三角形。满足a2+b2=c2的三个正整数a,b,c,称为。

练习(1)、下列各数组中,不能作为直角三角形的三边长的是()
A、3,4,5B、10,6,8C、4,5,6D、12,13,5
(2)若△ABC的两边长为8和15,则能使△ABC为直角三角形的第三条边长的平方是()
A.161B.289;
C.17D.161或289.
(3)、4个三角形的边长分别为:①a=5,b=12,c=13;②a=2,b=3,c=4;③a=2.5,b=6,c=6.5;④a=21,b=20,c=29.其中,直角三角形的个数是()
A、4B、3C、2D、1
(4)、下列各组数是勾股数吗?为什么?
⑴12,15,18;⑵7,24,25;
⑶15,36,39;⑷12,35,36.
小结:

练习.如图,判断△ABC的形状,并说明理由.

思考:(1)如果△ABC满足c2=a2-b2,这个三角形是直角三角形吗?如果是,哪个角是直角?
(2)一个直角三角形的三边长为3,4,5.如果将这三边同时扩大3倍,那么得到的三角形还是直角三角形吗?如果扩大4倍呢?扩大n倍呢?

探索规律,像3,4,5;6,8,10;5,12,13等满足a2+b2=c2的一组正整数,称为勾股数.
(1)填表:
a369…3n
b4816…
c51520…5n
a369…3n
b4816…
c51520…5n

(五).课堂小结:通过这节课的学习活动你有哪些收获?
学了这么多,来小试身手吧!
一、选择题
1.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是()
A.a+b=cB.a:b:c=3:4:5C.a=b=2cD.∠A=∠B=∠C
2.若三角形三边长分别是6,8,10,则它最长边上的高为()
A.6B.4.8C.2.4D.8
3如图,在四边形ABCD中,已知:AB=1,BC=2,CD=2,AD=3,且AB⊥BC.
试说明AC⊥CD.

4.要做一个如图所示的零件,按规定∠B与∠D都应为直角,工人师傅量得所做零件的尺寸如图,这个零件符合要求吗?为什么?

5.已知:如图一个零件,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.

6*(选做).在△ABC中,BC=m2-n2,AB=m2+n2,AC=2mn(mn0)
(1)试判断△ABC的形状,并说明理由;
(2)利用所给的BC、AC、AB的长度的表达式,写出一组勾股数,使其中一个数是28.

家作班级姓名
1.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三的为()
A.a+b=cB.a:b:c=3:4:5C.(c+a)(c-a)=b2D.∠B-∠C=∠A,

2.下列各数组中,不能作为直角三角形的三边长的是()
A.3,4,5B.10,6,8C.4,5,6D.12,13,5

3.若三角形三边长分别是3,4,15,则它最长边上的高为。

4.若△ABC的两边长为9和15,则能使△ABC为直角三角形的第三边是。

5.4个三角形的边长分别为:①a=5,b=12,c=13;②a=2,b=3,c=4;③a=2.5,b=6,c=6.5;
④a=21,b=20,c=29.其中,直角三角形的个数是个。

6.一个直角三角形三边长为连续自然数,则这三个数为.

7.一个三角形的三边长的比为5:12:13,周长为60cm,则其面积为.

8.在△ABC中,如果(a+b)(a-b)=c2,那么∠A=°

9.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状。

思考题:若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c。
试判断△ABC的形状,并说明理由.

《勾股定理的逆定理》教学反思


《勾股定理的逆定理》教学反思

一、本节课的成功之处:

1、本节课以学生活动为主线,通过学生回顾旧知识(勾股定理),然后设计练习题从估算到实验活动结果的产生让学生总结规律,最后回到解决生活中实际问题,思路清晰,脉络明了。例如:活动2问题:让学生画出以所给条件为边的三角形,再用量角器分别测量一下上述各三角形的最大角的度数,再根据上述每个三角形所给的各组边长请你找出最长边的平方与其他两边的平方和之间的关系。猜想一下,一个三角形各边长数量应满足怎样的关系时,这个三角形才可能是直角三角形呢?

2、体现了对“数学抽象”的核心素养的认识,突出了“特征上让学生观察,思路上让学生探索,方法上让学生思考,让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。例如:活动四例1.在很久很久以前,古埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样钉成一个三角形,这个三角形便是直角三角形。为什么?先让学生自主完成,再集体纠正,调动了学生学习的积极性。

3、在本节教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。这是本节课的特色。

二、本节课的不足之处及改进方法:

1、本节课我利用多媒体辅助教学,如学习目标的发展、习题训练内容的展示、学生活动的要求、作业布置等,都用多媒体进行了展示,但由于计算机知识有限,设计的课件没有动图,学生的兴趣不是很高,在以后的教学中我应加强计算机的应用知识,使自己设计的多媒体课件更生动,更具有吸引力。

2、在重难点的突破上还应加一些递进的习题,降低题的难度,使优等生感兴趣,中等生也能跟上,学困生也有兴趣去学。在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。

文章来源:http://m.jab88.com/j/63312.html

更多

最新更新

更多