11.1全等三角形
一、学习目标
1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。
3、能熟练找出两个全等三角形的对应角、对应边。
二、重点难点
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
三、合作探究
1.观察p2图案,指出这些图案中形状与大小相同的图形
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板、完全一样.
3.获取概念(由学生回答,教师引导、指正)
形状与大小都完全相同的两个图形就是.(要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.)
即:全等形的准确定义:能够完全重合的两个图形叫做全等形.
推得出全等三角形的概念:
对应顶点:、对应角:、
对应边:”符号:读作“全等于”
导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
得出:≌△DEF,△ABC≌,△ABC≌.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,但、都没有改变,所以平移、翻折、旋转前后的图形,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
全等三角形的性质:,。
四、精讲精练
例1、如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
例2、如图,已知△ABE≌△ACD,∠ADC=∠AEB,
∠B=∠C,指出其他的对应边和对应角.
(1)全等三角形对应角所对的边是对应边;
两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的
角是对应角.
例3、已知如图△ABC≌△ADE,试找出对应边、对应角.
精练(由学生合作完成、教师点拨)
(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
年级八年级课题11.3角的平分线的性质(第二课时)课型新授
教学媒体多媒体
教学目标知识
技能1.掌握角平分线的判定定理的内容.
2.会用角平分线的性质和判定证明.
3.会作一点到三角形三边距离相等.
过程
方法1.能够利用角平分线的性质和判定进行推理和计算.
2.了解角的平分线的判定在生活、生产中的应用.
情感
态度通过折纸、画图、文字符号的翻译活动,培养学生的猜想、验证、归纳能力,激发学生学习数学的兴趣.
教学重点角的平分线的判定的证明及运用.
教学难点灵活应用角平分线的性质和判定解决问题.
教学过程设计
教学程序及教学内容师生行为设计意图
一、情境引入
1.角的平分线性质定理的内容是什么?其中题设、结论是什么?
2.角平分线性质定理的作用是证明什么?
3.填空如图:
∵OC平分∠AOB,
∴AC=BC(角平分线性质定理)
二、探究新知
探究角的平分线的判定:
思考:把角平分线性质定理的题设、结论交换后,得出什么命题?它正确?如何证明?
证明上面的猜想。
归纳角平分线的判定定理:到一角的两边的距离相等的点,在这个角的平分线上。
角平分线的判定定理的应用:
多媒体展示:
(1)现有一条题目,两位同学分别用两种方法证明,问他们的做法正确?那一种方法好?
已知:,CA⊥OA于A,BC⊥OB于B,AC=BC
求证:OC平分∠AOB
证法1:∵CA⊥OA,BC⊥OB
∴∠A=∠B
在△AOC和△BOC中
∴△AOC≌△BOC(HL)
∴∠AOC=∠BOC∴OC平分∠AOB
证法2:∵CA⊥OA于A,BC⊥OB于B,AC=BC
∴OC平分∠AOB(角平分线判定定理)
(2)已知:如图,AD、BE是△ABC的两个角平分线,AD、BE相交于O点
求证:O在∠C的平分线上
三、课堂训练
多媒体展示:、
1.如图,已知DB⊥AN于B,交AE于点O,OC⊥AM于点C,且OB=OC,若∠OAB=25°,求∠ADB的度数.
2.如图,已知AB=AC,DE⊥AB于E,
DF⊥AC于F,且DE=DF.
求证:BD=DC
四、小结归纳
1.角平分线判定定理及期作用;
2.在已知一定条件下,证角平分线不再用三角形全等后角相等得出,可直接运用角平分线判定定理。
3.三角形三个内角平分线交于一点,到三角形三边距离相等的点是三条角平分线的交点。
五、作业设计
1.教材习题11.3第3、4题;
2.补充作业:
如图,的外角∠CBD、∠BCE的平分线相交于点F。
求证:(1)∠BFC=;
(2)点F在∠DAE的平分线上.
学生思考回答,复习角的平分线的性质。
学生思考并回答。
学生依据猜测写出已知、求证,并画图,而后分组讨论,写出证明过程。
学生根据上面的猜测及证明,归纳角平分线的判定定理。
学生明确在已知一定条件下,证角平分线不再用证三角形全等后再证角相等得出,可直接运用角平分线判定定理。
教师引导学生分析,思考,写出证明过程。
教师规范书写格式。
学生应用角的平分线判定定理解题。
学生总结所学知识,谈谈判定定理的用途。
把平分线的性质与判定的结论与题设相对照。
由性质到判定强化二者的关系。
进一步巩固全等三角形的判定。
培养学生的归纳概括能力。
使学生明确角平分线判定定理的作用。
巩固角的平分线的性质与判定的应用,培养学生分析问题、解决问题的能力。
巩固本节所学。
及时小结形成知识块。
板书设计
课题11.3角的平分线的判定
一、证明几何命题的步骤:例题分析
二、角的平分线的判定定理:
三、角的平分线的判定定理的作用:
教学反思
第八章数据的代表
回顾与思考
一、学生起点分析
学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。
学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。
二、学习任务分析
本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课的教学目标是:
1.知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。
2.过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。
3.情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。
三、教学过程设计
本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:归纳知识结构
内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?
留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:
目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。
注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。
第二环节:回顾重点内容
内容:引导学生根据网络结构图,把重点知识内容再回顾一下:
1.平均数、中位数、众数的概念及举例
一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两
个数据的平均数)叫做这组数据的中位数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
2.平均数、中位数、众数的特征
(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。
3.算术平均数和加权平均数的联系与区别及举例
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4.加权平均数中权的差异对平均数的影响及举例
在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。
5.利用计算器求一组数据的平均数
目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。
注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛;一个能用数学思维思考世界的头脑。
第三环节:综合运用提高
内容:1.从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):
400.0400.3401.2398.9399.8
399.8400.0400.5399.7399.8
利用计算器求出这10个零件的平均质量。
2.某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
3.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售量,统计了这15人某月的销售量如下:
每人销售件数1800510250210150wwm120
人数113532
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。
4.下图反映了甲、乙两班学生的体育成绩。
(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?
(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?
(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?m
(4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?
目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。
注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。
对本章知识技能的评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。
第四环节:课堂小结
内容:1.本章知识结构和重点内容。
2.综合运用统计知识解决实际问题。
3.整理归纳知识的方法,勤于思考、善于总结的好习惯。
目的:围绕本节课的教学目标,进行知识、方法、能力、习惯全方位的小结,目的是为了学生的全面发展。
注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。
第五环节:布置作业
1.课本本章复习题。
2.在数学成长本上进行本章的小结与反思。
四、教学反思
1.华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。
2.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。
3.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。
文章来源:http://m.jab88.com/j/62983.html
更多