88教案网

八年级下册数学第18章平行四边形导学案及练习题

每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“八年级下册数学第18章平行四边形导学案及练习题”但愿对您的学习工作带来帮助。

学习目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.
学习重点:平行四边形的判定方法及应用.
学习难点:平行四边形的判定定理与性质定理的灵活应用.
学习过程:一、自主预习
提出问题:1.平行四边形的定义是什么?它有什么作用?
2.平行四边形具有哪些性质?
3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?
★探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
二、合作解疑证一证
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
已知:
求证:
证明:

平行四边形判定方法2对角线互相平分的四边形是平行四边形。
已知:
求证:
证明:

例1已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
三、当堂检测
1.如图,在四边形ABCD中,AC、BD相交于点O,
(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.

2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.
求证:EO=OF.

精选阅读

第20章平行四边形平行四边形的特征(1)


第20章平行四边形

20.1平行四边形

1、平行四边形的特征(1)

教学目标

1.认识平行四边形是中心对称图形。

2.理解平行四边形其边、角之间的位置关系和数量关系。

3.理解并掌握平行四边形的特征。

4.能灵活运用平行四边形的特征并进行简单的推理证明。

教学重点与难点

重点:平行四边形的特征与性质的探索过程。

难点:发展学生的合情推理能力。教学准备图钉、方格纸、剪刀、直尺、三角板等。

教学过程

一、提问。

1.平行四边形是同学们常见的平面图形,你见过那些物体具有平行四边形的形状?

2.你能从如图所示的图形中找出平行四边形吗?

二、新授。

1.按课本第30页的“探索”画图。

2.剪下平行四边形,沿平行四边形的各边再在一张纸上画一个平行四边形,各顶点记为A、B、C、D。通过连结对角线得交点O,用一枚图钉穿过点O,把其中一个平行四边形绕点。旋转,观察旋转180°后的图形与原来的图形是否重合。重复旋转几次,看看是否得到同样的结果。

问题1:平行四边形是否是中心对称图形?

问题2:请说出平行四边形边、角之间的位置关系和数量关系。

(出题的目的在于激发学生的积极性,培养学生的数学思维能力。)

3.小组讨论,探索结果。

平行四边形的对边相等,对角相等。

(整个过程注意引导学生观察、思考、发现问题。有的学生可能发现对角线互相平分,要及时鼓励和肯定,表扬学习积极性较强的学生。)

三、应用举例。

1.例1如图,在平行四边形ABCD中,已知∠A=40°,求其他各个内角的度数。(该题可以将∠A=40°改为∠B=140°,培养学生的发散思维能力。)

2.拓展延伸。如图,在平行四边形ABCD中,已知∠BAC=20°,求各内角的度数。

3.例2如图,在平行四边形ABCD中,已知AB=8,周长等于24,求其余三条边的长。

四、巩固练习。

课本第38页习题12.1的第1题。

五、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?

六、布置作业。

1.课本第32页练习的第2题。

2、平行四边形的特征(2)

教学目标

1.进一步认识平行四边形是中心对称图形。

2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

教学重点与难点

重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

难点:发展学生的合情推理能力。

教学准备直尺、方格纸。

教学过程

一、提问。

1.平行四边形的特征:对边(),对角()。

2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么?(让学生回忆平行四边形的特征。)

二、引导观察。

1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。

2.在如课本图12.1.3那样的旋转过程中,你观察到OA与OC、OB与OD的关系了吗?

通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

(培养学生用自己的语言叙述性质。)

三、应用举例。

如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

例3如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

四、巩固练习。

1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=()厘米,OD=()厘米。

2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC=6,BD=5,那么△AOB的周长是(),△BOC的周长是()。

3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC=6厘米,△AOB的周长是18厘米,那么△AOD的周长是()厘米。

4.试一试。

在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

5.练习。

如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

五、看谁做得又快又正确?

课本第34页练习的第一题。

六、课堂小结

这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

七、作业

补充习题

3、平行四边形的识别

教学目标

1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。

教学重点与难点

重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。

教学准备方格纸、直尺、图钉、剪刀。

教学过程

一、提问。

1.平行四边形对边(),对角(),对角线()。

2.()是平行四边形。

二、探索,概括。

1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的过程,能否断定这个四边形是平行四边形?

2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:

一组对边平行且相等的四边形是平行四边形。

(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)

三、应用举例。

例4如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形。

四、巩固练习。

如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。

五、拓展延伸。

在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?

六、看谁做的既快又正确?

七、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?

八、布置作业。

补充习题

20.2几种特殊的平行四边形

1、矩形

教学目标

1.探索并掌握矩形的概念及其特殊的性质。

2.学会识别矩形。

3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

教学重点与难点

重点:矩形特殊特征与性质的探索过程。

难点:学生数学说理能力的培养。

教学准备

矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。

教学过程

一、提问。

1.平行四边形的特征:对边(),对角(),对角线()。

2.如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。如果AB=55°,那么∠AD与∠DAE分别等于多少度?为什么?

(让学生回忆平行四边形的特征与识别。)

二、引导观察。

如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?

可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。

问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?

(教师移动D点,使∠=90°,让学生观察。)

从而导人课题:矩形。

三、探索特征。

1.探索。

请你作矩形纸板的对角线,探索矩形有哪些特征,并填空。

(从边、角、对角线入手。)

(1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。

(学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)

2.请你折一折,观察并填空。

(1)矩形是不是中心对称图形?对称中心是()。

(2)是不是轴对称图形?对称轴有几条?()。

四、应用举例。

1.例1如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少?

(矩形的简单的计算问题必须要求学生掌握。此题教师板演,让学生说出理论依据。)

2.请你思考。识别一个四边形是不是矩形的方法。

(学生的回答不一定很完整,可以多让几个学生相互补充,逐步完善,最后教师适当的给以点拔。)

五、巩固练习。

1.如图,在矩形ABCD中,找出相等的线段与相等的角。

2.如图,矩形ABCD的两条对角线交于点O,且∠AOD=120°,你能说明AC=2AB吗?

六、拓展延伸。

1.如图,已知矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=5厘米,求矩形对角线的长。

2.工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么?

七、课堂小结。

这节课你有什么收获?学到了什么?有什么疑问提出来?

八、布置作业。

补充习题

2、菱形

教学目标

1.探索并掌握菱形的概念及其特殊的性质。

2.学会识别菱形。

3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

教学重难点

重点:菱形特殊特征与性质的探索过程。

难点:学生数学说理能力的培养。

教学准备

矩形纸张、剪刀。

教学过程

一、复习导入。

1.矩形的性质是什么?

2.识别矩形的方法有哪些?

3.导入课题。

二、引导观察。

1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形?(同桌互相帮助。)

2.探索。

请你作该菱形的对角线,探索菱形有哪些特征,并填空。

(从边、对角线入手。)

(1)边:都相等;(2)对角线:互相垂直。

(学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。)

问题:你怎样发现的?又是怎样验证的?

(可以指名学生到讲台上讲解一下他的结果。)

3.概括。

菱形特征1:菱形的四条边都相等。

菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

引导学生剖析矩形与菱形的区别。

矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。

4.请你折—折,观察并填空。(引导学生归纳。)

(1)菱形是不是中心对称图形?对称中心是_______。

(2)是不是轴对称图形?对称轴有几条?_______。

5.请你思考。

识别一个四边形是不是菱形的方法

(学生的回答不一定很完整,可以多让几个学生补充,逐步完善,最后教师适当的给以点拨。)

菱形的识别方法。

(1)四条边相等的四边形是菱形。

(2)邻边相等的平行四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

三、应用举例。

例1如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形。

此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。

四、巩固练习。

在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5,OA=4,OB=3,求这个菱形的周长与两条对角线的长度。(写出解答过程。)

(组内互相检查,指出存在问题。)

五、拓展延伸。

用你认为最简洁的方法画一个菱形。(简要叙述一下步骤。)

六、课堂小结。

请你写一写今天学习了哪些内容?(写完后互相检查、补充。)

七、布置作业。

补充作业

3、正方形

教学目标

1.探索并掌握正方形的概念及其特殊的性质。

2.学会识别正方形。

3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。

教学重难点

重点:正方形特殊特征与性质的探索过程。

难点:数学说理能力的培养。

教学准备

正方形纸张、剪刀。

教学过程

一、提问。

观察正方形有哪些特征?

边_________角__________对角线_________。

进而导入课题:正方形。

二、探索,概括。

1.探索。

观察正方形是否轴对称图形?是否中心对称图形?

正方形可以看作为_______的菱形;

正方形可以看作为_______的矩形。

(让学生探索、讨论,培养学生的合作能力与意识,也可以指名学生讲讲他的发现。)

2.概括。

正方形是中心对称图形,也是轴对称图形。

正方形可以看作为有一个角是直角的菱形;

正方形可以看作为有一组邻边相等的矩形。

三、应用举例。

例3如图,在正方形ABCD中,求∠ABD、∠DAC、∠DOC的度数。

(此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。)

四、巩固练习。

1.如果要用给定长度的篱笆围成一个最大面积的四边形区域,那么应当把这区域围成怎样的四边形?

2.在下列图中,有多少个正方形?有多少个矩形?

五、看谁做的又快又正确?

1.用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?

六、课堂小结。

这节课你有什么收获?学到了什么?有什么疑问提出来?

七、布置作业。

补充作业

20.3梯形

教学目标

1.掌握梯形的概念以及等腰梯形的性质。

2.会运用分解梯形为平行四边形与三角形的方法解决一些特殊的图形问题。

3.培养学生观察、类比、实验、分析、概括的能力。

4.培养学生化归的思想和添加辅助线的能力。

教学重难点

重点:梯形的定义与等腰梯形的性质。

难点:添加辅助线把梯形转化为平行四边形和三角形的方法。

教学准备

硬纸片、剪刀。

教学过程

一、回忆。

1.说出平行四边形的特征与其识别的方法。

观察图形。

2.学生回答后在图(2)旁边标注“对边平行”,然后指向图(3),同图(3)是什么四边形?学生回答后板书课题:梯形。

二、引导观察。

让学生观察图(3),并跟平行四边形的定义进行对比,引导学生试述梯形的概念,并结合图形说出梯形的底、腰及高。

(板书。)一组对边平行,另一组对边不平行的四边形叫做梯形。(或:只有一组对边平行的四边形叫做梯形。)

如图,梯形ABCD中,AD∥BC,其中AD是上底,BC是下底,AB、CD是腰,EF是高。

三、巩固练习。

l.如图,梯形ABCD中,AD∥BC,上底是______下底是______,并作出高。

2.小组讨论。

(1)一组对边平行的四边形是梯形吗?

(2)一组对边平行且相等的四边形是梯形吗?

3.特殊梯形。

观察图(4)和图(5)的特点,找出它们与一般梯形的区别,引导得出直角梯形和等腰梯形的概念。由学生试述,教师根据回答情况及时更正并板书。(板书。)一腰垂直于底的梯形叫做直角梯形。两腰相等的梯形叫做等腰梯形。特殊梯形直角梯形等腰梯形

思考讨论:若上面两个条件同时成立是否是梯形?

4.等腰梯形的特征的发现及证明。

等腰梯形是我们常见的图形,利用它的特殊形状可以构造各种建筑模型,设计各种图案,比如我们常用的梯子。下面观察演示一下等腰梯形具有哪些特征?

让学生先在硬纸片上画一个等腰梯形,再用剪刀剪下来,通过折叠、对比、演示,启发学生从腰、底角、对角线的对称性人手,寻求发现等腰梯形的特征,培养学生观察、分析、概括的能力。

让学生试述结论,教师适时用准备好的等腰梯形纸片进行演示并及时补充完善结论。

等腰梯形的性质:

(1)两腰相等;(2)同一底上两角相等;(3)两条对角线相等;(4)轴对

称图形,对称轴是过两底中点的直线。

(性质(4),学生不易发现,应引导他们联系等腰三角形的轴对称性发现

结论并叙述。)

同学们经过努力,发现了上述结论,这些结论是否成立仅靠观察是不可靠的,需要用所学知识进行严密的推理论证。(教师应引导学生积极探求真理,激发学生的求知欲,由小组讨论、探索证明思路。教师启发点拔,怎样添加辅助线使梯形转化成已熟悉的三角形和平行四边形?通过启发引导学生利用转化思想解决问题。)

可让学生广开思路,任其发挥,教师根据学生的推理情况调控教学。对于结论(2)若学生运用转化思想,能找出证明思路,应给予充分的肯定和鼓励。由学生口述教师板书完整的证明过程;若不能的,引导学生做如下探索推证。

如图,梯形ABCD中,AD∥BC,AB=CD,请你说明∠B=∠C。

5.思考讨论

我们在探索证明的过程中,得到的解决梯形问题的一般方法是什么?

(板书。)梯形转化三角形和平行四边形。

四、知识应用。

上面探索发现的结论经过推理都是正确的,今后我们可利用这些结论进行有关计算与证明。

1.判断。

(1)一组对边平行的四边形是梯形。()

(2)一组对边平行且相等的四边形是梯形。()

2.填空。

如图,等腰梯形ABCD中,AD∥BC,∠B=60°,AB=8厘米,则

(1)∠C=(),∠D=(),CD=()厘米。

(2)若BC=15厘米,则AD=()厘米,梯形面积S=()厘米2。

第2题第3题

3.如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,试说明CD=BC-AD。

根据学生解题的实际情况及时反馈纠正。

五、课堂小结。

1.围绕学习目标提问有关梯形的概念及等腰梯形的性质。

2.本节课主要的数学方法——转化思想。

六、布置作业。

平行四边形导学案


张家港市一中2014—2015学年度第二学期八年级数学导学案
初二班姓名学号
课题:9.3平行四边形(1)
预学目标
1.动手实践课本P64的“操作”,初步感受平行四边形的中心对称性.
2.利用中心对称的性质初步了解平行四边形中相等的角和线段.
3.从边、角以及对角线三个方面尝试归纳平行四边形的性质.
知识梳理
l.平行四边形的概念
如图1,_______∥_______,_______∥_______,
则四边形ABCD是_______,记作_______,读作_______.
2.平行四边形是中心对称图形
观察图2,将△ABC绕AC边的中点O旋转180°,可得到△_____,
则△_____和△______关于点_______成_______对称,由性质可以得到
∠BAC=∠_____,∠BCA=∠_______,所以_______∥_______,
_____∥______,所以由概念可知四边形ABCD是平行四边形.
综上可知□ABCD是_______图形,对称中心是_______.
3.平行四边形的性质
如图2,由于□ABCD是中心对称图形,故由中心对称的性质可知:
(1)AB_______,AD_______,即_______________________________________;
(2)∠ABC=∠_______,∠BAD=∠_______,即______________________________;
(3)OA=_______,OB=_______,即________________________________________.
4.如图,在□ABCD中,
(l)若∠B=100°,则∠D=_______;
(2)若∠A+∠C=140°,则∠C=_______,∠B=_______;
(3)若AB:BC=3:4,周长为28cm,则AD=_______,CD=_______;
(4)若□ABCD的周长为60cm,对角线相交于点O,△AOB的周长比△BOC的周长少8cm,则AB=_______,BC=_______.
例题精讲
例1(l)平行四边形ABCD的周长为80cm,相邻两边之比为1:3,则长边长
是_________cm,短边长是___________cm.
(2)在□ABCD中,∠A:∠B=1:2,则∠C=________,∠D=________.
(注意字母标写)
例2.如图,AB∥DE,BC∥EF,DF∥AC.
(1)图中有几个平行四边形?并表示出来,并说明理由.
(2)D、E、F分别是△ABC各边的中点吗?
(3)图中有哪些全等的三角形?将它们表示出来并说明理由.

变式:学校买了四棵树,准备栽在花园
里,已经栽了三棵(如图),现在学校希望
这四棵树能组成一个平行四边形,你觉得
第四棵树D应该栽在哪里呢?

例3.如图,在□ABCD中,∠C的平分线交AB于点E,交DA延长线于点F,且AE=5cm,EB=5cm,求□ABCD的周长.

变式:如图,在□ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BG交CE于点F,交AD于点G.试说明AE=DG.

例4.如图,ABCD中,AC和BD相交于O,OE⊥AD于E,OF⊥BC于F,求证:OE=OF.
课堂小结平行四边形性质:1.平行四边形是中心对称图形,
对角线的交点是它的对称中心.
2.平行四边形对边相等.
3.平行四边形对角相等.
4.平行四边形的对角线互相平分.
添加:这节课涉及到的数学思想:
转化思想
整体思想
方程思想
数形结合思想
教后小记:本节课学习平行四边形的概念与性质及其运用,在学生的预习过程中,让学生初步掌握基础知识和基本运算,课堂上通过学生自主探索和动手操作加上合作交流,鼓励学生主动上台讲解,在解题过程中,与学生一起探讨解题的方法,灌输总结数学的思想方法和解题技巧。

初二数学课堂练习班级姓名学号
1.在□ABCD中,AB=5cm,BC=4cm,则□ABCD的周长为_______.
2.在□ABCD中,如果∠B=100°,那么∠A、∠D的度数分别是()
A.∠A=80°、∠D=100°B.∠A=100°、∠D=80°
C.∠B=80°、∠D=80°D.∠A=100°、∠D=100°
3.如图,在□ABCD中,∠ABD=90°,∠ADB=30°,
则四个内角的度数分别为_______°、_______°、_______°、_______°.
4.平行四边形的周长等于56cm,两邻边长的比为3:1,
那么这个平行四边形较长边的长为_______.
5.如图,在□ABCD中,AD=8cm,AB=6cm,DE
平分∠ADC,交BC边于点E,则BE的长为()
A.2cmB.4cmC.6cmD.8cm
6.如图,在□ABCD中,AC、BD为对角线,BC=6,
BC边上的高为4,则阴影部分的面积为()
A.3B.6C.12D.24
7.如果□ABCD的周长为40cm,△ABC的周长为25cm,则对角线AC的长是()
A.5cmB.15cmC.6cmD.16cm
8.在□ABCD中,AC、BD相交于点O,则图中共有全等三角形()
A.1对B.2对C.3对D.4对
9.如图,E是□ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()
A.AD=CFB.BF=CFC.AF=CDD.DE=EF
10.在□ABCD中,对角线AC与BD相交于O,若AC=6,BD=10则AD长度x的取值范围是A.2x6B.3x9C.1x9D.2x8()
11.如图,E、F是□ABCD对角线AC上的两点,BE∥DF.求证:AF=CE.
12.如图,□ABCD的边BC上有一点E,且AE=AD,AE、DC的延长线相交于点F,
∠ADE=55°,那么∠CEF的度数是多少?

13.如图,在□ABCD中,EF过对角线的交点O,若AD=8cm,AB=6cm,OE=4cm,
求四边形ABFE的周长.

14.如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,
□ABCD的周长为40,则□ABCD的面积为多少?

15.如图,在□ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,求EF的长.

16.用三种不同的方法把□ABCD的面积四等分,并简要说明分法.

平行四边形的性质及判定


平行四边形的性质及判定(复习课)
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:平行四边形的性质和判定。
教学难点:性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已知求证;2、如何证明性质定理3的逆命题?3、有几种方法可以证明?4、例2的证明中,运用了哪些性质及判定?是否有其他方法?5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。()
2、在四边形ABCD中,AC交BD于点O,若OC=且,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是()
(A)一组对角相等;(B)对角线相等;
(C)两条邻边相等;(D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN。
综合应用练习
1、下列条件中,能做出平行四边形的是()
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;2、完成《练习卷》;3、预习:
(1)“平行四边形的判定定理4”的内容是什么?(2)怎样证明?还有没有其它证明方法?(3)例4、例5还有哪些证明方法?

文章来源:http://m.jab88.com/j/60309.html

更多

最新更新

更多