三角形全等的判定
教学目标:
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,能运用“SAS”证明简单的三角形全等问题.
能力训练要求:
1.经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.
2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
情感与价值观要求
通过对问题的共同探讨,培养学生的协作精神.
教学重点:
三角形全等的条件(SAS).
教学难点:
寻求三角形全等的条件.
教学方法:探究式教学
教具准备:直尺,三角板,圆规,纸,剪刀
教学过程:
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质?
3.三角形全等的判定Ⅰ(SSS)的内容是什么?
4.三个角对应相等的2个三角形是否全等?举例说明。
二、导入新课
1.交流探究
已知任意△ABC,画△ABC,使AB=AB,AC=AC,∠A=∠A.
把画好的△ABC,剪下放在△ABC上,观察这两个三角形是否全等?
作法:(1)画∠DAE=∠A
(2)在射线AD上截取AB=AB,在射线AE上截取AC=AC
(3)连接BC
用上述方法画出的△ABC与△ABC全等
在纸片上按上述方法作图,做好后让学生剪下,观察这两个三角形是否重合。
2.交流对话,获得新知
从中你得到什么结论?
边角边定理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)
3.应用新知,体验成功
(1)如图,AB=AC,F、E分别是AB、AC的中点
求证:△ABE≌△ACF.
证明:∵F、E分别是AB、AC的中点
∴AF=ABAE=AC(中点的定义)
∵AB=AC
∴AF=AE
在△ABE和△ACF中
AF=AE
∠A=∠A(公共角)
AB=AC
∴△ABE≌△ACF.(SAS)
(2)例2如图有一池塘要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
分析:如果能证明△ABC≌△DEC,就可以得出AB=DE
证明:在△ABC和△DEC中
CD=CA
∠ACB=∠DCE(对顶角相等)
CB=CE
∴△ABC≌△DEC(SAS)
∴AB=DE(全等三角形的对应边相等)
总结:证明分别属于两个三角形的线段或者角相等的问题,常常通过证明这两个三角形全等来解决。
(3)再次探究,释解疑惑
我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
教师用直尺和圆规搭建一个简易模型,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等。
三.巩固练习
课本P10页练习第1,2题
四、课时小结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
五.布置作业
课本P15习题11.2第3,4题
《全等三角形的判定》教学反思
这两天刚上完《全等三角形的判定》,本来这节课按照书上的安排至少需要三课时,分别探究它的四个判定——边边边、边角边、角角边、角边角,而由于时间关系,这周要进行期中考试,进度赶不上,所以这次我进行了一次大胆的尝试,利用一节课探究完四个判定,也就是纯粹的一节探究课,然后后面就是习题课,主要是对这四个判定的灵活应用。记得第一次上时就是按照书上的顺序上的,一节课探究一个判定,然后后段时间做相应的练习,上了三四个课时才探究完四个判定,因为当时我第一次接触初二内容不太熟悉,所以就按照书本上的上了。还记得当时经验丰富的蒋老师他并不是按照书上的顺序上的,而是让学生通过他给定的条件动手画图,然后对所画图形的进行对比得出所有判定三角形的条件,最后就是对所有判定的综合应用。这次上已是第二次了,原本没想那样上,但突然来的期中考试让我没按原来的思路走,为了赶上进度,我尝试了一次,最后感觉效果不是那么糟,还可以。
感觉好的地方:1、在探究课上,整节课我都是让学生自己动手画图,我给定条件,由于他们没学尺规作图,所以我告诉他们画图的步骤,然后让他们把所画图进行对比,如果所画图都一样,那么说明这些三角形都全等,就可以作为判定三角形全等的条件,如果所画图有一个与其它的不一样,那么就不能作为判定三角形全等的条件,就这样一节课把三组条件的所有情况都判断完了,最终只有边边边、边角边、角角边、角边角能作为判定三角形的条件,这样做可以让学生更清楚的知道为什么这些能作为判定的条件,而其它的角角角、边边角不能作为判定的条件。2、在习题课上,对于一道题的分析,我尽可能引导学生用多种判定方法做,让他们从不同的方向去考虑,这样可以拓展他们的思维能力,之后,让他们通过比较,尽可能选择最简单的方法去做,既节省了时间又可以防止出错,还使得过程显得简单明了。
不足的地方:1、在探究课上,让学生画图时,忽略了看学生画的图,不知道他们画的对不对,只让他们前后左右对比看了一下,可能有的在里面浑水摸鱼没画,缺少了督促,他们画图时应该在教室里巡视一下,不会画的甚至画错的及时给予指导。2、在习题课上,让学生展示的机会少,应该找学生上黑板做,有问题的及时在黑板上指出来并给予纠正,这对于几何过程的书写作用很大,因为学生对于几何过程的书写有困难,写的不是很好,出现的问题也很多,集体给予纠正效果比较好。
通过这次尝试,有收获也有不足,但对于我来说也是一次挑战,只有通过不断的尝试,才会有新的收获,才会有进步。
【学习目标】:
1.通过探究两个三角形具备三个条件两边及其夹角对应相等,得到三角形全等的另一判定方法。
2.能初步应用“边角边”条件判定两个三角形全等.
【学习重难点】:
1.重点:SAS结论及其运用.
2.难点:领会SAS结论.
【课前自学、课中交流】
一、想一想
通过上节课的学习,我们已经知道把两根木条的一端用螺栓固定在一起,连结另
两个端点所成的三角形不能唯一确定。例如,图中ΔABC与ΔABC不是全等三角形。
但如果把另两个端点也用螺栓固定在第三根木条上,那么构成的三角形的形状、
大小就完全确定。
现在我们考虑这样的问题:如果将两木条之间的夹角(即∠BAC)大小固定,那么ΔABC能唯一确定吗?
二、动一动
让我们动手做一做:用量角器和刻度尺画ΔABC,使AB=4cm,BC=6cm,∠ABC=60.将你画出的三角形和其他同学画的三角形进行比较,它们能互相重合吗?由此你得到了什么结论?
一般地,有两边和这两边的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)。
如图,若∠ABC=∠ABC,AB=AB,BC=BC,则ΔABC≌ΔABC。
例1:如图,为了测出池塘两端A,B的距离,小红在地面上选择了点O,D,C,使OA=OC,OB=OD,且点A,O,C和点B,O,D都在一条直线上。小红认为只要量出DC的距离,就能知道AB的距离。你认为正确吗?请说明理由。
证明:在ΔAOB和ΔCOD中,
∴ΔAOB≌ΔCOD(SAS)
∴AB=CD
当堂训练】
1、如图,把两根钢条AA,BB的中点连在一起,可以做成一个测量工件内槽宽的卡钳,在图中,要测量工件内槽宽AB,只要测量什么?为什么?
2、如图,点D,E分别在AC,AB上.已知AB=AC,AD=AE,则BD=CE.请说明理由(填空)。
证明:在ΔABD和中,
∴≌().
∴BD=CE()
3、如图,已知AC=BD,∠CAB=∠DBA.请说明下列结论成立的理由:
(1)ΔABC≌ΔBAD;(2)BC=AD,∠C=∠D.
4、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.
证明:
∵BE=CF
∴BE+EF=CF+
即=
在△ABF和△DCE中,
∴△ABF≌△DCE().
∴=
5.如图,已知:AD∥BC,AD=CB,AF=CE.求证:△AFD≌△CEB.
证明:∵AD∥BC,
∴∠A=∠___(两直线平行,相等)
在△和△中,
∴△_≌△(______).
1.如图,已知:AD∥BC,AD=CB,AE=CF.求证:∠D=∠B.
【课后作业】
【课后反思】通过本节课的学习,我的收获和困惑是:
文章来源:http://m.jab88.com/j/60017.html
更多