《12.2三角形全等的判定》(SAS)导学案
【使用说明与学法指导】:
1.学生课前预习课本第37-39页完成(自主学习1、4)
2.组内探究、合作学习完成(探究一、探究二)
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】
1、掌握三角形全等的“SAS”条件,能运用“SAS”证明简单的三角形全等问题
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3、积极投入,激情展示,做最佳自己。
教学重点:SAS的探究和运用.
教学难点:领会两边及其中一边的对角对应相等的两个三角形不一定全等.
【学习过程】
一、自主学习
1、复习思考
(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?
(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等?
(1)动手试一试
已知:△ABC
求作:,使,,
(2)把△剪下来放到△ABC上,观察△与△ABC是否能够完全重合?
(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):
两边和它们的夹角对应相等的两个三角形(可以简写成“”或“”)
(4)用数学语言表述全等三角形判定(二)
在△ABC和中,
∵
∴△ABC≌
3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?
通过画图或实验可以得出:
4.例题学习
(再次温馨提示:证明的书写步骤:
①准备条件:证全等时需要用的间接条件要先证好;
②三角形全等书写三步骤:
A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。)
5.我的疑惑:
二、学以致用
三、当堂检测
1、如图,AD⊥BC,D为BC的中点,那么结论正确的有
A、△ABD≌△ACDB、∠B=∠CC、AD平分∠BACD、△ABC是等边三角形
2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD
(允许添加一个条件)
﹡四、能力提升:(学有余力的同学完成)
如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN
五、课堂小结
1、两边和它们的夹角对应相等的两个三角形全等。简写成“”或“”
2、到目前为止,我们一共探索出判定三角形全等的2种方法,它们分别是:和
课题:《12.2三角形全等的判定》(ASA、AAS)导学案
使用说明:学生利用自习先预习课本第39-41页10分钟,然后30分钟独立做完学案。正课由小组讨论交流10分钟,20分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3、积极投入,激情展示,体验成功的快乐。
教学重点:已知两角一边的三角形全等探究.
教学难点:灵活运用三角形全等条件证明.
【学习过程】
一、自主学习
1、复习思考
(1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
(2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?
2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?
(1)动手试一试。
已知:△ABC
求作:△,使=∠B,=∠C,=BC,(不写作法,保留作图痕迹)
(2)把△剪下来放到△ABC上,观察△与△ABC是否能够完全重合?
(3)归纳;由上面的画图和实验可以得出全等三角形判定(三):
两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)
(4)用数学语言表述全等三角形判定(三)
在△ABC和中,
∵
∴△ABC≌
3、探究二。两角和其中一角的对边对应相等的两三角形是否全等
(1)如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?
(2)归纳;由上面的证明可以得出全等三角形判定(四):
两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)
(3)用数学语言表述全等三角形判定(四)
在△ABC和中,
∵
∴△ABC≌
二、合作探究
1、例1、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
2.已知:点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:BD=CE
三、学以致用
3、如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠1=∠C,求证AC=AB+CE
四、课堂小结
(1)今天我们又学习了两个判定三角形全等的方法是:
(2)三角形全等的判定方法共有
3、如图,是D上AB一点,DF交AC于点E,DE=DF,FC∥AB,AE与CE是否相等?证明你的结论。
4.满足下列哪种条件时,就能判定△ABC≌△DEF()
A.AB=DE,BC=EF,∠A=∠E;B.AB=DE,BC=EF,∠C=∠F
C.∠A=∠E,AB=EF,∠B=∠D;D.∠A=∠D,AB=DE,∠B=∠E
5.如图所示,已知∠A=∠D,∠1=∠2,那么要
得到△ABC≌△DEF,还应给出的条件是:()
A.∠B=∠EB.ED=BC
C.AB=EFD.AF=CD
6.如6题图,在△ABC和△DEF中,AF=DC,∠A=∠D,
当_____________时,可根据“ASA”证明△ABC≌△DEF
课题:《12.2三角形全等的判定》(HL)导学案
使用说明:学生利用自习先预习课本第41-43页10分钟,然后35分钟独立做完学案。正课由小组讨论交流10分钟,20分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、理解直角三角形全等的判定方法“HL”,并能灵活选择方法判定三角形全等;
2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;
3.极度热情、高度责任、自动自发、享受成功。
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
【学习过程】
一、自主学习
1、复习思考
(1)、判定两个三角形全等的方法:、、、
(2)、如图,Rt△ABC中,直角边是、,斜边是
(3)、如图,AB⊥BE于B,DE⊥BE于E,
①若∠A=∠D,AB=DE,
则△ABC与△DEF(填“全等”或“不全等”)
根据(用简写法)
②若∠A=∠D,BC=EF,
则△ABC与△DEF(填“全等”或“不全等”)
根据(用简写法)
③若AB=DE,BC=EF,
则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)
④若AB=DE,BC=EF,AC=DF
则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)
2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。
已知:Rt△ABC
求作:Rt△,使=90°,=AB,=BC
作法:
(2)把△剪下来放到△ABC上,观察△与△ABC是否能够完全重合?
(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
斜边与一直角边对应相等的两个直角三角形(可以简写成“”或“”)
(4)用数学语言表述上面的判定方法
在Rt△ABC和Rt中,
∵
∴Rt△ABC≌Rt△
(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法“”、
“”、“”、“”、还有直角三角形特殊的判定方法“”
二、合作探究
1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?
2、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?
三、学以致用
1、如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC(填“全等”或“不全等”)
根据(用简写法)
2、判断两个直角三角形全等的方法不正确的有()
A、两条直角边对应相等B、斜边和一锐角对应相等
C、斜边和一条直角边对应相等D、两个锐角对应相等
3、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由
解:AB∥CD
理由如下:
∵AF⊥BC,DE⊥BC(已知)
∴∠AFB=∠DEC=°(垂直的定义)
∵BE=CF,
∴BF=CE
在Rt△和Rt△中
∵
∴≌()
∴=()
∴(内错角相等,两直线平行)
四、能力提升:(学有余力的同学完成)
如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点。(1)求证:MB=MD,ME=MF;(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。
五、当堂检测
如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据
(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据
六、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
课题:《12.3角的平分线的性质》(1)导学案
使用说明:学生利用自习先预习课本第48页-第50页思考前10分钟,然后30分钟独立做完学案。正课由小组讨论交流10分钟,20分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.
2、能运用角的平分线性质定理解决简单的几何问题.
3、极度热情、高度责任、自动自发、享受成功。
教学重点:掌握角的平分线的性质定理
教学难点:角平分线定理的应用。
【学习过程】
一、自主学习
1、复习思考
什么是角的平分线?怎样画一个角的平分线?
2.如右图,AB=AD,BC=DC,沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗
3.根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本48页后,思考为什么要用大于MN的长为半径画弧?
4.OC是∠AOB的平分线,点P是射线OC上的任意一点,
操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论
PDPE
第一次
第二次
第三次
5、命题:角平分线上的点到这个角的两边距离相等.
题设:一个点在一个角的平分线上
结论:这个点到这个角的两边的距离相等
结合第4题图形请你写出已知和求证,并证明命题的正确性
解后思考:证明一个几何命题的步骤有那些?
6、用数学语言来表述角的平分线的性质定理:
如右上图,∵
∴
二、合作探究
1、如图所示OC是∠AOB的平分线,P是OC上任意一点,问PE=PD?为什么?
2、如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EB
三、学以致用
在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则
⑴图中相等的线段有哪些?相等的角呢?
⑵哪条线段与DE相等?为什么?
⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
四、当堂检测
如图,在△ABC中,AC⊥BC,AD为∠BAC的平分线,DE⊥AB,AB=7㎝,AC=3㎝,求BE的长
五、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
课题:《12.3角的平分线的性质》(2)导学案
使用说明:学生利用自习先预习课本第48-50页8分钟,然后30分钟独立做完学案。正课由小组讨论交流10分钟,20分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
2、能应用这两个性质解决一些简单的实际问题.
3、极度热情、高度责任、自动自发、享受成功。
教学重点:角平分线的性质及其应用
教学难点:灵活应用两个性质解决问题。
【学习过程】
一、自主学习
1、复习思考
(1)、画出三角形三个内角的平分线
你发现了什么特点吗?
(2)、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等。
2、求证:到角的两边的距离相等的点在角的平分线上。
(提示:先画图,并写出已知、求证,再加以证明)
3、要在S区建一个集贸市场,使它到公路,铁路
距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)
二、合作探究
1、比较角平分线的性质与判定
2、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证∠1=∠2
三、学以致用
50页练习题
四、能力提高(*)
如图,在四边形ABCD中,BCBA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°
五、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
六、作业
1、已知△ABC中,∠A=60°,∠ABC,∠ACB的平分线交于点O,则∠BOC的度数为
2、下列说法错误的是()
A、到已知角两边距离相等的点都在同一条直线上
B、一条直线上有一点到已知角的两边的距离相等,则这条直线平分已知角
C、到已知角两边距离相等的点与角的顶点的连线平分已知角
D、已知角内有两点各自到两边的距离相等,经过这两点的直线平分已知角
3、到三角形三条边的距离相等的点是()
A、三条中线的交点B、三条高线的交点
C、三条边的垂直平分线的交点D、三条角平分线的交点
课题:第十二章全等三角形复习(1、2)
一、学习目标:
1.知道第十二章全等三角形知识结构图.
2.通过基本训练,巩固第十二章所学的基本内容.
3.通过典型例题的学习和综合运用,加深理解第十二章所学的基本内容,发展能力.
二、学习重点和难点:
1.重点:知识结构图和基本训练.
2.难点:典型例题和综合运用.
三、归纳总结,完善认知
1.总结本章知识点及相互联系.
2.三角形全等
探究
三角形
全等的
条件
四、基本训练,掌握双基
1.填空
(1)能够的两个图形叫做全等形,能够的两个三角形叫做全等三角形.
(2)把两个全等的三角形重合到一起,重合的顶点叫做,重合的边叫做,重合的角叫做.
(3)全等三角形的边相等,全等三角形的角相等.
(4)对应相等的两个三角形全等(边边边或).
(5)两边和它们的对应相等的两个三角形全等(边角边或).
(6)两角和它们的对应相等的两个三角形全等(角边角或).
(7)两角和其中一角的对应相等的两个三角形全等(角角边或).
(8)和一条对应相等的两个直角三角形全等(斜边、直角边或).
(9)角的上的点到角的两边的距离相等.
2.如图,图中有两对三角形全等,填空:
(1)△CDO≌,其中,CD的对应边是,
DO的对应边是,OC的对应边是;
(2)△ABC≌,∠A的对应角是,
∠B的对应角是,∠ACB的对应角是.
3.判断对错:对的画“√”,错的画“×”.
(1)一边一角对应相等的两个三角形不一定全等.()
(2)三角对应相等的两个三角形一定全等.()
(3)两边一角对应相等的两个三角形一定全等.()
(4)两角一边对应相等的两个三角形一定全等.()
(5)三边对应相等的两个三角形一定全等.()
(6)两直角边对应相等的两个直角三角形一定全等.()
(7)斜边和一条直角边对应相等的两个直角三角形不一定全等.()
(8)一边一锐角对应相等的两个直角三角形一定全等.()
4.如图,AB⊥AC,DC⊥DB,填空:
(1)已知AB=DC,利用可以判定△ABO≌△DCO;
(2)已知AB=DC,∠BAD=∠CDA,利用
可以判△ABD≌△DCA;
(3)已知AC=DB,利用可以判定△ABC≌△DCB;
(4)已知AO=DO,利用可以判定△ABO≌△DCO;
(5)已知AB=DC,BD=CA,利用可以判定△ABD≌△DCA.
5.完成下面的证明过程:如图,OA=OC,OB=OD.
求证:AB∥DC.
证明:在△ABO和△CDO中,
∴△ABO≌△CDO().
∴∠A=.
∴AB∥DC(相等,两直线平行).
6.完成下面的证明过程:
如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.
求证:△ABE≌△CDF.
证明:∵AB∥DC,
∴∠1=.
∵AE⊥BD,CF⊥BD,
∴∠AEB=.
∵BF=DE,
∴BE=.
在△ABE和△CDF中,
∴△ABE≌△CDF().
五、典型题目,加深理解
1如图,AB=AD,BC=DC.
求证:∠B=∠D.
2证明:角的内部到角的两边的距离相等的点在角的平分线上.
(先结合图形理解命题的意思,然后结合图形写出已知和求证,已知、求证及证明过程)
3如图,CD⊥AB,BE⊥AC,OB=OC.
求证:∠1=∠2.
六、综合运用,发展能力
1.如图,OA⊥AC,OB⊥BC,填空:
(1)利用“角的平分线上的点到角的两边
的距离相等”,已知=,
可得=;
(2)利用“角的内部到角两边距离相等的点在角的平分线上”,
已知=,可得=;
2.如图,要在S区建一个集贸市场,
使它到公路、铁路的距离相等,并且离公
路与铁路交叉处300米.如果图中1
厘米表示100米,请在图中标出集
贸市场的位置.
3.如图,CD=CA,∠1=∠2,EC=BC.
求证:DE=AB.
4.如图,AB=DE,AC=DF,BE=CF.
求证:AB∥DE.
5.如图,在△ABC中,D是BC的中点,
DE⊥AB,DF⊥AC,BE=CF.
求证:AD是△ABC的角平分线.
(第11题图)
6.选做题:
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.
求证:△ACD≌△CBE.
课题:§11.1全等三角形
课型:新授
教学目标
(一)知识技能:1、了解全等形及全等三角形的概念。
2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
(二)过程与方法:1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等
三角形的体验。
(三)情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点:全等三角形的性质.
教学难点:找全等三角形的对应边、对应角.
教学方法:讲授法,讨论法,情景导入法
教学准备:多媒体,三角板
预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?
全等三角形有哪些性质?
教学过程
(一)提出问题,创设情境
出示投影片
:1.问题:你能
发现这两个图形有什么美妙
的关系吗?
这两个图形是完全重合的.
2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F
生:同一张底片洗出的同大小照片是能够完全重合的。
形状与大小都完全相同的两个图形就是全等形.
3.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
4.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、
对应边,以及有关的数学符号.
记作:△ABC≌△A’B’C’符号“≌”读作“全等于”
(注意强调书写时对应顶点字母写在对应的位置上)
(二).新知探究
利用投影片演示
1.活动:将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180得到△DBC;将△ABC旋转180°得△AED.
2.议一议:各图中的两个三角形全等吗?
启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
3.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等.
全等三角形的对应角相等.
(三)例题讲解
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
1.分析:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
2.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
1.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
2小结:找对应边和对应角的常用方法有:
(2)有公共角的,公共角是对应角.
(3)有对顶角的,对顶角是对应角一对最长的边是对应边,
一对最短的边是对应边.
(4)一对最大的角是对应角,一对最小的角是对应角
(5)全等三角形对应角所对的边是对应边;
两个对应角所夹的边也是对应边.
(6)全等三角形对应边所对的角是对应角;
两条对应边所夹的角是对应角
(四)课堂练习
1、填空
点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.
2、判断题
1)全等三角形的对应边相等,对应角相等。()
2)全等三角形的周长相等,面积也相等。()
3)面积相等的三角形是全等三角形。()
4)周长相等的三角形是全等三角形。()
(五).课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,
并且利用性质可以找到两个全等三角形的对应元素.这也是这节课
大家要重点掌握的.
找对应元素的常用方法有以下几种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
3.有公共边的,公共边是对应边.
4.有公共角的,公共角是对应角.
5.有对顶角的,对顶角是对应角一对最长的边是对应边,
一对最短的边是对应边.
一对最大的角是对应角,一对最小的角是对应角
(六)作业
课本P4习题11.1、复习巩固1.2、综合运用3.
(七)板书设计
§11.1全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1:(运动角度看问题)
例2:(根据位置来推理)
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.
位置法:对应角→对应边,对应边→对应角.
(八)教学反思:
第十讲全等三角形
全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.
利用全等三角形证明问题,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下两类基本图形:
例题求解
【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是(把你认为所有正确结论的序号填上).(广州市中考题)
思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等.
注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.
实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.
【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是()
A.1AB9B.3AB13C.5AB13D.9AB13
(连云港市中考题)
思路点拨线段AC、AD、AB不是同一个三角形的三条边,通过中线倍长将分散的条件加以集中.
【例3】如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB
求证:(1)AP=AQ;(2)AP⊥AQ.
(江苏省竞赛题)
思路点拨(1)证明对应的两个三角形全等;(2)在(1)的基础上,证明∠PAQ=90°
【例4】若两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由.
(“五羊杯”竞赛题改编题)
思路点拨运用全等三角形的判定和性质,探讨两角之间的关系,解题的关键是由高的特殊性,分三角形的形状讨论.
注有时图中并没有直接的全等三角形,,需要通过作辅助线构造全等三角形,完成恰当添辅助线的任务,我们的思堆要经历一个观察、联想、构造的过程.
边、角、中线、角平分线、高是三角形的基本元素,从以上诸元素中选取三个条件使之组合可得到关于三角形全等判定的若干命题,其中有真有假,课本中全等三角形的判定方法只涉及边、角两类元素.
【例5】如图,已知四边形纸片ABCD中,AD∥BC,将∠ABC、∠DAB分别对折,如果两条折痕恰好相交于DC上一点E,你能获得哪些结论?
思路点拨折痕前后重合的部分是全等的,从线段关系、角的关系、面积关系等不同方面进行探索,以获得更多的结论.
注例5融操作、观察、猜想、推理于一体,需要一定的综合能力.推理论证既是说明道理,也是探索、发现的逄径.
善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,需要注的是,通常面临以下情况时,我们才考虑构造全等三角形:
(1)给出的图形中没有全等三角形,而证明结论需要全等三角形;
(2)从题设条件无法证明图形中的三角形全等,证明需要另行构造全等三角形.
学力训练
1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC、B′C边上的高,且AB=A′B′,AD=A′D,若使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你
认为适当的条件).(黑龙江省中考题)
2.如图,在△ABD和△ACE中,有下列4个论断:①AB=AC;②AD=AC;③∠B=∠C;④BD=CE,请以其中三个论断作为条件,余下一个论断作为结论,写出一个真命题(用序号○○○→○的形式写出).(海南省中考题)
3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.
4.如图,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,则∠DOE的度数是.
5.如图,已知OA=OB,OC=OD,下列结论中:①∠A=∠B;(②DE=CE;③连OE,则OE平分∠O,正确的是()
A.①②B.②③C.①③D.①②③
6.如图,A在DE上,F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于()
A.DCB.BCC.ABD.AE+AC(2003年武汉市选拔赛试题)
7.如图,AE∥CD,AC∥DB,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有()对
A.5B.6C.7D.8
8.如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C′,A′B′交AC于点D,已知∠A′DC=90°,求∠A的度数.(贵州省中考题)
9.如图,在△ABE和△ACD中,给出以下4个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中3个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个真命题,并写出证明过程.
已知:
求证:
(荆州市中考题)
10.如图,已知∠1=∠2,EF⊥AD于P,交BC延长线于M,
求证:∠M=(∠ACB-∠B).(天津市竞赛题)
11.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=.
12.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED.
(河南省竞赛题)
13.如图,D是△ABC的边AB上一点,DF交AC于点F,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.
(武汉市选拔赛试题)
14.如图,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=.
15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)大小关系是()
A.m+nb+cB.m+nb+cC.m+n=b+cD.不能确定
16.如图,在四边形ABCD中,对角线AC平分∠BAD,ABAD,下列结论中正确的是()A.AB-ADCB-CDB.AB-AD=CB—CD
C.AB—ADCB—CDD.AB-AD与CB—CD的大小关系不确定.
(江苏省竞赛题)
17.考查下列命题()
(1)全等三角形的对应边上的中线、高、角平分线对应相等;
(2)两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;
(3)两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;
(4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.
其中正确命题的个数有()
A.4个B.3个C.2个D.1个
18.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度数.(上海市竞赛题)
19.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.
20.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDC的面积.
(江苏省竞赛题)
21.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AF+CD.
(武汉市选拔赛试题)
22.(1)已知△ABC和△A′B′C′中,AB=A′B′,BC=B′C′,∠BAC=∠B′A′C′=100°,求证:△ABC≌△A′B′C′;
(2)上问中,若将条件改为AB=A′B′,BC=B′C′,∠BAC=∠∠B′A′C′=70°,
结论是否成立?为什么?
文章来源:http://m.jab88.com/j/59526.html
更多