八年级数学上册《平方根与立方根》知识点整理华东师大版
知识点
平方根:
概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。
因为(±23)=529,所以±23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?
概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。
开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。
一、算术平方根的概念
正数a有两个平方根(表示为?
根,表示为a。
0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0?0。“
”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:
a),我们把其中正的平方根,叫做a的算术平方
(1)被开方数a表示非负数,即a≥0;
(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a0时,a无意义。
如:=3,8是64的算术平方根,?6无意义。
9既表示对9进行开平方运算,也表示9的正的平方根。
二、平方根与算术平方根的区别在于
①定义不同;
②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示方法不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负.⑤0的平方根与算术平方根都是0.三、例题讲解:
例1、求下列各数的算术平方根:
(1)100;
(2)49;
(3)0.8164
注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算
术平方根是非负数,即当a≥0时,a≥0(当a0时,a无意义)
用几何图形可以直观地表示算术平方根的意义如有一个面积为a(a应是非负数)、边长为
的正方形就表示a的算术平方根。
这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。
3、立方根
(1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根
(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。
(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“立方根教案”,仅供参考,欢迎大家阅读。
学科:数学年级:七年级审核:
内容:沪科版七下6.1立方根课型:新授
学习目标:
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
3.了解立方根的性质,区分立方根与平方根的不同。
4.体会类比,化归思想
学习重点:立方根的概念.,求某些数的立方根。
学习难点;了解立方根的性质,区分立方根与平方根的不同。
学习过程:
一、学习准备
1、上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根。若x3=a,则x叫a的什么呢?完成下面填空。
33=()()3=27
(-3)3=()()3=-27
()3=()()3=
()3=()()3=
03=()()3=0
2、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数
一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。
即如果X3=a,那么叫做的立方根。请按照第7页的举例你再举两个例子说明:
叫做开立方,立方与互为逆运算
4、观察上面两组算式,归纳一个数的立方根的性质是:
正数有一个立方根,
零有一个立方根,;
负数立方根。
交流:(1)的立方根是什么?
(2)0.001的立方根是什么?
(3)0的立方根是什么?
(4)-729的立方根是什么?
5、立方根的表示方法
一个正数a有一个立方根,.
正数a的立方根,记作“”
负数a的立方根,记作“”吗?
如果X3=a,那么X=,其中符号“”读作三次根号,a叫做被开方数
这里的a表示什么样的数?a是任意数
二、合作探究
1、阅读课本第7页例题4,按例题格式求其立方根。
(1)64(2)(3)-216(4)(-4)3(5)0.729(6)0.64
2、阅读课本第8页利用计算器求立方根的方法,利用计算器求下列各式的值。
(1)(2)(3)(4)
3、利用计算器求下列各数的算术平方根
a640006400640646.40.640.0640.00640.00064
通过观察立方根,归纳被开方数与立方根之间小数点的变化规律
4、某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、下列说法中正确的是()
A.-4没有立方根B.1的立方根是±1C.的立方根是D.-5的立方根是
2、下列说法中,正确的是()
A一个有理数的平方根有两个它们互为相反B一个有理数的立方根,不是正数就是负数
C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1
3、求下列各式的值
4、求下列各式中的x.
(1)125x3=8(2)(-2+x)3=-216(3)=-2(4)27(x+1)3+64=0
5、已知第一个正方体纸盒的棱长为6cm,第二个正方体纸盒的体积比第一个纸盒的体积大127cm3,求第二个纸盒的棱长.
拓展训练:
1、的平方根是______.
2、若m<0,则m的立方根是
3、已知+|b3-27|=0,求(a-b)b的立方根.
4、若+有意义,则=______.
数学小知识——你也能速算吗?
我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题。求59319的立方根。华罗庚脱口而出:“39.”众人十分惊奇,忙问计算的奥秘。
你想知道怎样迅速准确地计算出结果吗?请按照下面的步骤试一试:
1.由103=1000,1003=1000000,你能确定是几位数吗?
2.由59319的个位数是9,你能确定的个位数是几吗?
3.如果划去59319后面的319得到数59而33=27,43=64,由此你能确定的十位数是几吗?
4.你能快速说出,,吗
文章来源:http://m.jab88.com/j/56868.html
更多