88教案网

高三数学解析几何综合问题

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,减轻高中教师们在教学时的教学压力。那么一篇好的高中教案要怎么才能写好呢?小编特地为大家精心收集和整理了“高三数学解析几何综合问题”,相信您能找到对自己有用的内容。

高考数学专题复习解析几何综合问题
一.高考要求
解析几何历来是高考的重要内容之一,所占分值在30分以上,大题小题同时有,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.
二.两点解读
重点:①运用方程(组)求圆锥曲线的基本量;②运用函数、不等式研究圆锥曲线有关量的范围;③运用“计算”的方法证明圆锥曲线的有关性质.
难点:①对称性问题;②解析几何中的开放题、探索题、证明题;③数学思想的运用.
三.课前训练
1.若抛物线的焦点与椭圆的右焦点重合,则的值(D)
(A)(B)(C)(D)
2.已知的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则的周长是(C)
(A)(B)6(C)(D)12
3.椭圆的内接矩形的面积最大值为
4.两点,动点P在线段AB上运动,则xy的最大值为3
四.典型例题
例1和圆关于直线对称的圆的方程是()(A)(B)
(C)(D)
解:只要求圆心关于直线的对称点的坐标为,半径不变,故选A
例2椭圆的一个焦点是,那么
解:椭圆化为,解得:
例3直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为()
(A)(B)(C)(D)
解:由得,,
,中点
,选B
例4设直线关于原点对称的直线为,若与椭圆的交点为A、B,点P为椭圆上的动点,则使的面积为1的点P的个数为()
(A)1(B)2(C)3(D)4
解:直线为,观察图形可知在直线右侧不可能存在点,在左侧有两个点,故选B
例5已知三点P(5,2)、(-6,0)、(6,0)
(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;
(Ⅱ)设点P、、关于直线y=x的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程.
解:(I)由题意,可设所求椭圆的标准方程为+,其半焦距
,∴,
,故所求椭圆的标准方程为+;
(II)点P(5,2)、(-6,0)、(6,0)关于直线y=x的对称点分别为:
、(0,-6)、(0,6)
设所求双曲线的标准方程为-,由题意知半焦距,
,∴,
,故所求双曲线的标准方程为
例6如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴A1A2的长为4,左准线与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点P在直线上运动,求∠F1PF2的最大值.
解:解:(Ⅰ)设椭圆方程为,半焦距为,则

延伸阅读

解析几何新题型的解题技巧


【命题趋向】
解析几何例命题趋势:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题
分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.
【考点透视】
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.
2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.
3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.
4.了解圆锥曲线的初步应用.
【例题解析】
考点1.求参数的值
求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.
例1.(2006年安徽卷)若抛物线的焦点与椭圆的右焦点重合,则的值为()
A.B.C.D.
考查意图:本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.
解答过程:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D.
考点2.求线段的长
求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.
例2.(2007年四川卷文)已知抛物线y-x23上存在关于直线xy=0对称的相异两点A、B,则|AB|等于
A.3B.4C.3D.4
考查意图:本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.
解:设直线的方程为,由,进而可求出的中点,又由在直线上可求出,
∴,由弦长公式可求出.
故选C

高一数学必修三第七章解析几何初步导学案(湘教版)


一名爱岗敬业的教师要充分考虑学生的理解性,作为教师就要根据教学内容制定合适的教案。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。写好一份优质的教案要怎么做呢?急您所急,小编为朋友们了收集和编辑了“高一数学必修三第七章解析几何初步导学案(湘教版)”,相信能对大家有所帮助。

7.1点的坐标
1.点的位置表示:
(1)先取一个点O作为基准点,称为原点.取定这个基准点之后,任何一个点P的位置就由O到P的向量唯一表示.称为点P的位置向量,它表示的是点P相对于点O的位置.
(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则可唯一地分解为=xe1+ye2的形式,其中x,y是一对实数.(x,y)就是向量的坐标,坐标唯一地表示了向量,从而也唯一地表示了点P.
2.向量的坐标:
向量的坐标等于它的终点坐标减去起点坐标.
3.基本公式:
(1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的两点,M(x,y)为线段AB的中点.
(2)公式:
①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.
②中点坐标公式,.
4.定比分点坐标
设A,B是两个不同的点,如果点P在直线AB上且=λ,则称λ为点P分有向线段所成的比.
注意:当P在线段AB之间时,,方向相同,比值λ>0.我们也允许点P在线段AB之外,此时,方向相反,比值λ<0且λ≠-1.当点P与点A重合时λ=0.而点P与点B重合时不可能写成=0的实数倍.
定比分点坐标公式:已知两点A(x1,y1),B(x2,y2),点P(x,y)分所成的比为λ.则x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平均值,即x1+x2+x33,y1+y2+y33.
一、中点坐标公式的运用
【例1】已知ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角线的交点为E(-3,4),求另外两个顶点C,D的坐标.
平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求.
解:设C(x1,y1),D(x2,y2).
∵E为AC的中点,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵E为BD的中点,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴C的坐标为(-10,6),D点的坐标为(-11,1).
若M(x,y)是A(a,b)与B(c,d)的中点,则x=a+c2,y=b+d2.也可理解为A关于M的对称点为B,若求B,则可用变形公式c=2x-a,d=2y-b.
1-1已知矩形ABCD的两个顶点坐标是A(-1,3),B(-2,4),若它的对角线交点M在x轴上,求另外两个顶点C,D的坐标.
解:如图,设点M,C,D的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得
0=y1+32y1=-3;
0=y2+42y2=-4;
x0=x1-12x1=2x0+1;
x0=x2-22x2=2x0+2.
又∵|AB|2+|BC|2=|AC|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴点C,D的坐标分别为(-9,-3),(-8,-4).
二、距离公式的运用
【例2】已知△ABC三个顶点的坐标分别为A(4,1),B(-3,2),C(0,5),则△ABC的周长为().
A.42B.82C.122D.162
利用两点间的距离公式直接求解,然后求和.
解析:∵A(4,1),B(-3,2),C(0,5),
∴|AB|=(-3-4)2+(2-1)2=50=52,
|BC|=[0-(-3)]2+(5-2)2=18=32,
|AC|=(0-4)2+(5-1)2=32=42.
∴△ABC的周长为|AB|+|BC|+|AC|
=52+32+42
=122.
答案:C
(1)熟练掌握两点间的距离公式,并能灵活运用.
(2)注意公式的结构特征.若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式.

2015届高考数学(文科)一轮总复习解析几何


经验告诉我们,成功是留给有准备的人。准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助高中教师营造一个良好的教学氛围。那么如何写好我们的高中教案呢?经过搜索和整理,小编为大家呈现“2015届高考数学(文科)一轮总复习解析几何”,欢迎您阅读和收藏,并分享给身边的朋友!

第九篇解析几何
第1讲直线的方程
基础巩固题组
(建议用时:40分钟)
一、填空题
1.直线3x-y+a=0(a为常数)的倾斜角为________.
解析直线的斜率为k=tanα=3,又因为α∈[0,π),所以α=π3.
答案π3
2.已知直线l经过点P(-2,5),且斜率为-34.则直线l的方程为________.
解析由点斜式,得y-5=-34(x+2),
即3x+4y-14=0.
答案3x+4y-14=0
3.(2014长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.
解析∵kAC=5-36-4=1,kAB=a-35-4=a-3.
由于A,B,C三点共线,所以a-3=1,即a=4.
答案4
4.(2014泰州模拟)直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.
解析令x=0,得y=k4;令y=0,得x=-k3.
则有k4-k3=2,所以k=-24.
答案-24
5.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m=________.
解析由题意可知2m2+m-3≠0,即m≠1且m≠-32,在x轴上截距为4m-12m2+m-3=1,即2m2-3m-2=0,解得m=2或-12.
答案2或-12
6.(2014佛山调研)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足________.
①ab0,bc0;②ab0,bc0;③ab0,bc0;④ab0,bc0.
解析由题意,令x=0,y=-cb0;令y=0,x=-ca0.即bc0,ac0,从而ab>0.
答案①
7.(2014淮阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.
解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l在x轴的截距为-3,此时k=12,满足条件的直线l的斜率范围是(-∞,-1)∪12,+∞.
答案(-∞,-1)∪12,+∞
8.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.
解析设所求直线的方程为xa+yb=1,
∵A(-2,2)在直线上,∴-2a+2b=1.

又因直线与坐标轴围成的三角形面积为1,
∴12|a||b|=1.②
由①②可得(1)a-b=1,ab=2或(2)a-b=-1,ab=-2.
由(1)解得a=2,b=1或a=-1,b=-2,方程组(2)无解.
故所求的直线方程为x2+y1=1或x-1+y-2=1,
即x+2y-2=0或2x+y+2=0为所求直线的方程.
答案x+2y-2=0或2x+y+2=0
二、解答题
9.(2014临沂月考)设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
解(1)当直线过原点时,该直线在x轴和y轴上的截距为0,当然相等.∴a=2,方程即为3x+y=0.
当直线不过原点时,由截距存在且均不为0,
得a-2a+1=a-2,即a+1=1,
∴a=0,方程即为x+y+2=0.
综上,l的方程为3x+y=0或x+y+2=0.
(2)将l的方程化为y=-(a+1)x+a-2,
∴-a+1>0,a-2≤0或-a+1=0,a-2≤0.∴a≤-1.
综上可知a的取值范围是(-∞,-1].
10.已知直线l过点M(2,1),且分别与x轴、y轴的正半轴交于A,B两点,O为原点,是否存在使△ABO面积最小的直线l?若存在,求出直线l的方程;若不存在,请说明理由.
解存在.理由如下:
设直线l的方程为y-1=k(x-2)(k<0),则A2-1k,0,B(0,1-2k),△AOB的面积S=12(1-2k)2-1k=124+-4k+-1k≥12(4+4)=4.当且仅当-4k=-1k,即k=-12时,等号成立,故直线l的方程为y-1=-12(x-2),即x+2y-4=0.
能力提升题组
(建议用时:25分钟)
一、填空题
1.(2014北京海淀一模)已知点A(-1,0),B(cosα,sinα),且|AB|=3,则直线AB的方程为________.
解析|AB|=cosα+12+sin2α=2+2cosα=3,所以cosα=12,sinα=±32,所以kAB=±33,即直线AB的方程为y=±33(x+1),所以直线AB的方程为y=33x+33或y=-33x-33.
答案y=33x+33或y=-33x-33
2.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是________.
解析如图,直线l:y=kx-3,过定点P(0,-3),又A(3,0),∴kPA=33,则直线PA的倾斜角为π6,满足条件的直线l的倾斜角的范围是π6,π2.
答案π6,π2
3.已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.
解析直线方程可化为x2+y=1,故直线与x轴的交点为A(2,0),与y轴的交点为B(0,1),由动点P(a,b)在线段AB上,可知0≤b≤1,且a+2b=2,从而a=2-2b,故ab=(2-2b)b=-2b2+2b=-2b-122+12,由于0≤b≤1,
故当b=12时,ab取得最大值12.
答案12
二、解答题
4.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.
解由题意可得kOA=tan45°=1,kOB=tan(180°-30°)=-33,所以直线lOA:y=x,lOB:y=-33x,
设A(m,m),B(-3n,n),
所以AB的中点Cm-3n2,m+n2,
由点C在y=12x上,且A,P,B三点共线得
m+n2=12m-3n2,m-0m-1=n-0-3n-1,解得m=3,所以A(3,3).
又P(1,0),所以kAB=kAP=33-1=3+32,
所以lAB:y=3+32(x-1),
即直线AB的方程为(3+3)x-2y-3-3=0.

2012届高考数学第二轮考点解析几何问题的题型与方法专题复习教案


第17-20课时:解析几何问题的题型与方法
一.复习目标:
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二.考试要求:
(一)直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
3.了解二元一次不等式表示平面区域。
4.了解线性规划的意义,并会简单的应用。
5.了解解析几何的基本思想,了解坐标法。
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(二)圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。
2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。
3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。
4.了解圆锥曲线的初步应用。
三.教学过程:
(Ⅰ)基础知识详析
高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。
(一)直线的方程
1.点斜式:;2.截距式:;
3.两点式:;4.截距式:;
5.一般式:,其中A、B不同时为0.
(二)两条直线的位置关系
两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.
设直线:=+,直线:=+,则
∥的充要条件是=,且=;⊥的充要条件是=-1.
(三)线性规划问题
1.线性规划问题涉及如下概念:
⑴存在一定的限制条件,这些约束条件如果由x、y的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.
⑵都有一个目标要求,就是要求依赖于x、y的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x、y的一次解析式,就称为线性目标函数.
⑶求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题.
⑷满足线性约束条件的解(x,y)叫做可行解.
⑸所有可行解组成的集合,叫做可行域.
⑹使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.
2.线性规划问题有以下基本定理:
⑴一个线性规划问题,若有可行解,则可行域一定是一个凸多边形.
⑵凸多边形的顶点个数是有限的.
⑶对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到.
3.线性规划问题一般用图解法.
(四)圆的有关问题
1.圆的标准方程
(r>0),称为圆的标准方程,其圆心坐标为(a,b),半径为r.
特别地,当圆心在原点(0,0),半径为r时,圆的方程为.
2.圆的一般方程
(>0)称为圆的一般方程,
其圆心坐标为(,),半径为.
当=0时,方程表示一个点(,);
当<0时,方程不表示任何图形.
3.圆的参数方程
圆的普通方程与参数方程之间有如下关系:
(θ为参数)
(θ为参数)
(五)椭圆及其标准方程
1.椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.
2.椭圆的标准方程:(>>0),(>>0).
3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.
4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
(六)椭圆的简单几何性质
1.椭圆的几何性质:设椭圆方程为(>>0).
⑴范围:-a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里.
⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.
⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).
线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.
⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.
2.椭圆的第二定义
⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.
⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.
3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.
设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.
椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.
椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.
(七)椭圆的参数方程
椭圆(>>0)的参数方程为(θ为参数).
说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;
⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换.
(八)双曲线及其标准方程
1.双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.
若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.
2.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.
3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.
4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
(九)双曲线的简单几何性质
1.双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.
2.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:
,其中k是一个不为零的常数.
3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.
在双曲线中,a、b、c、e四个元素间有与的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.
(十)抛物线的标准方程和几何性质
1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。
需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。
2.抛物线的方程有四种类型:
、、、.
对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。
3.抛物线的几何性质,以标准方程y2=2px为例
(1)范围:x≥0;
(2)对称轴:对称轴为y=0,由方程和图像均可以看出;
(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);
(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;
(5)准线方程;
(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0):
(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则有①|AB|=x+x+p

以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。
(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x+bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。
(十一)轨迹方程
⑴曲线上的点的坐标都是这个方程的解;
⑵以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形或轨迹).

(十二)注意事项
1.⑴直线的斜率是一个非常重要的概念,斜率k反映了直线相对于x轴的倾斜程度.当斜率k存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a(a∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率k存在与否,要分别考虑.
⑵直线的截距式是两点式的特例,a、b分别是直线在x轴、y轴上的截距,因为a≠0,b≠0,所以当直线平行于x轴、平行于y轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.
⑶求解直线方程的最后结果,如无特别强调,都应写成一般式.
⑷当直线或的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直
⑸在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.
2.⑴用待定系数法求椭圆的标准方程时,要分清焦点在x轴上还是y轴上,还是两种都存在.
⑵注意椭圆定义、性质的运用,熟练地进行a、b、c、e间的互求,并能根据所给的方程画出椭圆.
⑶求双曲线的标准方程应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
⑷双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:
,其中k是一个不为零的常数.
⑸双曲线的标准方程有两个和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.
⑹求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数p的值.同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个.
(Ⅱ)范例分析
例1、求与直线3x+4y+12=0平行,且与坐标轴构成的三角形面积是24的直线l的方程。
分析:满足两个条件才能确定一条直线。一般地,求直线方程有两个解法,即用其中一个条件列出含待定系数的方程,再用另一个条件求出此参数。
解法一:先用“平行”这个条件设出l的方程为3x+4y+m=0①再用“面积”条件去求m,∵直线l交x轴于,交y轴于由,得,代入①得所求直线的方程为:
解法二:先用面积这个条件列出l的方程,设l在x轴上截距离a,在y轴上截距b,则有,因为l的倾角为钝角,所以a、b同号,|ab|=ab,l的截距式为,即48x+a2y-48a=0②又该直线与3x+4y+2=0平行,∴,∴代入②得所求直线l的方程为
说明:与直线Ax+By+C=0平行的直线可写成Ax+By+C1=0的形式;与Ax+By+C=0垂直的直线的方程可表示为Bx-Ay+C2=0的形式。
例2、若直线mx+y+2=0与线段AB有交点,其中A(-2,3),B(3,2),求实数m的取值范围。
解:直线mx+y+2=0过一定点C(0,-2),直线mx+y+2=0实际上表示的是过定点(0,-2)的直线系,因为直线与线段AB有交点,则直线只能落在∠ABC的内部,设BC、CA这两条直线的斜率分别为k1、k2,则由斜率的定义可知,直线mx+y+2=0的斜率k应满足k≥k1或k≤k2,∵A(-2,3)B(3,2)

∴-m≥或-m≤即m≤或m≥
说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx+y+2=0的斜率-m应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB内部变化时,k应大于或等于kBC,或者k小于或等于kAC,当A、B两点的坐标变化时,也要能求出m的范围。

例3、已知x、y满足约束条件
x≥1,
x-3y≤-4,
3x+5y≤30,
求目标函数z=2x-y的最大值和最小值.
解:根据x、y满足的约束条件作出可行域,即如图所示的阴影部分(包括边界).
作直线:2x-y=0,再作一组平行于的直线:2x-y=t,t∈R.
可知,当在的右下方时,直线上的点(x,y)满足2x-y>0,即t>0,而且直线往右平移时,t随之增大.当直线平移至的位置时,直线经过可行域上的点B,此时所对应的t最大;当在的左上方时,直线上的点(x,y)满足2x-y<0,即t<0,而且直线往左平移时,t随之减小.当直线平移至的位置时,直线经过可行域上的点C,此时所对应的t最小.
x-3y+4=0,
由解得点B的坐标为(5,3);
3x+5y-30=0,
x=1,
由解得点C的坐标为(1,).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.

例4、某运输公司有10辆载重量为6吨的A型卡车与载重量为8吨的B型卡车,有11名驾驶员.在建筑某段高速公路中,该公司承包了每天至少搬运480吨沥青的任务.已知每辆卡车每天往返的次数为A型卡车8次,B型卡车7次;每辆卡车每天的成本费A型车350元,B型车400元.问每天派出A型车与B型车各多少辆,公司所花的成本费最低,最低为多少?
解:设每天派出A型车与B型车各x、y辆,并设公司每天的成本为z元.由题意,得
x≤10,
y≤5,
x+y≤11,
48x+56y≥60,
x,y∈N,
且z=350x+400y.
x≤10,
y≤5,
即x+y≤11,
6x+7y≥55,
x,y∈N,
作出可行域,作直线:350x+400y=0,即7x+8y=0.
作出一组平行直线:7x+8y=t中(t为参数)经过可行域内的点和原点距离最近的直线,此直线经过6x+7y=60和y=5的交点A(,5),由于点A的坐标不都是整数,而x,y∈N,所以可行域内的点A(,5)不是最优解.
为求出最优解,必须进行定量分析.
因为,7×+8×5≈69.2,所以经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点最小的直线是7x+8y=10,在可行域内满足该方程的整数解只有x=10,y=0,所以(10,0)是最优解,即当通过B点时,z=350×10+400×0=3500元为最小.
答:每天派出A型车10辆不派B型车,公司所化的成本费最低为3500元.

例5、已知点T是半圆O的直径AB上一点,AB=2、OT=t(0t1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.
(1)写出直线的方程;
(2)计算出点P、Q的坐标;
(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.
解:(1)显然,于是直线的方程为;
(2)由方程组解出、;
(3),.
由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.
说明:需要注意的是,Q点的坐标本质上是三角中的万能公式,有趣吗?
例6、设P是圆M:(x-5)2+(y-5)2=1上的动点,它关于A(9,0)的对称点为Q,把P绕原点依逆时针方向旋转90°到点S,求|SQ|的最值。
解:设P(x,y),则Q(18-x,-y),记P点对应的复数为x+yi,则S点对应的复数为:
(x+yi)i=-y+xi,即S(-y,x)

其中可以看作是点P到定点B(9,-9)的距离,共最大值为最小值为,则
|SQ|的最大值为,|SQ|的最小值为

例7、已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.
解:(1)由,可得由射影定理,得在Rt△MOQ中,

故,
所以直线AB方程是
(2)连接MB,MQ,设由
点M,P,Q在一直线上,得
由射影定理得
即把(*)及(**)消去a,
并注意到,可得
说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例8、直线过抛物线的焦点,且与抛物线相交于A两点.(1)求证:;
(2)求证:对于抛物线的任意给定的一条弦CD,直线l不是CD的垂直平分线.
解:(1)易求得抛物线的焦点.
若l⊥x轴,则l的方程为.
若l不垂直于x轴,可设,代入抛物线方程整理得.
综上可知.
(2)设,则CD的垂直平分线的方程为
假设过F,则整理得
,.
这时的方程为y=0,从而与抛物线只相交于原点.而l与抛物线有两个不同的交点,因此与l不重合,l不是CD的垂直平分线.
说明:此题是课本题的深化,课本是高考试题的生长点,复习要重视课本。

例9、已知椭圆,能否在此椭圆位于y轴左侧的部分上找到一点M,使它到左准线的距离为它到两焦点F1、F2距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。
解:假设存在满足条件的点,设M(x1,y1)a2=4,b2=3,∴a=2,,c=1,∴,
,点M到椭圆左准线的距离
,∴,∴,∴或,这与x1∈[-2,0)相矛盾,∴满足条件的点M不存在。
例10、已知椭圆中心在原点,焦点在轴上,焦距为4,离心率为,
(Ⅰ)求椭圆方程;
(Ⅱ)设椭圆在y轴正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程。
解:(Ⅰ)设椭圆方程为由2c=4得c=2又
故a=3,∴所求的椭圆方程为
(Ⅱ)若k不存在,则,若k存在,则设直线AB的方程为:y=kx+2
又设A
由得
①②
∵点M坐标为M(0,2)∴
由∴
∴代入①、②得…③④
由③、④得∴
∴线段AB所在直线的方程为:。
说明:有向线段所成的比,线段的定比分点等概念,本身就是解析几何研究的一类重要问题。向量概念的引入,使这类问题的解决显得简洁而流畅。求解这类问题可以用定比分点公式,也可以直接用有向线段的比解题。
另外,向量的长度,点的平移等与解析几何都有着千丝万缕的联系,向量与解析几何的结合,为解决这些问题开辟了新的解题途径。

例11、已知直线l与椭圆有且仅有一个交点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程.
解:从直线所处的位置,设出直线的方程,
由已知,直线l不过椭圆的四个顶点,所以设直线l的方程为
代入椭圆方程得
化简后,得关于的一元二次方程
于是其判别式
由已知,得△=0.即①
在直线方程中,分别令y=0,x=0,求得
令顶点P的坐标为(x,y),由已知,得
代入①式并整理,得,即为所求顶点P的轨迹方程.
说明:方程形似椭圆的标准方程,你能画出它的图形吗?
例12、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得.
设的中点是,则

故所求k=±.
说明:为了求出的值,需要通过消元,想法设法建构的方程.

例13、过点作直线与椭圆3x2+4y2=12相交于A、B两点,O为坐标原点,求△OAB面积的最大值及此时直线倾斜角的正切值。
分析:若直接用点斜式设的方程为,则要求的斜率一定要存在,但在这里的斜率有可能不存在,因此要讨论斜率不存在的情形,为了避免讨论,我们可以设直线的方程为,这样就包含了斜率不存在时的情形了,从而简化了运算。
解:设A(x1,y1),B(x2,y2),:
把代入椭圆方程得:,即
,,
∴,此时
令直线的倾角为,则
即△OAB面积的最大值为,此时直线倾斜角的正切值为。

例14、(2003年江苏高考题)已知常数,向量
经过原点O以为方向向量的直线与经过定点A(0,a)以为方向向量的直线相交于点P,其中试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
解:∵=(1,0),=(0,a),∴+λ=(λ,a),-2λ=(1,-2λa).
因此,直线OP和AP的方程分别为和.
消去参数λ,得点的坐标满足方程.
整理得……①
因为所以得:
(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;
(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;
(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.
说明:由于向量可以用一条有向线段来表示,有向线段的方向可以决定解析几何中直线的斜率,故直线的方向向量与解析几何中的直线有着天然的联系。求解此类问题的关键是:根据直线的方向向量得出直线方程,再转化为解析几何问题解决。

例15、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,、分别是左、右焦点,求∠的取值范围;
解:(1)∵,∴。
∵是共线向量,∴,∴b=c,故。
(2)设
当且仅当时,cosθ=0,∴θ。
说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。

例16、一条斜率为1的直线与离心率为的椭圆C:()交于P、Q,两点,直线与Y轴交于点R,且,,求直线和椭圆C的方程。
解:椭圆离心率为,,
所以椭圆方程为,设方程为:,
由消去得
……(1)……(2)
所以

所以
所以……(3)又,,从而……(4)由(1)(2)(4)得……(5)
由(3)(5)解得,适合,
所以所求直线方程为:或;椭圆C的方程为
说明:向量数量积的坐标表示,构建起向量与解析几何的密切关系,使向量与解析几何融为一体。求此类问题的关键是:利用向量数量积的坐标表示,沟通向量与解析几何的联系。体现了向量的工具性。

例17、已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F1与椭圆交于A、B两点,△ABF2的面积最大值为12.
(1)求椭圆C的离心率;
(2)求椭圆C的方程.
解法一:(1)设,对由余弦定理,得
,解出
(2)考虑直线的斜率的存在性,可分两种情况:
i)当k存在时,设l的方程为………………①
椭圆方程为
由得.
于是椭圆方程可转化为………………②
将①代入②,消去得,
整理为的一元二次方程,得.
则x1、x2是上述方程的两根.且


AB边上的高
ii)当k不存在时,把直线代入椭圆方程得
由①②知S的最大值为由题意得=12所以
故当△ABF2面积最大时椭圆的方程为:
解法二:设过左焦点的直线方程为:…………①
椭圆的方程为:
由得:于是椭圆方程可化为:……②
把①代入②并整理得:
于是是上述方程的两根.
,
AB边上的高,
从而
当且仅当m=0取等号,即
由题意知,于是.
故当△ABF2面积最大时椭圆的方程为:
例18、(2002年天津高考题)已知两点M(-1,0),N(1,0)且点P使成公差小于零的等差数列,
(Ⅰ)点P的轨迹是什么曲线?
(Ⅱ)若点P坐标为,为的夹角,求tanθ。
解:(Ⅰ)记P(x,y),由M(-1,0)N(1,0)得
所以
于是,是公差小于零的等差数列等价于

所以,点P的轨迹是以原点为圆心,为半径的右半圆。
(Ⅱ)点P的坐标为。。
因为0〈,所以
说明:在引入向量的坐标表示后,可以使向量运算代数化,这样就可以将“形”和“数”紧密地结合在一起。向量的夹角问题融入解析几何问题中,也就显得十分自然。求解这类问题的关键是:先把向量用坐标表示,再用解析几何知识结合向量的夹角公式使问题获解;也可以把两向量夹角问题转化为两直线所成角的问题,用数形结合方法使问题获解。

(Ⅲ)、强化训练
1、已知P是以、为焦点的椭圆上一点,若,则椭圆的离心率为()
(A)(B)(C)(D)
2、已知△ABC的顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y-59=0,∠B的平分线所在直线的方程为:x-4y+10=0,求边BC所在直线的方程。
3、求直线l2:7x-y+4=0到l1:x+y-2=0的角平分线的方程。
食物P食物Q食物R
维生素A(单位/kg)400600400
维生素B(单位/kg)800200400
成本(元/kg)654
4、已知三种食物P、Q、R的维生素含量与成本如下表所示.

现在将xkg的食物P和ykg的食物Q及zkg的食物R混合,制成100kg的混合物.如果这100kg的混合物中至少含维生素A44000单位与维生素B48000单位,那么x,y,z为何值时,混合物的成本最小?
5、某人有楼房一幢,室内面积共180,拟分隔成两类房间作为旅游客房.大房间每间面积为18,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?
6、已知△ABC三边所在直线方程AB:x-6=0,BC:x-2y-8=0,CA:x+2y=0,求此三角形外接圆的方程。
7、已知椭圆x2+2y2=12,A是x轴正方向上的一定点,若过点A,斜率为1的直线被椭圆截得的弦长为,求点A的坐标。
8、已知椭圆(a>b>0)上两点A、B,直线上有两点C、D,且ABCD是正方形。此正方形外接圆为x2+y2-2y-8=0,求椭圆方程和直线的方程。
9、求以直线为准线,原点为相应焦点的动椭圆短轴MN端点的轨迹方程。
10、若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为,求椭圆的方程。
11、已知直线与椭圆相交于A、B两点,且线段AB的中点在直线上.
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.
12、设A(x1,y1)为椭圆x2+2y2=2上任意一点,过点A作一条直线,斜率为,又设d为原点到直线的距离,r1、r2分别为点A到椭圆两焦点的距离。求证:为定值。
13、某工程要将直线公路l一侧的土石,通过公路上的两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,∠APB=60°,试说明怎样运土石最省工?
14、已知椭圆(a>b>0),P为椭圆上除长轴端点外的任一点,F1、F2为椭圆的两个焦点,(1)若,,求证:离心率;(2)若,求证:的面积为。
15、在Rt△ABC中,∠CBA=90°,AB=2,AC=。DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设,
试确定实数的取值范围.
16、(2004年北京春季高考)已知点A(2,8),在抛物线上,的重心与此抛物线的焦点F重合(如图)
(I)写出该抛物线的方程和焦点F的坐标;
(II)求线段BC中点M的坐标;(III)求BC所在直线的方程。

(Ⅳ)、参考答案
1、解:设c为为椭圆半焦距,∵∴
又∴
解得:选(D)。
说明:垂直向量的引入为解决解析几何问题开辟了新思路。求解此类问题的关键是利用向量垂直的充要条件:“”,促使问题转化,然后利用数形结合解决问题。
2、解:设B(a,b),B在直线BT上,∴a-4b+10=0①又AB中点在直线CM上,∴点M的坐标满足方程6x+10y-59=0∴②解①、②组成的方程组可得a=10,b=5∴B(10,5),又由角平分线的定义可知,直线BC到BT的角等于直线BT到直线BA的角,又∴∴,∴BC所在直线的方程为即2x+9y-65=0
3、解法一:设l2到l1角平分线l的斜率为k,∵k1=-1,k2=7
∴,解之得k=-3或,由图形可知k0,
∴k=-3,又由解得l1与l2的交点,
由点斜式得即6x+2y-3=0
解法二:设l2到l1的角为θ,则,所以角θ为锐角,而,由二倍角公式可知∴或为锐角,
∴,∴k=-3等同解法一。
解法三:设l:(x+y-2)+λ(7x-y+4)=0即(1+7λ)x+(1-λ)y+(4λ-2)=0①
∴,由解法一知,∴,代入①化简即得:6x+2y-3=0
解法四:用点到直线的距离公式,设l上任一点P(x,y),则P到l1与l2的距离相等。
∴整理得:6x+2y-3=0与x-3y+7=0,又l是l2到l1的角的平分线,
k0,∴x-3y+7=0不合题意所以所求直线l的方程为6x+2y-3=0.
4、分析:由x+y+z=100,得z=100-x-y,所以上述问题可以看作只含x,y两个变量.设混合物的成本为k元,那么k=6x+5y+4(100-x-y)=2x+y+400.于是问题就归结为求k在已知条件下的线性规划问题.
解:已知条件可归结为下列不等式组:
x≥0,
y≥0,
x+y≤100,
400x+600y+400(100-x-y)≥44000,
800x+200y+400(100-x-y)≥48000.
x+y≤100,
即y≥20,①
2x-y≥40.
在平面直角坐标系中,画出不等式组①所表示的平面区域,这个区域是直线x+y=100,y=20,2x-y=40围成的一个三角形区域EFG(包括边界),即可行域,如图所示的阴影部分.
设混合物的成本为k元,那么k=6x+5y+4(100-x-y)=2x+y+400.
作直线:2x+y=0,把直线向右上方平移至位置时,直线经过可行域上的点E,且与原点的距离最小,此时2x+y的值最小,从而k的值最小.
2x-y=40,x=30,
由得即点E的坐标是(30,20).
y=20,y=20,
所以,=2×30+20+400=480(元),此时z=100-30-20=50.
答:取x=30,y=20,z=50时,混合物的成本最小,最小值是480元.

5、解:设隔出大房间x间,小房间y间时收益为z元,则x、y满足
18x+15y≤180,
1000x+600y≤8000,
x,y∈N,
且z=200x+150y.
所以6x+5y≤60,
5x+3y≤40,
x,y∈N,
作出可行域及直线:200x+150y=0,即4x+3y=0.(如图4)
把直线向上平移至的位置时,直线经过可行域上的点B,且与原点距离最大.此时,z=200x+150y取最大值.但解6x+5y=60与5x+3y=40联立的方程组得到B(,).由于点B的坐标不是整数,而x,y∈N,所以可行域内的点B不是最优解.
为求出最优解,同样必须进行定量分析.
因为4×+3×=≈37.1,但该方程的非负整数解(1,11)、(4,7)、(7,3)均不在可行域内,所以应取4x+3y=36.同样可以验证,在可行域内满足上述方程的整点为(0,12)和(3,8).此时z取最大值1800元.

6、解:解方程组可得A(6,-3)、B(6,-1)、C(4,2)设方程x2+y2+Dx+Ey+F=0,则:
解之得:D=,E=4,F=30
所以所求的△ABC的外接圆方程为:
7、分析:若直线y=kx+b与圆锥曲线f(x,y)=0相交于两点P(x1,y1)、Q(x2、y2),则弦PQ的长度的计算公式为,而
,因此只要把直线y=kx+b的方程代入圆锥曲线f(x,y)=0方程,消去y(或x),结合一元二次方程根与系数的关系即可求出弦长。
解:设A(x0,0)(x0>0),则直线的方程为y=x-x0,设直线与椭圆相交于P(x1,y1),
Q(x2、y2),由y=x-x0可得3x2-4x0x+2x02-12=0,
x2+2y2=12
,,则
∴,即
∴x02=4,又x0>0,∴x0=2,∴A(2,0)。
8、解:圆方程x2+y2-2y-8=0即x2+(y-1)2=9的圆心O'(0,1),半径r=3。
设正方形的边长为p,则,∴,又O'是正方形ABCD的中心,∴O'到直线y=x+k的距离应等于正方形边长p的一半即,由点到直线的距离公式可知k=-2或k=4。
(1)设AB:y=x-2由y=x-2
CD:y=x+4x2+y2-2y-8=0
得A(3,1)B(0,-2),又点A、B在椭圆上,∴a2=12,b2=4,椭圆的方程为。
(2)设AB:y=x+4,同理可得两交点的坐标分别为(0,4),(-3,1)代入椭圆方程得
,此时b2>a2(舍去)。
综上所述,直线方程为y=x+4,椭圆方程为。
9、分析:已知了椭圆的焦点及相应准线,常常需要运用椭圆的第二定义:椭圆上的点到焦点的距离与到相应准线的距离之比等于离心率e,而该题中短轴端点也是椭圆上的动点,因此只要运用第二定义结合a、b、c的几何意义即可。
解:设M(x,y),过M作于A,,,∴,又过M作轴于O',因为点M为短轴端点,则O'必为椭圆中心,
∴,,∴,∴化简得y2=2x,∴短轴端点的轨迹方程为y2=2x(x≠0)。
10、解:若椭圆的焦点在x轴上,如图,∵四边形B1F1B2F2是正方形,且A1F1=,由椭圆的几何意义可知,解之得:,此时椭圆的方程为,同理焦点也可以在y轴上,综上所述,椭圆的方程为或。
11、解:(1)设A、B两点的坐标分别为得
,
根据韦达定理,得
∴线段AB的中点坐标为().
由已知得
故椭圆的离心率为.
(2)由(1)知从而椭圆的右焦点坐标为设关于直线的对称点为
解得
由已知得
故所求的椭圆方程为.
12、分析:根据椭圆的第二定义,即到定点的距离与到定直线的距离之比等于常数e(0<e<1)的点的轨迹是椭圆,椭圆上任一点P(x1,y1)到左焦点F1的距离|PF1|=a+ex1,到右焦点F2的距离|PF2|=a-ex1;同理椭圆上任一点P(x1,y1)到两焦点的距离分别为a+ey1和a-ey1,这两个结论我们称之为焦半径计算公式,它们在椭圆中有着广泛的运用。
解:由椭圆方程可知a2=2,b2=1则c=1,∴离心率,由焦半径公式可知,。又直线的方程为:
即x1x+2y1y-2=0,由点到直线的距离公式知,,又点(x1,y1)在椭圆上,∴2y12=2=x12,
∴,
∴为定值。
13、解:以直线l为x轴,线段AB的中点为原点对立直角坐标系,则在l一侧必存在经A到P和经B到P路程相等的点,设这样的点为M,则
|MA|+|AP|=|MB|+|BP|,
即|MA|-|MB|=|BP|-|AP|=50,
,
∴M在双曲线的右支上.
故曲线右侧的土石层经道口B沿BP运往P处,曲线左侧的土石层经道口A沿AP运往P处,按这种方法运土石最省工.
相关解析几何的实际应用性试题在高考中似乎还未涉及,其实在课本中还可找到典型的范例,你知道吗?
14、分析:的两个顶点为焦点,另一点是椭圆上的动点,因此,|F1F2|=2c,所以我们应以为突破口,在该三角形中用正弦定理或余弦定理,结合椭圆的定义即可证得。
证明:(1)在中,由正弦定理可知,则


(2)在中由余弦定理可知
y

∴。

15、解:(1)建立平面直角坐标系,如图所示.
∵|PA|+|PB|=|CA|+|CB|=
∴动点P的轨迹是椭圆.

∴曲线E的方程是.
(2)设直线L的方程为,代入曲线E的方程,得
设M1(,则
i)L与y轴重合时,
ii)L与y轴不重合时,
由①得又∵,
∵或
∴0<<1,∴.

而∴∴
∴,,
∴的取值范围是。
16、分析:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力。
解:(I)由点A(2,8)在抛物线上,有解得
所以抛物线方程为,焦点F的坐标为(8,0)
(II)如图,由F(8,0)是的重心,M是BC的中点,所以F是线段AM的定比分点,且设点M的坐标为,则
解得所以点M的坐标为
(III)由于线段BC的中点M不在x轴上,所以BC所在的直线不垂直于x轴。
设BC所成直线的方程为
由消x得
所以由(II)的结论得解得
因此BC所在直线的方程为即。

文章来源:http://m.jab88.com/j/56528.html

更多

最新更新

更多