一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助授课经验少的高中教师教学。优秀有创意的高中教案要怎样写呢?小编经过搜集和处理,为您提供2019版高中数学必修4知识点清单(人教版),希望对您的工作和生活有所帮助。
高中数学必修4知识点
第一章三角函数
正角:按逆时针方向旋转形成的角
1、任意角负角:按顺时针方向旋转形成的角
零角:不作任何旋转形成的角
2、象限的角:在直角坐标系内,顶点与原点重合,始边与x轴的非负半轴重合,角的终边落
在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何
象限,叫做轴线角。
第一象限角的集合为
kkk36036090,
第二象限角的集合为
kkk36090360180,
第三象限角的集合为
kkk360180360270,
第四象限角的集合为
kkk360270360360,
终边在
x
轴上的角的集合为
kk180,?
终边在
y
轴上的角的集合为
kk18090,?
终边在坐标轴上的角的集合为
kk90,?
3、与角
终边相同的角,连同角
在内,都可以表示为集合{
4、弧度制:
(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
一名优秀的教师在教学方面无论做什么事都有计划和准备,教师要准备好教案为之后的教学做准备。教案可以让学生更容易听懂所讲的内容,帮助教师提高自己的教学质量。优秀有创意的教案要怎样写呢?下面是小编精心收集整理,为您带来的《2019版高中数学选修2-3知识点清单(人教版)》,大家不妨来参考。希望您能喜欢!
高中数学选修2-3知识点
第一章计数原理
1.1分类加法计数与分步乘法计数
分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同
的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不
同的方法。分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。做第1步有m种不同的方法,
做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。分步
要做到“步骤完整”。
n元集合A={a1,a2?,an}的不同子集有2
n个。
1.2排列与组合
1.2.1排列
一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,
叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不
同元素中取出m个元素的排列数,用符号An
m表示。
排列数公式:
n个元素的全排列数
规定:0!=1
1.2.2组合
一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同
元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个
不同元素中取出m个元素的组合数,用符号Cn
一名优秀的教师就要对每一课堂负责,教师在教学前就要准备好教案,做好充分的准备。教案可以更好的帮助学生们打好基础,使教师有一个简单易懂的教学思路。怎么才能让教案写的更加全面呢?经过搜索和整理,小编为大家呈现“2019版高中数学必修3知识点清单(人教版)”,仅供参考,欢迎大家阅读。
高中数学必修3知识点
第一章算法初步
1.1.1算法的概念
1、算法概念:
在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,
这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
2.算法的特点:
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当
是模棱两可.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个
确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步
都准确无误,才能完成问题.
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经
过有限、事先设计好的步骤加以解决.
1.1.2程序框图
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来
准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文
字说明。
(二)构成程序框的图形符号及其作用
程序框名称功能
起止框
表示一个算法的起始和结束,是任何流程图
不可少的。
输入、输出框
表示一个算法输入和输出的信息,可用在算
法中任何需要输入、输出的位置。
处理框
赋值、计算,算法中处理数据需要的算式、
公式等分别写在不同的用以处理数据的处
理框内。
判断框
判断某一条件是否成立,成立时在出口处标
明“是”或“Y”;不成立时标明“否”或
“N”。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:
1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,
大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;
另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下
的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一
种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而
下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B
框是依次执行的,只有在执行完A框指定的操作后,才能接着执
行B框所指定的操作。
2、条件结构:
A
B
条件结构是指在算法中通过对条件的判断
根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,
不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断
框。
3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理
步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含
条件结构。循环结构又称重复结构,循环结构可细分为两类:
(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A
框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执
行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条
件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,
此时不再执行A框,离开循环结构。
当型循环结构直到型循环结构
注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结
构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变
量。计数变量用于记录循环次数......,累加变量用于输出结果。计数变量和累加变量一般是同步
执行的,累加一次,计数一次。
1.2.1输入、输出语句和赋值语句
一名优秀的教师在每次教学前有自己的事先计划,高中教师要准备好教案为之后的教学做准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助授课经验少的高中教师教学。高中教案的内容要写些什么更好呢?以下是小编为大家精心整理的“2019版高中数学必修2知识点清单(人教版)”,欢迎您参考,希望对您有所助益!
高中数学必修2知识点
第1章空间几何体
一、空间几何体的结构
1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多
面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
2.旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。这条
定直线叫做旋转体的轴。
3、柱、锥、台、球的结构特征
(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,
由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱
ABCDE?ABCDE
或用对角线的端点字母,如五棱柱
AD
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于
底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
P?ABCDE
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高
的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
P?ABCDE
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
二、空间几何体的三视图和直观图
1.投影:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。其中我
们把光线叫做投影线,把留下物体影子的屏幕叫做投影面。
2.中心投影:我们把光由一点向外散射形成的投影,叫做中心投影。
3.平行投影:我们把在一束平行光线照射下形成的投影,叫做平行投影。(又分为正投影和斜投影)
4空间几何体的三视图
(1)、定义三视图:正视图(从前向后;即光线从几何体的前面向后面正投影);侧视图(从左向右)、俯
视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
(2)、三视图图形的位置:
(3)、三视图长、宽、高的关系:“正侧长对齐、正俯高对齐、侧俯宽相等”
三、空间几何体的直观图
1.斜二测画法:对于平面多边形,我们常用斜二测画法画它们的直观图。斜二测画法是一种特殊的平行投影
画法。
2.斜二测画法原则:横不变,纵减半。
3.斜二测画法步骤:①在已知图形中取互相垂直的
文章来源:http://m.jab88.com/j/51945.html
更多