88教案网

八年级数学下册《平方差公式法因式分解》教案设计

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《八年级数学下册《平方差公式法因式分解》教案设计》,仅供参考,欢迎大家阅读。

八年级数学下册《平方差公式法因式分解》教案设计

【教材依据】本节课是北师大版数学八年级下册第四章因式分解第三节公式法第一课时内容。
【教材分析】因式分解是初中数学的一个重要内容,是代数式恒等变形的重要手段之一。它贯穿、渗透在各种代数式问题之中,为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。本节课是在学习了整式的乘法、乘法公式和提公因式法因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是因式分解中的一个重要内容。它对学习完全平方公式因式分解和后面即将要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数,高中学习一元二次不等式和分式不等式等都有着重要的影响,所以学好本节课对后面的学习至关重要!
【学情分析】
学生已有七年级所学习的整式运算的基础知识,在前一节课中已经学习了提公因式法分解因式,初步体会到了因式分解与乘法运算的互逆关系,通过对乘法公式(a+b)(a-b)=a2-b2的逆向变形,容易得出a2-b2=(a+b)(a-b),但准确理解和掌握公式的结构特征,进行因式分解对学生来说还有很大的难度,学生的观察、归纳、类比、概括等能力,有条理的思考及语言表达能力还有待加强。
【指导思想】

以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,进一步应用生活问题作为课堂学习的载体,培养学生学有用数学的理念,贯穿类比、换元的数学思想方法。通过学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力,从而达到素质教育要求发展学生综合素养的目标。

【教学目标】

知识与技能:理解平方差公式的特点,掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;

过程与方法:通过知识的迁移经历运用平方差公式分解因式的过程;培养探究知识、合作学习的能力,深化逆向思维的能力和数学的应用意识,渗透整体思想和转化思想。

情感态度与价值观:在应用平方差公式分解因式的过程中让学生体验换元思想,同时增强学生的观察能力和归纳总结的能力。在自主合作学习的过程中体验成功的喜悦,感悟数学美,体会数学知识的合理性和严谨性,养成积极思考,独立思考的好习惯。
现代化教学手段的运用:使用交互式多媒体激发学生的学习兴趣,增大课堂容量,使用检测试卷落实当堂效果。

【教学重点】

掌握可用平方差公式分解因式的特点,并能使用平方差公式分解因式。
解决办法:通过大量实例的观察,分析,再通过对特殊例题的观察,讨论与交流总结相应的特征,感受它们的区别。
【教学难点】

使学生能把多项式转换成符合平方差公式的形式进行因式分解。

突破措施:通过观察及交流增强认识,突破难点,让学生自己对特征反复描述、总结,体会图形研究的方法与视角。
【教学过程】

利用ppt课件展示复习内容了解学生对因式分解概念及提公因式法的掌握情况,进一步复习应用平方差公式进行整式乘法运算。

1、知识回顾

A、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?

1)(2x-1)2=4x2-4x2)3x2+9xy-3x=3x(x+3y-1)M.JAb88.CoM

3)4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y)

B、把下列各式进行因式分解:

1)a3b3-a2b-ab2)-9x2y+3xy2-6xy

C、和老师比一比,看谁算的又快又准确!

1、322-3122、682-672

3、5.52-4.524、(8/15)2-(7/15)2

D、在横线内填上适当的式子,使等式成立:

(1)(x+5)(x-5)=(2)(4x-3y)(4x+3y)=

(3)(a+b)(a-b)=(4)x2-25=(x+5)

(5)16x2-9y2=(4x-3y)(6)a2-b2=(a+b)

2、导入新课:

(x+5)(x-5)=x2-25(4x—3y)(4x+3y)=16x2-9y2

这是我们学习的整式的乘法运算。如果上述等式左右两边互换位置,又是什么形式呢?

x2-25=(x+5)(x-5)16x2-9y2=(4a—3y)(4x+3y)

这是因式分解的形式。你能对下列两个多项式因式分解吗?

(1)9a2-0.25b2(2)4x2-9y2

3、新课讲解:

我们可以发现,刚才因式分解的过程中我们是逆用平方差公式的方法,像这样逆用乘法公式将一个多项式分解因式的过程叫做公式法分解因式。今天我们主要学习使用平方差公式进行因式分解。

平方差公式反过来可得:a2-b2=(a+b)(a-b)

这个公式叫做因式分解中的平方差公式。

学生思考:1、当一个多项式具有什么特点时可用平方差公式因式分解?
(小组讨论,教师深入小组,倾听学生的交流后,引导学生从项数、次数、符号等方面观察归纳出多项式的特点:多项式为两项;两项符号相反;两项都可以写成平方的形式。)
【设计意图】让学生充分经历观察、类比、归纳、概括的过程,探究出将乘法公式逆用就能解决问题,再来归纳出分解因式的平方差公式.
2、文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的积。
【设计意图】锻炼学生的文字概括及语言表达能力.加强对公式本质的理解.
练习Ⅰ:

1)填空:

(1)a6=()2;(2)9x2=()2;(3)m8n10=()2;

(4)x4=()2(5)0.25a2n=()2;(6)x4-0.81=()2-()2

【设计意图】使学生学会把一个代数式写成()2形式的平方数,为平方差公式因式分解的应用变形做铺垫。

2)下列多项式哪些可以用平方差公式分解因式?

(1)a2+4b2;(2)4a2-b2;(3)a2-(-b)2;

(4)–4+a2;(5)–4-a2;(6)x2-9;

3)分解因式:(1)a2-16(2)64-b2

(3)1-25a2;(4)-9x2+y2;

(5)a2b2-c2;(6)x4-y2.

【设计意图】通过2)和3)练习,进一步使学生理解平方差公式因式分解时多项式的特点,并学会熟练掌握应用平方差公式进行分解因式的规范书写格式,从而达到培养学生符号运用能力,使学生养成勤于观察和规范书写的习惯,体现本节课的重点。
利用ppt课件展示a2-b2=(a+b)(a-b)公式中a和b可以表示数、单项式、多项式,教师引导学生进行当场编题训练使学生进一步对平方差公式分解因式有更全面的理解。
a2-b2=(a+b)(a–b)
教师展示(1)a=2006,b=2005
(2)a=2mn,b=xy
(3)a=x+z,b=y+p
利用以上三组数引导学生进行对比得出公式中的a和b可以表示“数、单项式、多项式”,并让学生分解所编的题达到渗透换元的数学思想方法。
例1:把下列各式分解因式:

(1)16a2-9b2

(2)(x+p)2-(x+q)2

(3)9(a+b)2-4(a-b)2

在使用平方差公式分解因式时,要注意:先把要计算的式子与平方差公式对照,明确哪个相当于a,哪个相当于b.

练一练:把下列各式分解因式:

(1)x2-1/16Y2(2)0.25m2n2–1

(3)(2a+b)2-(a+2b)2(4)25(x+y)2-16(x-y)2

【设计意图】进一步加深对公式本质的认识,体会整体的数学思想并用换元的方法将问题转化为公式的基本形式加以解决.
例2:把下列各式分解因式:

(1)4x3-xy2(2)4x3-4x(3)x4-y4

引导学生经历探究、猜想和验证,直至解决问题的过程.归纳出因式分解的步骤“一提二套”的方法,再一次加深对多种方法(提公因式法、平方差公式)分解因式的综合运用,以及分解要彻底地思想.
练一练:把下列各式分解因式:
1)a教学设计《平方差公式法因式分解》b-ab2)12x教学设计《平方差公式法因式分解》-3y教学设计《平方差公式法因式分解》
【设计意图】使学生体验发现问题,解决问题的猜想和验证,直至解决问题的过程.从中体验成功地感受,再一次加深对多种方法(提公因式法、平方差公式)分解因式的综合运用以及分解因式应进行到每一个多项式因式不能再分解为止的原则。
【小结】

1、本节课我们主要学习了运用平方差公式进行因式分解,利用平方差公式时主要先判断能否使用平方差公式进行因式分解,判断的依据:

1)是一个二项式(或可看成一个二项式)

2)每项可写成平方的形式

3)两项的符号相反

2、在综合运用多种方法分解因式时,多项式中有公因式的先提取公因式,再用平方差公式分解因式。

3、分解因式,应进行到每一个多项式因式不能再分解为止。

【布置作业】

1、课本习题4.4.1、3—82、1-6

2、课后思考:

观察下列各式:1–9=-8,4-16=-12,9-25=-16,16-36=-20

······(1)把以上各式所含的规律用含n(n为正整数)的等式表示出来。(2)按照(1)中的规律,请写出第10个等式。

精选阅读

2017年八年级数学上14.3.2公式法第1课时运用平方差公式因式分解学案


14.3.2公式法
第1课时运用平方差公式因式分解
1.能直接利用平方差公式因式分解.
2.掌握利用平方差公式因式分解的步骤.
阅读教材P116“思考及例3、例4”,完成预习内容.
知识探究
1.(1)填空:4a2=(________)2;49b2=(________)2;
0.16a4=(________)2;a2b2=(________)2.
(2)因式分解:2a2-4a=________;
(x+y)2-3(x+y)=________.
2.(1)填空:
(x+2)(x-2)=________;
(y+5)(y-5)=________.
(2)根据上述等式填空:
x2-4=________;
y2-25=________.
(3)总结公式:a2-b2=________,
即两个数的________,等于这两个数的________与这两个数的________的______.
自学反馈
(1)下列多项式能否用平方差公式来分解因式?为什么?
①x2+y2;②x2-y2;③-x2+y2;④-x2-y2.
判断是否符合平方差公式结构.
(2)分解因式:①a2-125b2;②9a2-4b2;③-a4+16.
活动1小组讨论
例1分解因式:
(1)x2y-4y;(2)(a+1)2-1;(3)x4-1;
(4)-2(x-y)2+32;(5)(x+y+z)2-(x-y+z)2.
解:(1)原式=y(x2-4)=y(x+2)(x-2).
(2)原式=(a+1+1)(a+1-1)=a(a+2).
(3)原式=(x2+1)(x2-1)=(x2+1)(x+1)(x-1).
(4)原式=-2[(x-y)2-16]=-2(x-y+4)(x-y-4).
(5)原式=[(x+y+z)+(x-y+z)][(x+y+z)-(x-y+z)]
=(x+y+z+x-y+z)(x+y+z-x+y-z)
=2y(2x+2z)=4y(x+z).
有公因式的先提公因式,然后再运用平方差公式;一直要分解到不能分解为止.
例2求证:当n是正整数时,两个连续奇数的平方差一定是8的倍数.
证明:依题意,得
(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.
∵8n是8的n倍,
∴当n是正整数时,两个连续奇数的平方差一定是8的倍数.
先用含n的代数式表示出两个连续奇数,列出式子后分解因式.
例3已知x-y=2,x2-y2=6,求x,y的值.
解:依题意,得
(x+y)(x-y)=6.∴x+y=3.
∴x-y=2,x+y=3.∴x=52,y=12.
先将x2-y2分解因式后求出x+y的值,再与x-y组成方程组求x,y的值.
活动2跟踪训练
1.因式分解:
(1)-1+0.09x2;(2)x2(x-y)+y2(y-x);
(3)a5-a;(4)(a+2b)2-4(a-b)2.
2.计算:
1-1221-1321-142…1-1201721-120182.
先分解因式后计算出来,再约分.
活动3课堂小结
1.分解因式的步骤:先排列,首系数不为负;然后提取公因式;再运用公式分解,最后检查各因式是否能再分解.
2.不能直接用平方差公式分解的,应考虑能否通过变形,创造应用平方差公式的条件.
【预习导学】
知识探究
1.(1)±2a±23b±0.4a2±ab(2)2a(a-2)
(x+y)(x+y-3)2.(1)x2-4y2-25(2)(x+2)(x-2)(y+5)(y-5)(3)(a+b)(a-b)平方差和差积
自学反馈
(1)①不能,不符合平方差公式;②能,符合平方差公式;③能,符合平方差公式;④不能,不符合平方差公式;(2)①(a+15b)(a-15b);②(3a+2b)(3a-2b);③(4+a2)(2+a)(2-a).
【合作探究】
活动2跟踪训练
1.(1)(0.3x-1)(0.3x+1).(2)(x+y)(x-y)2.
(3)a(a2+1)(a+1)(a-1).(4)3a(4b-a).2.20194036.

利用平方差公式分解因式导学案


每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。是时候对自己教案课件工作做个新的规划了,才能更好的在接下来的工作轻装上阵!适合教案课件的范文有多少呢?以下是小编收集整理的“利用平方差公式分解因式导学案”,欢迎您阅读和收藏,并分享给身边的朋友!

章节与课题§9.6.1利用平方差公式分解因式课时安排2课时
使用人使用日期或周次
本课时
学习目标
或学习任务1、了解运用公式来分解因式的意义.
2、理解平方差公式的意义,弄清平方差公式的形式和特点,知道把乘法公式反过来就可以得到相应的因式分解.
3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次).
本课时
重点难点
或学习建议教学重点:运用平方差公式分解因式.
教学难点:灵活运用平方差公式分解因式.
本课时
教学资源
的使用电脑、投影仪.
学习过程学习要求
或学法指导教师
二次备课栏
自学准备与知识导学:
1、情景设置:
问题1:你能很快知道是100的倍数吗?你是怎么想出来的?

问题2:从上面=容易看出,这种方法利用了我们刚学过的哪一个乘法公式?
2、计算下列各式:
⑴=___________________
⑵=___________________
⑶=___________________
下面请你根据上面的等式填空:
⑴=___________________
⑵=___________________
⑶=___________________
问题:对比以上两题,你有什么发现?
3、把乘法公式=反过来就得到__________________,这个等式就是因式分解中的平方差公式.它有什么特征?
4、完成课本P72做一做.

等式的左边是两数的平方差,右边是这两个数的和与这两个数的差的积,利用它可以把形式是平方差的多项式分解因式.
学习交流与问题研讨:
1、例题一(准备好,跟着老师一起做!)
把下列各式分解因式:⑴⑵⑶

5、例题二(有困难,大家一起讨论吧!)
如图,求圆环形绿化区的面积.
分析:与公式比较,哪个相当于公式中的,哪个相当于公式中的.
分析:本题主要用环形面积来计算,运用平方差公式计算.
圆的面积=π×(半径)2.

练习检测与拓展延伸:
1、巩固练习
⑴课本P73练一练1、2.
⑵填空:____=,=____________,
利用因式分解计算:=____________________________.
⑶下列多项式中能用平方差公式分解因式的是()
A.B.C.D.
⑷把下列各式分解因式:
①②③

2、提升训练
①分解因式:

②探究与训练P506、7.
3、当堂测试
补充习题P411、2、3、5、6.

分析:与公式比较,哪个相当于公式中的,哪个相当于公式中的.
课后反思或经验总结:
1、通过比较简单的乘法运算推导出平方差公式,引导学生弄清平方差公式的形式和特点,让学生在做题中感受,理解平方差公式的意义,使学生通过运算,掌握运用平方差公式分解因式的方法,并能正确运用平方差公式把多项式分解因式.

七年级数学下册《用平方差公式分解因式》导学案1


七年级数学下册《用平方差公式分解因式》导学案1

3.3公式法
第1课时用平方差公式分解因式
教学目标
经历用平方差公式因式分解的探索过程;
会用平方差公式对多项式进行因式分解;
经历探索运用平方差公式分解因式的过程,体会逆向思维的作用,渗透化归思想.
体会从正、反两个方向认识和研究事物的方法。
重点难点
重点
能灵活运用平方差公式进行因式分解。
难点
对平方差公式特点的理解和把握。
教学过程
一、复习回顾
1.什么特点的多项式可以用提公因式法进行因式分解?
2.如果一个多项式的各项没有公因式,是否就不能因式分解了呢?
通过讨论,感受到还需要寻找其它方法
3.观察乘法公式:
大家判断一下,把这个式子反过来,从右边到左边地使用,是否是因式分解?
学生观察、讨论:反过来就是
根据因式分解的定义,这是因式分解。
教师总结:把乘法公式从右到左地使用,就可以把某些形式的多项式进行因式分解,这种因式分解的方法叫做公式法。
什么形式的多项式可以用平方差公式进行因式分解?怎样分解呢?
二、公式探究
1.请大家观察公式左边的式子,找出它的特点。
学生讨论交流,并用数学语言叙述:是一个二项式,每一项都可以化成整式的平方,整体看是两个整式的平方差。体会式子中的字母可以是单项式,也可以是多项式。
2.师生共同归纳:如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式因式分解,分解成两个整式的和与这两个整式的差的积。
3.把下列多项式因式分解:
(1);(2);(3);(3)
学生口答,教师给予肯定或点拨。
三、典例剖析
例1把下列多项式因式分解.
(1);(2)
教师引导学生将每个多项式化成两个单项式的平方差,利用平方差公式因式分解,板书分解过程.
注意,因式分解要进行到不能分解为止。
专项训练:
填空:
(1);(2);(3);(4)
例2把因式分解.
教师引导学生观察多项式的特点,是否是两个整式的平方差,体会两个多项式的平方差也可以用公式来分解。教师板书解答过程,强调步骤清晰、运算仔细。
例3把因式分解.
教师引导学生观察多项式的特点,虽不能直接转化成两项的平方差,但两项有公因式,可以先提取公因式,再用公式。
教师板书解答过程后,引导学生归纳分解因式的一般步骤:(1)若有公因式先提公因式(2)转化成两数的平方差形式(3)用公式法进行因式分解。
四、课堂练习
基础训练:
1.把下列多项式因式分解:
(1);(2);(3);
(4);(5);(6);(7)
学生独立完成练习,练习的过程中注意模仿教师的解答过程。然后以小组为单位讨论交流,并派代表阐述自己的心得体会,其他同学做补充。
提高训练
2.用简便方法计算:
(1);(2)
3.手表表盘的外圆直径D=3.2cm,内圆直径d=2.8cm,在外圆与内圆之间涂有防水材料。试求涂上防水材料的圆环的面积(结果保留)。怎样计算较简便?
五、小结
对本节课学习过程中的收获进行总结:(1)因式分解的两种方法;(2)平方差公式的特点;(3)化归的思想方法。
先让学生总结归纳,再共同概括,教师点明注意问题。
六、布置作业
教材P66第1题,P67第3,6题.

文章来源:http://m.jab88.com/j/51665.html

更多

最新更新

更多