88教案网

平行线之间的距离学案(浙教版)

一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?为满足您的需求,小编特地编辑了“平行线之间的距离学案(浙教版)”,供大家参考,希望能帮助到有需要的朋友。

1.4平行线之间的距离

审核:八年级数学备课组

学习目标

1、经历“两条平行线中,一条直线上的点到另一条直线的距离处处相等”这一性质的发现过程。

2、体验平行线之间的距离的意义。

3、会度量两条平行线之间的距离。

重点和难点

重点:本节教学的重点是平行线之间的距离的意义。

难点:本节的范例设计图形的平移变换的有关概念,学生认识平移距离和平行线之间的距离的关系,有一定的困难,是本节教学的难点。

预习案

1、回顾与思考:

(1)两点之间的距离是:

(2)点到直线之间的距离是:

2、合作学习:请任意画两条互相平行的直线a,b.

(1)在直线a上,任意取两点A、B,如下图,分别作AC⊥b于点C,BD⊥b于点D.量出线段AC,BD的长,你得到什么结果?

(2)如下图,把一把三角尺的一条直角边沿着直线b移动,观察

三角尺的另一条直角边与直线a交点处的刻度,刻度改变吗?

通过上述实验,你发现了什么?

新课学习

自学抽检:

一般地,我们得到下面的结论:两条平行线中,一条直线上的点到另一条直线上的距离处处相等。这个距离(垂线段的长度)就叫做这两条平行线之间的距离。

1、重点练习:

(1)如图a∥b,AB⊥a于A,CD⊥b于C,

①点B与点D的距离是指线段的长;

②点D到直线b的距离是指

③两平行线a,b的距离是或;

④线段AB的长可指的距离.

(2)如图,直线a∥b,请量出这两条平行线之间的距离。

分析:从概念可以知道,两条平行线之间的距离,是指一条直线上任意取一点作另一条直线的垂线段,垂线段的长就是它们的距离,实质是点到直线的距离。

(3)根据有关规定,两条平行的10千伏高压电线之间的距离必须在3米以上。设计图纸上两条10千伏的高压电线如图,这样的设计符合规定吗?为什么?

2.难点辨析:

(1)已知直线l(如图),把这条直线平移,使经平移所得的像与

直线l的距离为1.5cm。求作直线l平移后所得的像。

(2)如图,把直线a沿箭头方向平移1.5cm,得直线b。

这两条直线之间的距离是1.5cm吗?请说明理由。

3、当堂练习:

(1)已知直线l如图,求作一条直线m,使l与m的距离为1.6cm(只需作一条,要求写出作法)。

(2)如图,AB∥CD,AD∥BC。请过点B作AB与CD之间的垂线段,并量出AD与BC之间的距离。

相关知识

平行线的判定导学案


课题:7.3平行线的判定
班级:八年级姓名:时间:制单人:李亚明
学习目标:1、掌握直线平行的条件,并会进行简单的应用。
2、领悟归纳和转化的数学思想方法。
学习重点:运用平行线的判定方法判断两直线平行
学习难点:运用平行线的判定方法进行简单的推理。
一、复习回顾:
1、证明几何命题的步骤是什么呢?

2、两条直线被第三条直线所截,如果同位角相等,那么这两条直线______。(简记为:同位角相等,两直线________。)
二、探索新知:
(1)平行线判定定理一证明:
平行线的判定定理一:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。(简记为:内错角相等,两直线平行。
1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。
已知:
求证:
证明:
(2)平行线判定定理二证明:
平行线判定定理二:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(简记为:同旁内角互补,两直线平行。)
1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。

已知:
求证:
证明:
三、应用新知:
1、如图,填空:
(1)∠A与_________互补,
则AB∥_______()
(2)∠A与_________互补,
则AD∥_______()
2、如图:∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:
∵∠BAD+∠CDA=180°(已知)
∴_____∥_____(,)
∵∠5=∠CDA(已知),∠5+∠BCD=180°(),
∠CDA+∠______=180°()
∴∠BCD=∠6()
∴_____∥_____(,)
3、已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()
∠2=∠3()
∴∠1+∠3=180°()
∴_____∥_____(,)
四、课堂练习:
1、请你说说用直尺和平移三角尺画出两条直线平行的理由。

2、已知:如图,a⊥c,b⊥c。求证:a∥b。(用不同方法证明)
ab

c
自我评价:小组评价:教师评价:
对自己想说的一句话是:________________________________________________________

平行线的特征


教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“平行线的特征”,相信能对大家有所帮助。

平行线的特征
[教学目标]:
1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。
[教材分析]:
教材设置了一个通过测量探索平行线特征的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线的性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。
[教学重点]
平行线的特征的探索
[教学难点]
运用平行线的特征进行有条理的分析、表达
[设计理念]
为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。
[教学过程]
一、巩固旧知,问题引入。
巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论
在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。
二、实验验证,探索特征。
1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)
2、学生实验(发印好平行线的纸单)
(1)已知,a//b,任意画一条直线c与平行线a、b相交。
(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系
(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)

3、实验结论:
两条平行线被第三条直线所截,同位角相等。
简记为“两直线平行,同位角相等”
识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?
4、问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢
如图,已知直线a//b,思考∠1与∠2、∠2与∠3之间有什么关系?为什么?

(小组讨论,给予充足的时间交流,可引导学生
与同位角进行比较,从而得出结论,关注学生在
此能否积极地、有条理地思考)

结论:“两直线平行,内错角相等”
“两直线平行,同旁内角互补”
(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)
5、归纳平行线的三个性质及三个判定
三个性质:

三个判定:
三、例题学习,实践运用。
(一)找找看:
如图所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角。

(学生可通过讨论交流找到所有的答案,并标注在图中)
(二)做一做:
如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。
(1)AB∥CD→∠1=∠3→∠2=∠4
(2)∠2=∠4→BC∥EF
(三)考考你:
如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°。已知梯形的两底AD//BC,请你求出另外两个角的度数。

(学生尝试用自己的方式书写说理过程)
(四)填空:
已知:如图,∠ADE=60°,∠B=60°,∠C=80°。
问∠AED等于多少度?为什么
∵∠ADE=∠B=60°(已知)
∴DE//BC()
∴∠AED=∠C=80°()
(通过填空题,检验学生对平行线的判定与性质的区分)
四、课堂小结:
1、说说平行线的三个性质是什么?
2、平行线的性质与平行线的判定的区别:
判定:角的关系平行关系
性质:平行关系角的关系
3、证平行,用判定;知平行,用性质。
五、课后作业:
教材62页1、2、3题

《平行线的性质》


《平行线的性质》

《平行线的性质》教案天津市第五十四中学王振红
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:平行线的性质。
教学难点:平行线的性质定理与判定定理的区别。
教学模式:发现教学模式。
教学方法:直观教学法、发现教学法、主体互动法。
教学手段:计算机辅助教学。
教学过程:
教学环节
教师活动
学生活动
教学意图
复习提问
复习提问:判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课
【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
【提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
【大屏幕】平行线的性质:定理1.两条平行线被第三条直线所截,同位角相等。简言之:两直线平行,同位角相等。
定理2.两条平行线被第三条直线所截,内错角相等。简言之:两直线平行,内错角相等。
定理3.两条平行线被第三条直线所截,同旁内角互补。简言之:两直线平行,同旁内角互补。
【提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆
思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题”与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
【大屏幕】符号语言:(不唯一)
性质定理1.∵l1∥l2∴∠1=∠5(两直线平行,同位角相等)
性质定理1.∵l1∥l2∴∠3=∠5(两直线平行,内错角相等)
性质定理1.∵l1∥l2
∴∠3+∠6=180o(两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
【大屏幕】规范定理的推导过程。
思考、尝试回答
观察
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示范
【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习
【大屏幕】(见附录2)
思考、讨论、解释结论
寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习
【大屏幕】巩固练习(见附录3)
积极思考、展开讨论、踊跃回答
循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路
【大屏幕】探究题(见附录4)
【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂
小结
【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳
将本节课知识进行回顾。
布置
作业
【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。

文章来源:http://m.jab88.com/j/90052.html

更多

最新更新

更多