第十讲全等三角形
全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.
利用全等三角形证明问题,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下两类基本图形:
例题求解
【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是(把你认为所有正确结论的序号填上).(广州市中考题)
思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等.
注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.
实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.
【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是()
A.1AB9B.3AB13C.5AB13D.9AB13
(连云港市中考题)
思路点拨线段AC、AD、AB不是同一个三角形的三条边,通过中线倍长将分散的条件加以集中.
【例3】如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB
求证:(1)AP=AQ;(2)AP⊥AQ.
(江苏省竞赛题)
思路点拨(1)证明对应的两个三角形全等;(2)在(1)的基础上,证明∠PAQ=90°
【例4】若两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由.
(“五羊杯”竞赛题改编题)
思路点拨运用全等三角形的判定和性质,探讨两角之间的关系,解题的关键是由高的特殊性,分三角形的形状讨论.
注有时图中并没有直接的全等三角形,,需要通过作辅助线构造全等三角形,完成恰当添辅助线的任务,我们的思堆要经历一个观察、联想、构造的过程.
边、角、中线、角平分线、高是三角形的基本元素,从以上诸元素中选取三个条件使之组合可得到关于三角形全等判定的若干命题,其中有真有假,课本中全等三角形的判定方法只涉及边、角两类元素.
【例5】如图,已知四边形纸片ABCD中,AD∥BC,将∠ABC、∠DAB分别对折,如果两条折痕恰好相交于DC上一点E,你能获得哪些结论?
思路点拨折痕前后重合的部分是全等的,从线段关系、角的关系、面积关系等不同方面进行探索,以获得更多的结论.
注例5融操作、观察、猜想、推理于一体,需要一定的综合能力.推理论证既是说明道理,也是探索、发现的逄径.
善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,需要注的是,通常面临以下情况时,我们才考虑构造全等三角形:
(1)给出的图形中没有全等三角形,而证明结论需要全等三角形;
(2)从题设条件无法证明图形中的三角形全等,证明需要另行构造全等三角形.
学力训练
1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC、B′C边上的高,且AB=A′B′,AD=A′D,若使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你
认为适当的条件).(黑龙江省中考题)
2.如图,在△ABD和△ACE中,有下列4个论断:①AB=AC;②AD=AC;③∠B=∠C;④BD=CE,请以其中三个论断作为条件,余下一个论断作为结论,写出一个真命题(用序号○○○→○的形式写出).(海南省中考题)
3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.
4.如图,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,则∠DOE的度数是.
5.如图,已知OA=OB,OC=OD,下列结论中:①∠A=∠B;(②DE=CE;③连OE,则OE平分∠O,正确的是()
A.①②B.②③C.①③D.①②③
6.如图,A在DE上,F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于()
A.DCB.BCC.ABD.AE+AC(2003年武汉市选拔赛试题)
7.如图,AE∥CD,AC∥DB,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有()对
A.5B.6C.7D.8
8.如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C′,A′B′交AC于点D,已知∠A′DC=90°,求∠A的度数.(贵州省中考题)
9.如图,在△ABE和△ACD中,给出以下4个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中3个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个真命题,并写出证明过程.
已知:
求证:
(荆州市中考题)
10.如图,已知∠1=∠2,EF⊥AD于P,交BC延长线于M,
求证:∠M=(∠ACB-∠B).(天津市竞赛题)
11.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=.
12.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED.
(河南省竞赛题)
13.如图,D是△ABC的边AB上一点,DF交AC于点F,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.
(武汉市选拔赛试题)
14.如图,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=.
15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)大小关系是()
A.m+nb+cB.m+nb+cC.m+n=b+cD.不能确定
16.如图,在四边形ABCD中,对角线AC平分∠BAD,ABAD,下列结论中正确的是()A.AB-ADCB-CDB.AB-AD=CB—CD
C.AB—ADCB—CDD.AB-AD与CB—CD的大小关系不确定.
(江苏省竞赛题)
17.考查下列命题()
(1)全等三角形的对应边上的中线、高、角平分线对应相等;
(2)两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;
(3)两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;
(4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.
其中正确命题的个数有()
A.4个B.3个C.2个D.1个
18.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度数.(上海市竞赛题)
19.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.
20.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDC的面积.
(江苏省竞赛题)
21.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AF+CD.
(武汉市选拔赛试题)
22.(1)已知△ABC和△A′B′C′中,AB=A′B′,BC=B′C′,∠BAC=∠B′A′C′=100°,求证:△ABC≌△A′B′C′;
(2)上问中,若将条件改为AB=A′B′,BC=B′C′,∠BAC=∠∠B′A′C′=70°,
结论是否成立?为什么?
每个老师为了上好课需要写教案课件,大家应该开始写教案课件了。教案课件工作计划写好了之后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“三角形的边”,大家不妨来参考。希望您能喜欢!
7.1.1三角形的边一、课题:7.2.2三角形的外角
二、学习目标:
㈠知识与技能:1.理解三角形的外角的定义;
2.掌握三角形的内角和外角的关系。
㈡过程与方法:1.通过剪、拼的方法猜想归纳出“三角形一个外角等于与它不相邻的两个内角的和。”,然后再证明这个结论,使学生体会到从实验猜想归纳证明得出结论的科学探究方法。
2.在学生操作、观察、思考和交流和过程中,丰富学生的生活,激发学生进一步探索知识的热情。
㈢情感、态度与价值观:通过动手操作,使学生在学习活动中学会合作,培养其相互协作意识及数学表达能力,体验探索、交流与成功。
三、教学重难点:1.重点:三角形的内角与外角的关系。
2.难点:外角定理的论证过程。
四、课时:第二课时课型:新授课。
五、教学准备:多媒体课件、三角形纸板、剪纸刀。
六、教学过程:
㈠、创设情景,导入新课
每天清晨,小明同学都到市民广场去跑步,市民广场是一个三角形形状的广场,小明每天沿着这个广场边缘的小路,按逆时针方向跑步(如图),小明每从一条街道转到下一条街道时,身体转过的角是哪些角?
㈡、观察归纳,学习新知
活动一:
1.做一做:画△ABC把它的BC边延长,得到∠ACD。
2.观察:
∠ACD的特征:①∠ACD的顶点是;
②一边AC是;
③另一边CD是。
3.归纳定义:
三角形的外角:三角形一边与另一边的延长线组成的角。
4.思考:
以某三角形的一个顶点为顶点的外角有个,它们互为;因此,一个三角形有个外角。
㈢、合作交流,解读探究
活动二:
探索三角形的外角与内角的关系
问题1:∠ACD与它相邻的内角∠ACB是什么关系?
问题2:在△ABC中,∠A=70°,∠B=60°,你能求出∠ACD吗?
问题3:在△ABC中,∠ACD与∠A与∠B是什么关系呢?
A
B
C
D
活动三:
在△ABC中,∠ACD是一个外角,为什么∠ACD=∠A+∠B?
方法一:(利用三角形内角和定理)
∵∠ACB+∠A+∠B=180°(三角形的内角和为180°)
∠ACB+∠ACD=180°(邻补角定义)
∴∠ACD=∠A+∠B(等量代换)
方法二:(利用平行线)
过C作CE∥AB
则∠1=∠A(两直线平行,内错角相等)
∠2=∠B(两直线平行,同位角相等)
∴∠ACD=∠1+∠2=∠A+∠B(等量代换)
活动四:
比较∠ACD与∠A、∠B的大小。
A
B
C
D
活动五:归纳三角形外角的性质:
1.三角形的一个外角与它相邻的内角互补;
2.三角形的一个外角等于与它不相邻的两个内角的和;
3.三角形的一个外角大于与它不相邻的任何一个内角。
活动六:巩固练习
课本P81练习;
㈣课时小结
本节课你学到了哪些知识?
1.三角形外角的定义。
2.三角形外角的性质。
㈤、课后作业
活动七:
必做题:P82~83习题7.2中第5、6、8三题;
选做题:P83习题7.2中第9题。
七、板书设计:
7.2.2三角形的外角
一、三角形外角的概念
二、探究三角形的外角与不相邻的内角间的关系
(投影区)
八、教学反思:
文章来源:http://m.jab88.com/j/50134.html
更多