每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《课题:3.4.3角的比较与运算(3)》,欢迎大家阅读,希望对大家有所帮助。
课题:3.4.3角的比较与运算(3)教学目标
1、理解方位角的意义,掌握方位角的判别与应用.
2、通过现实情境,充分利用学生的生活经验去体会方位角的意义.
3、帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣.
教学重点
方位角的判别与应用既是重点,也是难点。
知识难点
教学准备
量角器、三角尺、船的纸片数张
教学过程(师生活动)
设计理念
提出问题
海上,缉私艇发现离它500海里处停着一艘可疑船
只(如图),立即赶往检查.现请你确定缉私艇的航线,画出示意图.
A·可疑船
B·缉私艇
先分组讨论,再由各组代表上台在黑板上展示并描
述本组讨论的路线图.
创设问题情境,使学生从中发现数学,建立模型,引发思考。
探究新知
在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位.
让学生回忆学过的描述方法,师生共同探讨解决问题的办法.
不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律.
方位的表示通常用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示.“北偏东45度”、“北偏西45度"、“南偏东45度”、“南偏西45度”,分别称为“东北方向”、“西北方向”,“东南方向”、“西南方向”。
让学生阐述各种解决方法的思维过程,旨在使学生在数学活动中获得经验的同时,体验从复杂的情境中分离并抽象出数学模型,并主动从数学角度运用所学知识寻求解决问
题的策略.
巩固新知
出示教科书138页例2,由学生独立完成.
说明:用量角器画射线要注意两点:一是先从正南或正北方向作角的始边,二要分清东南西北,理解偏东、偏西的意义。
通过本例练习,让学生在巩固已学知识的同时,加深对方位角的理解。
解决问题
灯塔A在灯塔B的南偏西,A、B两灯塔相距20海里现有一艘轮船C在灯塔B的正北方向、灯塔A的北偏东方向。试画图确定轮船的位置(每10海里用1厘米长的线段)
感受所学新知识的用途
总结归纳
引导学生讨论本节课所学知识以及需要注意的问题
布置作业
1、必做题:教科书第140页习题3.4第7题。
2、选做题:第140页习题3.4第9题。
3、备选题:
(1)电视塔在学校的东北方向,那么,学校在电视塔的方向.
(2)已知点O在点A的南偏东方向,那么,点A应在点O的()
A.南偏东方向;B.北偏东方向;
C.北偏西方向;D.北偏西方向.
(3)图中A,B,C三点分别代表邮局、商店和学校.邮局和商店分别在学校的北偏西方向,邮局又在商店的北偏东方向.那么,图中A点应该是,B点应该是,C点应该是
4、学校、公园和商店在平面图上的标点分别是A、B、C三点.若公园在学校的南偏西,商店在学校的北偏东,请画出图形,并求∠BAC
启发学生动脑思考,归纳,总结所学知识,从而培养学生简明的语言概括能力和准确的语言表达能力。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课的设计体现从具体的问题情境中抽象出数学问题,建立数学模型,获得合理
解答的学习过程.教学中力求体现“问题情境—建立数学模型—解释、应用与拓展”的模式,选择有现实意义的,对学生具有一定挑战性的内容,使学生在自己探索和交流的
过程中获得知识与技能并产生积极的情感体验.本课以数学活动为主线的设计,旨在使
学生既要掌握方位角的知识,更要丰富和发展自己的数学活动经历与体验.同时促使学
生在学习中培养良好的情感、态度以及主动参与合作交流的意识,进一步提高观察、分
析、概括和抽象等能力.教学中,要利用图片可以活动的特点,通过不断地改变可疑船只的位置,既可让学生描述不同方向的物体的方位,又可增强数学学习的趣味性.为学生营造一个自主学习、主动发展的广阔空间,让他们能够快乐、轻松地学习,从而成为学习的主人.
一般给学生们上课之前,老师就早早地准备好了教案课件,大家在用心的考虑自己的教案课件。只有写好教案课件计划,才能促进我们的工作进一步发展!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“角的比较和运算”,但愿对您的学习工作带来帮助。
年级:七年级主备人:班级
姓名
学号
组号
课题
4.3.2角的比较和运算⑵
课型
习题
备课时间
2009.12.13
学习目标
1.掌握角之间的和差关系,并能进行简单的计算
2.学会用方程解决几何问题
重点难点
利用角之间的和差关系进行简单的计算
教学程序
学习中的困惑
一.前置性学习
一、度分秒的互化
1、⑴57.32°=度分秒,⑵17°6′36″=度。
⑶14°25′12″=度。⑷28°39′+61°35′=___________;
⑸54°23′-36°31′=____________⑹=___________
2、把一个周角7等分,每一份是多少度的角?(精确到分)
二、角之间的和差关系
3、如图⑴,∠AOB______∠AOC,∠AOB_______∠BOC(填,=,);
4、如上图⑵,∠AOC=______+______=______-______;∠BOC=______-_____=_____-_______.
5、如上图⑵,如果∠AOB=∠COD,那么图中相等的两角是:∠_______=∠________.
三、角平分线
5、如图:OC是AOB的平分线,OD是BOC的平分线,那么下列各式中正确的是:()
6、如图,OC是平角∠AOB的角平分线,∠COD=32°,
求∠AOD的度数。
二.范例分析
1、如图,OB是AOC的平分线,,OD是COE的平分线,
(1)如果AOC=80°,那么BOC是多少度?
(2)如果AOB=40°,DOE=30°,那么BOD是多少度?
(3)如果AOE=140°,COD=30°,那么AOB是多少度?
2、如图,BD平分∠ABC,BE分∠ABC分2:5两部分,∠ABC=140°,求∠DBE的度数.
三.学后反思
1.你学会的(知识、方法)有:
2.注意点有
四.自我检测
订正
1、如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=___.
2、如图,∠BAD=_______+________;∠CAE=_______+________
如果∠BAD=∠COE,那么图中有相等的两角是:∠_______=∠________.
3、已知∠AOB=38°,∠BOC=25°,那么∠AOC的度数是_______4、如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,求∠AOC的度数?
°,∠AOC=∠BOD=90°,求∠COD的度数
书写等级______
得分______
为了促进学生掌握上课知识点,老师需要提前准备教案,大家正在计划自己的教案课件了。只有规划好教案课件计划,这样我们接下来的工作才会更加好!有哪些好的范文适合教案课件的?急您所急,小编为朋友们了收集和编辑了“角的比较导学案”,欢迎大家阅读,希望对大家有所帮助。
洪绪镇中心中学1:3课堂教学评价式模式导学案
4.4角的比较
导学目标
1.在现实情境中,进一步丰富锐角、钝角、直角及大小的认识;
2.学会比较角的大小,能估计一个角的大小;
3.在操作活动中认识角平分线,能画出一个角的平分线。
4.认识度、分、秒,并会进行简单的换算。
导学重点:角的大小的比较方法
导学难点:从图形中观察角的和、差关系。
温故:方向角问题
链接:看P148/图4-15并回答提出的问题
新知:
1、角的大小的比较方法:测量法、叠合法
结合课本P148思考如何用叠合法比较∠AOB、∠DOB的大小
2、角的分类
3、看P148/图4-15,请同学们猜想一下刚才图中得到的角,它们分别属于什么角?你能比较出这些角的大小吗?
4、例题讲解:P148/例1根据图4-16,求解下列问题:
(1)比较∠AOB、∠AOC、∠AOD、∠AOE的大小,并指出其中的锐角、直角、钝角、平角;
(2)写出∠AOB、∠AOC、∠BOC、∠AOE中某些角之间的两个等量关系。
5、下面请大家各自在纸上任意画一个∠BOA,再完成书上的做一做。
你们发现了什么?
像刚才这条折痕,它是由角的顶点出发,把原来的角分成两个相等的角。那么这条射线叫做这个角的角平分线。(板书定义)
对这个定义的理解要注意以下几点:
1.角平分线是一条射线,不是一条直线,也不是一条线段.它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.
2.当一个角有角平分线时,可以产生几个数学表达式.可写成
因为OC是∠AOB的角平分线,
所以∠AOB=2∠AOC=2∠COB,(1)
∠AOC=∠COB,(2)
反过来,
因为∠AOB=2∠AOC=2∠COB或∠AOC=∠COB,
所以OC为∠AOB的角平分线.
问:你们能用量角器画出一个角的角平分线吗?
6、度、分、秒的换算
观察课本P149页图4-18中的量角器,并讨论下列问题:
(1)量角器上的平角被分成多少个1°的角?
(2)先估计下图中,∠A和∠B的度数,再用量角器量一量,在测量中,你遇到哪些问题?
在测量角时,有时以度为单位还不够,我们需要用比1°更小的单位,称之为分和秒,把1°的角等分成60份,每一份是1分,记做1,把1分的角再等分成60份,每份就是1秒,记做1,即1°=601=()°1周角=360°1=601=()1平角=180°
7、例1:(1)1.450等于多少分?等于多少秒?
(2)1800〃等于多少分?等于多少度?
例2:(补充)(1)用度、分、秒表示:48.32°(2)用度表示:30°936
例3:(补充)计算:180°-(45°17+52°57)
8、做一做:
(1)(观看课本P148页的图4-16)根据图形填空:
①∠DOB=∠DOC+
②∠BOC=∠DOB-=∠COA-
③∠DOB+∠AOB-∠AOC=
9、探究活动:利用一副三角板,你能画出哪些度数的角?
拓展:
一、填空题
1、如图2,∠AOC=∠COD=∠BOD,则OD平分____,
OC平分______,∠AOB=______=______.
2、把一根小棒OC一端钉在点O,旋转小木棒,使它图1
落在不同的位置上形成不同的角,其中∠AOC为____,
∠AOD为____,∠AOE为____,木棒转到OB时形成
的角为____.(回答钝角、锐角、直角、平角)
3、时间为三点半时,钟表时针和分针所成的角为______,
由2点到7点半,时针转过的角度为______.
4、如图4,∠1=∠2,则∠1+∠3=______.
5、已知五角星的五个顶点在同一圆上,且均分布,
五角星的中心是这个圆的圆心,则圆心与两个
相邻顶点的连线,构成的角度为______.
6、如图5,AOB为一直线,OC、OD、OE是射线,
则图中大于0°小于180°的角有__________个.
7、如果一个角的度数为n,则它的补角为______,
余角为______图5
8、∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α___β.
二、选择题
9、两个锐角的和()
A.一定是锐角B.一定是钝角C.一定是直角D.以上三种情况都有可能
10、互为补角的两个角度比是3∶2,这两个角是()
A.108°,72°B.95°,85°C.108°,80°D.110°,70°
11、下列各角中是钝角的为()
A.周角B.平角C.直角D.直角
12、船的航向从正北按顺时针方向转到东南方向,它转了()
A.135°B.225°C.180°D.90°
14有两个角,它们的比为7∶3,它们的差为72°,则这两个角是()
A.70°、30°B.108°、72°C.相等D.126°、54°
三、解答题
15、四个角的和是180°,其中有三个角相等,且都是第四个角的,求这四个角.
16、如图19,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.
图19图20
17、如图20,已知O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,求∠DOE的度数.
文章来源:http://m.jab88.com/j/41813.html
更多