88教案网

第二章平面向量第1课时2.1向量的概念及表示教案

一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生们有一个良好的课堂环境,减轻教师们在教学时的教学压力。写好一份优质的教案要怎么做呢?以下是小编收集整理的“第二章平面向量第1课时2.1向量的概念及表示教案”,仅供参考,希望能为您提供参考!

第1课时§2.1向量的概念及表示
【教学目标】
一、知识与技能
1.理解向量的概念,掌握向量的二要素(长度、方向),能正确地表示向量;
2.注意向量的特点:可以平行移动(长度、方向确定,起点不确定);
3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念。
二、过程与方法
(1)从对不同问题的思考中感受什么是向量。
(2)通过师生互动、交流与学习,培养学生探求新知识的学习品质.
三、情感、态度与价值观
(1)通过向量包含大小和方向,概念的学习感知数学美。
(2)向量的方向包含正反两方面,正反关系的对照培养学生辨证唯物主义思维
【教学重点难点】:1.向量、相等向量、共线向量等概念;
2.向量的几何表示
【教学过程】
一、问题情境:
问题1、湖面上有3个景点O,A,B,如图所示.一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B,从景点O到景点A有一个位移,从景点A到景点B也有一个位移.位移与距离这两个量有什么不同?

问题2、下列物理量中,那些量分别与位移和距离这两个量类似:
(1)物体在重力作用下发生位移,重力所做的功;
(2)物体所受重力;
(3)物体的质量为a千克;
(4)1月1日的4级偏南风的风速。
问题3、上述的物理量中有什么区别吗?
二、新课讲解:
(一)概念辨析:
(1)向量的定义:

(2)向量的表示:

(3)向量的大小及表示
(4)零向量:

(5)单位向量:

(二)向量的关系:
问题4:在平行四边形ABCD中,向量与,与有什么关系?
(1)平行向量

(2)相等向量jAb88.cOm

(3)相反向量

说明:(1)规定:零向量与任一向量平行,记作;
(2)零向量与零向量相等,记作;
(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。
问题5:1.向量能否平移?

2.要确定一个向量必须确定什么?要确定一个有向线段必须确定什么?两者有何区别?

二、例题分析:
例1、已知O为正六边形ABCDEF的中心,如图,所标出的向量中:
(1)试找出与FE共线的向量;
(2)确定与FE相等的向量;
(3)OA与BC向量相等么?
例2、判断:
(1)平行向量是否一定方向相同?
(2)不相等的向量是否一定不平行?
(3)与零向量相等的向量必定是什么向量?
(4)与任意向量都平行的向量是什么向量?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(6)两个非零向量相等的当且仅当什么?
(7)共线向量一定在同一直线上吗?

例3、如图,在4×5的方格纸中有一个向量AB,分别以图中的格点为起点和终点作向量,其中与AB相等的向量有多少个?与AB长度相等的共线向量有多少个?(AB除外)
课时小结:
(1)向量是既有大小又有方向的量,向量有两个要素:方向和长度,称为自由向量;有向线段具有三个要素:起点,方向和长度;
(2)数量(标量)与向量的区别与联系:向量不同于数量。数量是只有大小的量,而向量是既有大小又有方向的量;数量可以比较大小,而向量不能比较大小,只有它的模可以比较大小;记号“”是没有意义的,而||>||才有意义。

扩展阅读

第二章平面向量第2课时2.2向量的加法教案


第2课时§2.2向量的加法
【教学目标】
一、知识与技能
(1)理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和;
(2)掌握两个向量加法的交换律和结合律,并会用它们进行向量运算
二、过程与方法
从物体位移变化规律的探知中总结出向量加法规律
三、情感、态度与价值观
感受数学和生活的联系,增强学习数学的兴趣
【教学重点难点】::1.如何作两向量的和向量;
2.向量加法定义的理解。
【教学过程】
一、复习:
1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知点是正六边形的中心,则下列向量组中含有相等向量的是()
()、、、()、、、
()、、、()、、、

二、创设情景
利用向量的表示,从景点O到景点A的位移为OA,从景点A到景点B的位移为AB,那么经过这两次位移后游艇的合位移是OB,向量OA,AB,OB三者之间有何关系?
三、讲解新课:
1.向量的加法:求两个向量和的运算叫做向量的加法。表示:
作法:在平面内任取一点(如图(2)),作,,则.

(1)(2)
2.向量加法的法则:
(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。表示:.
(2)平行四边形法则:以同一点为起点的两个已知向量,为邻边作平行四边形ABCD,则以为起点的对角线就是与的和,这种求向量和的方法称为向量加法的平行四边形法则。
3.向量的运算律:
交换律:.
结合律:.
说明:多个向量的加法运算可按照任意的次序与任意的组合进行:
例如:;.
四、例题分析:
例1、如图,一艘船从点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,求船实际航行速度的大小与方向(用与流速间的夹角表示)。

例2、已知矩形中,宽为,长为,,,,
试作出向量,并求出其模的大小。
例3、一架飞机向北飞行千米后,改变航向向东飞行千米,
则飞行的路程为400千米;两次位移的和的方向为北偏东,
大小为千米.

例4、在长江南岸某渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地度过长江,其航向应如何确定?

变式:若渡船以25km/h的速度按垂直于河岸的航向航行,那么受水流影响,渡船的实际航向如何?

例5、已知两个力,的夹角是直角,且知它们的合力与的夹角是,
牛,求和的大小

五、课时小结:
1.理解向量加法的概念及向量加法的几何意义;
2.熟练掌握向量加法的平行四边形法则和三角形法则

第二章平面向量


第二章平面向量
本章内容介绍
向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.
本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.(让学生对整章有个初步的、全面的了解.)

第1课时
§2.1平面向量的实际背景及基本概念
教学目标:
1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:

一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:(可制作成幻灯片)
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;
④向量的大小――长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0.0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是()?
A.a与b共线,b与c共线,则a与c也共线?
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点?
C.向量a与b不共线,则a与b都是非零向量?
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.?
①向量与是共线向量,则A、B、C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结:
1、描述向量的两个指标:模和方向.
2、平行向量不是平面几何中的平行线段的简单类比.
3、向量的图示,要标上箭头和始点、终点.

第二章2.1平面向量的实际背景及基本概念讲义


平面向量的实际背景及基本概念

预习课本P74~76,思考并完成以下问题
(1)向量是如何定义的?向量与数量有什么区别?
(2)怎样表示向量?向量的相关概念有哪些?
(3)两个向量(向量的模)能否比较大小?
(4)如何判断相等向量或共线向量?向量与向量是相等向量吗?
(5)零向量与单位向量有什么特殊性?0与0的含义有什么区别?

[新知初探]
1.向量的概念和表示方法
(1)概念:既有大小,又有方向的量称为向量.
(2)向量的表示:
表示法
几何表示:用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,即用有向线段的起点、终点字母表示,如,…

字母表示:用小写字母a,b,c,…表示,手写时必须加箭头
[点睛]向量可以用有向线段表示,但向量不是有向线段.向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段.
2.向量的长度(或称模)与特殊向量
(1)向量的长度定义:向量的大小叫做向量的长度.
(2)向量的长度表示:向量,a的长度分别记作:||,|a|.
(3)特殊向量:
①长度为0的向量为零向量,记作0;
②长度等于1个单位的向量,叫做单位向量.
[点睛]定义中的零向量和单位向量都是只限制大小,没有确定方向.我们规定零向量的方向是任意的;单位向量有无数个,它们大小相等,但方向不一定相同.
3.向量间的关系
(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a=b.
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.
[点睛]共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量能比较大小.()
(2)向量的模是一个正实数.()
(3)单位向量的模都相等.()
(4)向量与向量是相等向量.()
答案:(1)×(2)×(3)√(4)×
2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.
其中可以看成是向量的个数()
A.1B.2C.3D.4
答案:B
3.已知向量a如图所示,下列说法不正确的是()
A.也可以用表示B.方向是由M指向N
C.始点是MD.终点是M
答案:D
4.如图,四边形ABCD和ABDE都是平行四边形,则与相等的向量有______.
答案:,
向量的有关概念
[典例]有下列说法:①向量和向量长度相等;②方向不同的两个向量一定不平行;③向量是有向线段;④向量0=0,其中正确的序号为________.
[解析]对于①,||=||=AB,故①正确;
对于②,平行向量包括方向相同或相反两种情况,故②错误;
对于③,向量可以用有向线段表示,但不能把二者等同起来,故③错误;
对于④,0是一个向量,而0是一个数量,故④错误.
[答案]①
(1)判断一个量是否为向量应从两个方面入手
①是否有大小;②是否有方向.
(2)理解零向量和单位向量应注意的问题
①零向量的方向是任意的,所有的零向量都相等.
②单位向量不一定相等,易忽略向量的方向.

[活学活用]
有下列说法:
①若向量a与向量b不平行,则a与b方向一定不相同;
②若向量,满足||>||,且与同向,则>;
③若|a|=|b|,则a,b的长度相等且方向相同或相反;
④由于零向量方向不确定,故其不能与任何向量平行.
其中正确说法的个数是()
A.1B.2
C.3D.4
解析:选A对于①,由共线向量的定义,知两向量不平行,方向一定不相同,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,由|a|=|b|,只能说明a,b的长度相等,确定不了它们的方向,故③错误;对于④,因为零向量与任一向量平行,故④错误.
向量的表示

[典例]在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:
①,使||=42,点A在点O北偏东45°;
②,使||=4,点B在点A正东;
③,使||=6,点C在点B北偏东30°.
[解](1)由于点A在点O北偏东45°处,所以在坐标纸上点A距点O的横向小方格数与纵向小方格数相等.又||=42,小方格边长为1,所以点A距点O的横向小方格数与纵向小方格数都为4,于是点A位置可以确定,画出向量如图所示.
(2)由于点B在点A正东方向处,且||=4,所以在坐标纸上点B距点A的横向小方格数为4,纵向小方格数为0,于是点B位置可以确定,画出向量如图所示.
(3)由于点C在点B北偏东30°处,且||=6,依据勾股定理可得:在坐标纸上点C距点B的横向小方格数为3,纵向小方格数为33≈5.2,于是点C位置可以确定,画出向量如图所示.
用有向线段表示向量的方法
用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.
必要时,需依据直角三角形知识求出向量的方向(即夹角)或长度(即模),选择合适的比例关系作出向量.
[活学活用]
一辆汽车从A点出发向西行驶了100千米到达B点,然后改变方向,向北偏西40°方向行驶了200千米到达C点,最后又改变方向,向东行驶了100千米到达D点.作出向量,,,.
解:如图所示.
共线向量或相等向量

[典例]如图所示,O是正六边形ABCDEF的中心,且=a,=b,=c.
(1)与a的长度相等、方向相反的向量有哪些?
(2)与a共线的向量有哪些?
(3)请一一列出与a,b,c相等的向量.
[解](1)与a的长度相等、方向相反的向量有,,,.
(2)与a共线的向量有,,,,,,,,.
(3)与a相等的向量有,,;与b相等的向量有,,;与c相等的向量有,,.
[一题多变]
1.[变设问]本例条件不变,试写出与向量相等的向量.
解:与向量相等的向量有,,.
2.[变条件,变设问]在本例中,若|a|=1,则正六边形的边长如何?
解:由正六边形性质知,△FOA为等边三角形,所以边长AF=|a|=1.
寻找共线向量或相等向量的方法
(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.
(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.

层级一学业水平达标
1.下列说法正确的是()
A.向量∥就是所在的直线平行于所在的直线
B.长度相等的向量叫做相等向量
C.若a=b,b=c,则a=c
D.共线向量是在一条直线上的向量
解析:选C向量∥包含所在的直线与所在的直线平行和重合两种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;C显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D错.
2.如图,在圆O中,向量,,是()
A.有相同起点的向量
B.共线向量
C.模相等的向量
D.相等的向量
解析:选C由图可知,,是模相等的向量,其模均等于圆的半径,故选C.
3.向量与向量共线,下列关于向量的说法中,正确的为()
A.向量与向量一定同向
B.向量,向量,向量一定共线
C.向量与向量一定相等
D.以上说法都不正确
解析:选B根据共线向量定义,可知,,这三个向量一定为共线向量,故选B.
4.如图,在ABCD中,点E,F分别是AB,CD的中点,图中与平行的向量有()
A.1个B.2个
C.3个D.4个
解析:选C根据向量的基本概念可知与平行的向量有,,,共3个.
5.已知向量a,b是两个非零向量,,分别是与a,b同方向的单位向量,则下列各式正确的是()
A.=B.=或=-
C.=1D.||=||
解析:选D由于a与b的方向不知,故与无法判断是否相等,故A、B选项均错.又与均为单位向量.∴||=||,故C错D对.
6.已知||=1,||=2,若∠ABC=90°,则||=________.
解析:由勾股定理可知,BC=AC2-AB2=3,所以||=3.
答案:3
7.设a0,b0是两个单位向量,则下列结论中正确的是________(填序号).
①a0=b0;②a0=-b0;③|a0|+|b0|=2;④a0∥b0.
解析:因为a0,b0是单位向量,|a0|=1,|b0|=1,
所以|a0|+|b0|=2.
答案:③
8.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是________(填序号).
解析:若a=b,则a与b大小相等且方向相同,所以a∥b;若|a|=|b|,则a与b的大小相等,而方向不确定,因此不一定有a∥b;方向相同或相反的向量都是平行向量,因此若a与b方向相反,则有a∥b;零向量与任意向量平行,所以若|a|=0或|b|=0,则a∥b.
答案:①③④
9.如图,O是正方形ABCD的中心.
(1)写出与向量相等的向量;
(2)写出与的模相等的向量.
解:(1)与向量相等的向量是.
(2)与的模相等的向量有:,,,,,,.
10.一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地.
(1)在如图所示的坐标系中画出,,,.
(2)求B地相对于A地的位移.
解:(1)向量,,,如图所示.
(2)由题意知=.
所以AD綊BC,
则四边形ABCD为平行四边形.
所以=,则B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.
层级二应试能力达标
1.如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()
A.=B.=
C.=D.=
解析:选D根据相等向量的定义,分析可得:
A中,与方向不同,故=错误;
B中,与方向不同,故=错误;
C中,与方向相反,故=错误;
D中,与方向相同,且长度都等于线段EF长度的一半,故=正确.
2.下列说法正确的是()
A.若a∥b,b∥c,则a∥c
B.终点相同的两个向量不共线
C.若a≠b,则a一定不与b共线
D.单位向量的长度为1
解析:选DA中,因为零向量与任意向量平行,若b=0,则a与c不一定平行.B中,两向量终点相同,若夹角是0°或180°,则共线.C中,对于两个向量不相等,可能是长度不相等,但方向相同或相反,所以a与b可能共线.
3.若a为任一非零向量,b为单位向量,下列各式:
①|a|>|b|;②a∥b;③|a|>0;④|b|=±1.
其中正确的是()
A.①④B.③
C.③④D.②③
解析:选Ba为任一非零向量,所以|a|>0,故③正确;由向量、单位向量、平行向量的概念易判断其他式子均错误.故选B.
4.在△ABC中,点D,E分别为边AB,AC的中点,则如图所示的向量中相等向量有()

A.一组B.二组
C.三组D.四组
解析:选A由向量相等的定义可知,只有一组向量相等,即=.
5.四边形ABCD满足=,且||=||,则四边形ABCD是______(填四边形ABCD的形状).
解析:∵=,∴AD∥BC且||=||,∴四边形ABCD是平行四边形.又||=||知该平行四边形对角线相等,故四边形ABCD是矩形.
答案:矩形
6.如图,O是正三角形ABC的中心,四边形AOCD和AOBE均为平行四边形,则与向量相等的向量为________;与向量共线的向量为__________;与向量的模相等的向量为________.(填图中所画出的向量)
解析:∵O是正三角形ABC的中心,∴OA=OB=OC,易知四边形AOCD和四边形AOBE均为菱形,∴与相等的向量为;与共线的向量为,;与的模相等的向量为,,,,.
答案:,,,,,
7.如图,D,E,F分别是正三角形ABC各边的中点.
(1)写出图中所示向量与向量长度相等的向量.
(2)写出图中所示向量与向量相等的向量.
(3)分别写出图中所示向量与向量,共线的向量.
解:(1)与长度相等的向量是,
,,,,,,.
(2)与相等的向量是,.
(3)与共线的向量是,,;
与共线的向量是,,.
8.如图,已知函数y=x的图象l与直线m平行,A0,-22,B(x,y)是m上的点.求
(1)x,y为何值时,=0;
(2)x,y为何值时,为单位向量.
解:(1)要使=0,当且仅当点A与点B重合,于是x=0,y=-22.
(2)如图,要使得是单位向量,必须且只需||=1.
由已知,l∥m且点A的坐标是0,-22,
所以B1点的坐标是22,0.在Rt△AOB1中,有
||2=||2+||2=222+222=1,
即||=1.
上式表示,向量是单位向量.
同理可得,当B2的坐标是-22,-2时,向量AB2―→也是单位向量.
综上有,当x=22,y=0或x=-22,y=-2时,向量是单位向量.

向量的概念及表示


课时6向量的概念及表示
【学习目标】
要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
一、知识梳理
1.数量:仅用一个实数就可以表示的量叫数量。如距离、时间、面积等。
2.向量:叫向量。如物理中的位移、速度、力等。
3.向量的表示:常用一条有向线段来表示,
有向线段的长度表示向量的大小,箭头表示所指的方向。
以A为起点。以B为终点的向量记为,也可以用来表示。如

注:两个向量的模可以比较大小,但向量不能比较大小。
4.向量的叫向量的模。记为
5.特殊向量:零向量:
单位向量:
6、平行向量:
规定:零向量与任一向量平行
7、相等向量:
8、共线向量:任意一组平行向量都可以平移到同一条直线上。故平移向量又称共线向量
9、相反向量:我们把与的向量叫做的相反向量-
规定:零向量的相反向量仍是零向量
二、基础训练
1.下列各题中,哪些是数量,哪些是向量?
质量,密度,角,位移,距离,浮力,速度,功,加速度,温度,电流强度,浓度,向心力

2.判断下列说法是否正确,并说明理由。
(1)温度有零上和零下之分。所以温度是向量()
(2)=0()
(3)共线向量就是平行向量()
(4)若,为非零向量,且=,则=()
(5)若=-则∥()
(6)对任意向量,,,若=,=,则=()
(7)对任意向量,,,若∥,∥,则∥()
(8)平行向量方向一定相同()
(9)共线向量一定在同一条直线上()
(10)若=则∥()
三、典型例题
例1.已知O为正六边形ABCDEF的中心,在图中所标出的向量中;
(1)试找出与共线的向量
(2)确定与相等的向量
(3)与相等吗?

例2、如图,△ABC和△是在各边的相交的
两个全等的正三角形,设正△ABC的边长为a,图
中列出了长度均为的若干个向量。
求:(1)与相等的向量;
(2)与共线的向量;
(3)与平行的向量。

例3、在图45的方格纸中有一个向量,分别以图中的格点为起点和终点,其中:(1)与相等的向量有多少?(2)与长度相等的共线向量有多少?(3)与共线的向量有多少?(除外)

三.课后作业:
1、下列命题中,正确的是
AB
CD
2、下列命题中真命题为
①向量的长度与向量的长度相等;②,则的方向相同或相反;
③两个有共起点且相等的向量,其终点必相同;④两个有共起点且相等的向量,一定是共线向量;⑤与是共线向量,则点A、B、C、D必在同一直线上;
⑥有向线段就是向量,向量就是有向线段。
3、设O为的重心,则是
A相等向量B平行向量C模相等向量D终点相同的向量

4、设ABCD为正方形,则可用同一条有向线段表示的两个向量为
A和B和C和D和
5、若是两个不平行的非零向量,并且,则=

6、已知ABCD为菱形,=1,,求,

7、在梯形ABCD中,若E,F分别为腰AB、DC的三等分点,且=2,=5,求。

8、在直角坐标系中,画出下列向量:
(1)=2,的方向与x轴正方向的夹角为,与y轴正方向的夹角为;
(2)=4,的方向与x轴正方向的夹角为,与y轴正方向的夹角为;
(3)=4,的方向与x轴正方向的夹角为,与y轴正方向的夹角为;

9、如图,D、E、F分别是的三边AB、BC、AC的中点,以A、B、C、D、E、F中的一点为始点,而另一点为终点的向量中:
(1)写出与相等的向量;
(2)写出与共线的向量。

10、如下图,每格点边长为0.5,以图中各格点为起点和终点的向量中,与向量相等的向量共有几个?与向量平行且模为的向量共有几个?与向量方向相同且模为的向量共有几个?

11、一辆汽车从A点出发向西行驶了100公里到达B点,然后又改变方向向西偏北走了200公里到达C点,最后又改变方向,向东行驶了100公里到达D点。(1)作出向量;(2)求。

问题统计与分析

文章来源:http://m.jab88.com/j/37955.html

更多

最新更新

更多