88教案网

七年级下册数学知识点总结:平面直角坐标系(苏教版)

一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有规划好新的教案课件工作,新的工作才会更顺利!你们知道哪些教案课件的范文呢?下面是小编精心为您整理的“七年级下册数学知识点总结:平面直角坐标系(苏教版)”,大家不妨来参考。希望您能喜欢!

七年级下册数学知识点总结:平面直角坐标系(苏教版)

第六章平面直角坐标系
一、目标与要求
1.解有序数对的应用意义,了解平面上确定点的常用方法。
2.培养学生用数学的意识,激发学生的学习兴趣。
3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。
4.发展学生的形象思维能力,和数形结合的意识。
5.坐标表示平移体现了平面直角坐标系在数学中的应用。
二、重点
掌握坐标变化与图形平移的关系;
有序数对及平面内确定点的方法。
三、难点
利用坐标变化与图形平移的关系解决实际问题;
利用有序数对表示平面内的点。
四、知识框架
五、知识点、概念总结
1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6.特殊位置的点的坐标的特点
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
(4)点到轴及原点的距离。
点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
7.在平面直角坐标系中对称点的特点
(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)
(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)
(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
8.各象限内和坐标轴上的点和坐标的规律
第一象限:(+,+)正正
第二象限:(-,+)负正
第三象限:(-,-)负负
第四象限:(+,-)正负
x轴正方向:(+,0)
x轴负方向:(-,0)
y轴正方向:(0,+)
y轴负方向:(0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0.
原点:(0,0)
注:以数对形式(x,y)表示的坐标系中的点(如2,-4),是x轴坐标,是y轴坐标。
9.坐标方法的简单应用:
(1)用坐标表示地理位置
(2)用坐标表示平移
10.平面直角坐标系其他公式
(1)坐标平面内的点与有序实数一一对应。
(2)一三象限角平分线上的点横纵坐标相等。
(3)二四象限角平分线上的点横纵坐标互为相反数。
(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
(5)y轴上的点,横坐标为0.
(6)x轴上的点,纵坐标为0.
(7)坐标轴上的点不属于任何象限。

相关推荐

七年级上册数学平面直角坐标系


每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“七年级上册数学平面直角坐标系”,仅供参考,欢迎大家阅读。

第24讲平面直角坐标系

知识理解
1.点M(x2+2,-y2)-定在()
A.第-象限B.第四象限C.y轴右侧D.y轴左侧
2.点P(-5,-4)到横轴的距离是()
A.5B.4C.-5D.-4
3.已知点P(a,b)的坐标满足ab<0,则点P在()
A.第二象限B.第四象限C.第二象限或第三象限D.第二象限或第四象限
4.若点P(x,y)在第二象限,则点Q(2y+1,-x+2)在()
A.第-象限B.第二象限C.第三象限D.第四象限
5.将点P(-4,3)先向左平移2个单位,再向下平移2个单位得到点Q,则点Q的坐标是()
A.(-2,5)B.(-6,1)C.(-6,5)D.(-2,1)
6.若长方形ABCD的长、宽分别为6、4,以点A为原点,分别以AB、AD为x轴和y轴的正半轴建立直角坐标系,则点C的坐标不可能是()
A.(6,4)B.(4,6)C.(0,0)D.(6,4)或(4,6)
7.下列四个命题中正确的个数是()
(1)同-直角坐标系内,A(3,2)与B(2,3)表示的是同-个点.
(2)x轴上的点的纵坐标为0.
(3)坐标轴上的点不属于任何-个象限.
(4)把点A(x,y)向左平移c个单位长度得到的点的坐标为(-c,y).
A.4个B.3个C.2个D.1个
8.若x+y>0,且xy>0,则点P(-x,y)在第()象限.
A.一B.二C.三D.四
9.若点P在x轴的下方,y轴的左侧,到x轴的距离为2,到y轴的距离为3,则P点的坐标为()
A.(-2,3)B.(-2,-3)C.(3,2)D.(-3,-2)
10.描出下列各点,并指出下列各点所在的象限或坐标轴.
A(-3,0);B(-2,-4);C(-1,4);
D(0,-3);E(3,-3)

方法运用
11.已知点A(m,-2),点B(4,-m+1)且直线AB∥x轴,则m的值为___________.
12.若点P(x,y)的坐标满足x+y=xy,则称P为“和谐点”,请写出-个“和谐点”的坐标,如________.
13.初三年级某班有54名学生,所在教室有6行8列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生做了平移[a,b]=(m-i,n-j),并称a+b为该生的位置数,若某生的位置数为10,则当m+n取最小值时,mn的最大值为_________.

14.根据指令[s,A](s≥0,0°≤A≤180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系坐标原点,且面对x轴正方向.
(1)若给机器人下了一个指令[4,180°],则机器人应移动到点________;
(2)请你给机器人下一个指令___________,使其移到点(0,5).
15.在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,3),B(-4,-4),C(2,0),将△ABC平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为_________.
16.如图,-动点从原点O出发,按向上、右、下、右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为_____.
(第16题图)(第17题图)
17.如图,在直角坐标系中,已知点A(-3,0),B(0,4),AB=5,对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,……,则△2013的直角顶点的坐标为__________.
18.如图,在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,观察图中每-个正方形(实线),四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_______个.
(第18题图)(第21题图)
19.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如,f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()
A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)
20.定义:平面内的直线l1与l2相交于O,对于该平面内任意-点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据以上定义,距离坐标为(2,3)的点的个数是()
A.2B.1C.4D.3
21.在直角坐标系中,我们把横、纵坐标都为整数的点叫整点,且规定,正方形的内部不包含边界上的点,观察下图所示的中心在原点、二边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点……,则边长为8的正方形内部的整点个数为()
A.64B.49C.36D.25
22.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()
A.(1,4)B.(5,0)C.(6,4)D.(8,3)
23.(1)如果点P(m+1,m-3)在y轴上,则m=__________.
(2)已知点P(a,b),且|a|=4,|b|=2,那么P点的坐标为__________.
(3)已知点P(2-m,3m+6)到两坐标轴的距离相等,求P点坐标.

24.如图,△ABC中,A(-2,1),B(-3,-2),C(2,-2),D(2,3),将△ABC沿AD平移,且使A点平移到D点,B,C平移后的对应点分为E、F.
(1)画出平移所得的△DEF;
(2)说明通过怎样的平移方式将△ABC平移到△DEF;
(3)求平移得到的△DEF的面积.
25.在图中,A,B两点的坐标分别为(2,4),(6,2),求△AOB的面积.
26.在图中,四边形ABOC各个顶点的坐标分别为A(-11,6),B(-14,0),
O(0,0),C(-2,8),试求这个四边形的面积.

27.在图中,已知平面直角坐标系中,A(-1,4),B(3,2),线段AB交y轴于C,求C点坐标.
28.如图所示,在平面直角坐标系中,A,B,C,三点的坐标分别为(0,1),(2,0),(2,1.5).
(1)求△ABC的面积;

(2)如果在第二象限内有-点P(a,),试用含a的式子表示四边形ABOP的面积;

(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC是否相等?若存在,请求出点P的坐标;若不存在,请说明理由.

平面直角坐标系学案


作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《平面直角坐标系学案》,供大家参考,希望能帮助到有需要的朋友。

第七章课题(1):有序数对
【学习目标】:
1.通过生活中的实例,认识到可以用有序数对表示点的位置。
2.会用有序数对确定平面内的点。
【重点难点】:
一、回头复习
1、如图,在数轴上,点A的坐标为,点B的坐标为。
在图中,标出数-1表示的点C。

二、学习新课
知识点1.有序数对
例1:如右图,完成下面练习。
(1)小明的座位在第一排,你能找到他的座位吗?
(2)小明的座位在第三列,你能找到他的座位吗?
(3)小明的座位在第一排第三列,你能找到他的座位吗?
(4)座位(2,4)和(4,2)在同一位置吗?
*有序数对:用含有两个数的词表示一个确定的位置,其中两个数表示不同的含义,我们把这种的两个数a与b组成的数对,叫做有序数对,记作()。
练习:
1、如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么请你用同样的方法写出由A到B的其他两条路径.

三、课堂练习
【基础训练】
1、如果用(8,4)表示八年级四班,则七年级三班可表示成________.
2、在电影票上,将“7排6号”简记为(7,6),则6排7号可表示为。
(8,6)表示的意义是。
3、如图1,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()
A.(4,5);B.(5,4);C.(4,2);D.(4,3)
4、如图1,D的位置是()
A.(4,5);B.(5,3);C.(2,2);D.(5,5)
5、如图1,(4,3)表示的位置是()
A.AB.BC.CD.D

6、如图,小亮从学校到家所走最短路线是()
A.(2,2)→(2,1)→(2,0)→(0,0)
B.(2,2)→(2,1)→(1,1)→(0,1)
C.(2,2)→(2,3)→(0,3)→(0,1)
D.(2,2)→(2,0)→(0,0)→(0,1)

7、如图,A的位置为(2,6),小明从A出发,经
(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),
(1)用不同颜色的笔画出两人行走的路线;
(2)则此时两人相距个格
第七章课题(2):平面直角坐标系(1)
【学习目标】:
1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.
2.认识并能画出平面直角坐标系.
【重点难点】:能画出平面直角坐标系.
一、回头复习
1、规定了、、的直线叫做数轴。
2、如图,数轴上点A表示的数是;点B表示的数是;
-0.5表示点C,请在数轴上标出来.
二、学习新课
知识点1.平面直角坐标系
例1:(1)数轴上的点可以用一个来表示,这个数叫做这个点的。
(2)平面内画两条互相、原点的数轴,组成平面直角坐标系;水平的数轴称为或,习惯上取向为正方向;竖直的数轴为或,取向为正方向;两个坐标轴的交点为平面直角坐标系的。
(3)点的坐标:我们用一对表示平面上的点,这对数叫。表示方法为(a,b).a是点对应上的数值,b是点在上对应的数值。
练习:
1、在平面直角坐标系中:
(1)请写出A、B、C的坐标:
(2)若D、E的坐标分别为:(2,-2)、(-2,-3),请在图中标出来;
(3)原点O的坐标是(,),横轴上的点的坐标为(x,),纵轴上的点坐标为(,y)
知识点2.象限
例2.建立平面直角坐标系后,平面被坐标轴分成四部分,
分别叫
(注意:坐标轴上的点不属于任何一个象限)
三、课堂练习
【基础训练】
1、如图1,点A的坐标是()
A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)
2、如图1,坐标是(-2,2)的点是()
A.点AB.点BC.点CD.点D
3、如图1,点B在第()象限
A、第一象限B、第二象限
C、第三象限D、第四象限
4、如图1,在第三象限的点是()
A.点AB.点BC.点CD.点D

5、如图,在直角坐标系中,描出下列各点:
A(4,3),B(-2,3),C(-4,-1),D(2,-2),E(0,-1)并说出A、B、C、D、E各点在第几象限.

6、原点O的坐标是_______,点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C(3,2)在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上,点F(2,0)在______轴上.点M(a,0)在______轴上.
7、已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()
A.第一象限B.第二象限C.第三象限D.第四象限

第七章课题(3):用坐标表示地理位置
【学习目标】:
1.了解用平面直角坐标系来表示地理位置的意义
2.培养解决实际问题的能力,发展空间观念
【重点难点】:培养解决实际问题的能力,发展空间观念
一、回头复习
1、如图,写出A,B,C,D,E这五个点的坐标.
2、上题的图中,标出点F(2,3)、
G(-2,-3)、H(0,-3)K(-2,0).

二、学习新课
知识点1.用坐标表示地理位置
例1:(课本“探究”问题)

解:以()为坐标原点,以正东、正北方向为()轴、()轴正方向建立直角坐标系,取比例尺为1:10000,则小刚家(150,200),小强家(,),小敏家(,)。
归纳:利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.
(1)建立坐标系,选择一个__________为原点,确定x轴、y轴的___方向;(2)根据具体问题确定_______,在坐标轴上标出__________;
(3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称.

三、课堂练习
【基础训练】
1、根据以下条件在图中画出小玲、小敏、小凡家的位置,并标明它们的坐标.
小玲家:出校门向西走150米,再向北走100米.
小敏家:出校门向东走200米,再向北走300米.
小凡家:出校门向南走100米,再向西走300米,最后向北走250米.
2、上图是某市旅游景点示意图,请建立适当的坐标系,写出各景点的坐标.

3、小亮同学利用暑假参观了某种植基地.他从苹果园出发,沿(1,3),(-3,3),(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点,看看能得到什么图形?

第七章课题(4):用坐标表示平移(1)
【学习目标】:
1.探究点的平移引起的点的坐标的变化规律。
2.能写出图形运动后的各个顶点的坐标
【重点难点】:能写出图形运动后的各个顶点的坐标
一、回头复习
1、画图:网格中将△ABC,
(1)向上平移2个单位长度.
(2)再向右移3个单位长度.

二、学习新课
知识点1.平移中坐标的变化
例1:已知点,将点A向右平移2个单位长度后得点(____,___),再将向下平移3个单位长度后得点(____,____).
练习:
1、已知点向左平移4个单位长度后点A的坐标变为(_________),再向上平移5个单位长度后得(,)
2、在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到点(,);将点(x,y)向上平移b个单位长度,可以得到点(,).
知识点2.
例2.三角形ABC三个顶点的坐标A(4,3),B(3,1),C(1,2)
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,则A1,B1,C1。猜想:三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系,
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,则A2,B2,C2。猜想:三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
三、课堂练习
【基础训练】
1、将点Q(0,3)向_____平移1个单位长度,得到点Q′(-1,3).
2、点(x0-3,y0+2)是把点(x0,y0+2)向____平移_____单位,或把(x0-3,y0)向_____平移_____单位得到的.
3、在平面直角坐标系中,有一点P(-4,2),若将P先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_______
4、将点A(3,-4)沿着x轴负方向平移3个单位,得到点A′的坐标
为(_____,_____),再将A′沿着y轴正方向平移4个单位,得到A″
的坐标为(____,_____).
5、在平面直角坐标系中,若将点A(6,6)的坐标变为(-2,6),你认为应该怎样平移?

【拓展训练】
6、如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿y轴正方向平移3个单位长度,各个顶点的坐标变为多少?画出平移后的图形.

《平面直角坐标系》学案分析


《平面直角坐标系》学案分析

[教学目标]
认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
渗透对应关系,提高学生的数感.
[教学重点与难点]
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
[教学设计]
[设计说明]一.利用已有知识,引入
1.如图,怎样说明数轴上点A和点B的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangularcoordinatesystem).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法

正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
例2在平面直角坐标系中描出下列各点。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三.深入探索
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]
教材49页习题6.1——第1题
教材50页——第2,4,5,6。
[小结]
平面直角坐标系;
点的坐标及其表示
各象限内点的坐标的特征
坐标的简单应用
[作业]
必做题:教科书50页:3题
教案编写:莫大勇
(教材51页综合运用7,8,9,10为练习课内容)

明确点的坐标的表示法

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

文章来源:http://m.jab88.com/j/3619.html

更多

最新更新

更多