课题:8.3同底数幂的除法(2)姓名
【学习目标】
1.了解、(a≠0,n为正整数)的规定;
2.在对“规定”的合理性做出解释的过程中,感受从特殊到一般、从具体到抽象的思考问题的方法,学会数学思考、感悟理性精神.
【学习重点】
感受“规定”的合理性,并会运用“规定”进行解题.
【问题导学】
之前学习了当a≠0,m、n为正整数,m>n时,,那么若m=n,m<n时,还能用这样的运算性质进行计算吗?
【问题探究】
问题一.
提问:若m=n,a≠0,m、n为正整数,如何计算?能否运用前面所学的同底数幂相除的运算性质?
问题二.
(1)思考:一张纸对折1次是2层,对
折2次是4层,对折3次是8层,对折4次是16层……,对折后纸的层数与对折的次数之间的关系可以表示成什么?若没有将纸对折,如何表示,纸张的层数又为多少?
(2)观察数轴上表示、、、的
点的位置是如何随着指数的变化而变化的?你有什么猜想?
(3)由上面两个活动,你有什么发现?
(4)得到规定:(a≠0)即任何不
等于0的数的0次幂等于1.
问题三.
(1)提问:若m<n,a≠0,m、n为正
整数,还可以用同底数幂除法的运算性质进行计算吗?
(2)例如:等于几?能利用同底
数幂除法的运算性质进行计算吗?借助活动二中的式子,进一步思考你能得到什么猜想?把你的发现用式子表示出来.
(3)得到规定:(a≠0,n为正
整数),即任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数.
问题四.
计算:(1)(a≠0);
(2)(a≠0).
由学生小组内分别根据规定和同底数幂除法的运算性质加以计算,然后进行比较,得出发现.
引导学生得出发现:可将同底数幂的除法运算性质扩展为一切整数指数幂:
(a≠0,m、n为整数)
【问题评价】
1.用小数或分数表示下列各数:
(1);(2);(3)
2.下面的计算是否正确?如有错误,请改正.
(1);(2);
(3);
(4)(a≠0,n为正整数)
3.练习:
(1)成立的条件是;
(2)当x时,有意义;
(3)若有意义,则x
(4),则x=;
(5),则x=;
(6),则x=.
做好教案课件是老师上好课的前提,大家应该开始写教案课件了。我们要写好教案课件计划,就可以在接下来的工作有一个明确目标!那么到底适合教案课件的范文有哪些?小编为此仔细地整理了以下内容《1.5同底数幂的除法》,欢迎大家与身边的朋友分享吧!
1.5同底数幂的除法
教学目标:
1.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.
2.了解同底数幂的除法的运算性质,并能解决一些实际问题.
教学重点:
会进行同底数幂的除法运算.
教学难点:
同底数幂的除法法则的总结及运用.
教学方法:
尝试练习法,讨论法,归纳法.教
学用具:投影仪
活动准备:
1.填空:(1);(2)2;(3).2.计算:(1),(2)
教学过程:
一、探索练习:
(1)(1)(3)(4)从上面的练习中你发现了什么规律?______________________________________猜一猜:
二、巩固练习:
1.填空:(1);(2);(3)=;(4);(5)2.计算:(1);(2);(3)(4);(5)3.用小数或分数表示下列各数:(1);(2);(3);(4);(5)4.2;(6)
三、提高练习:1.已知2.若3.(1)若=;(2)若;(3)若0.0000003=3×,则;(4)若.
小结:会进行同底数幂的除法运算.作业:课本P21习题1.7:1、2、3、4.教学后记:
教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“幂的运算—同底数幂的除法教学设计”,相信能对大家有所帮助。
学科:数学年级:七年级
内容:沪科版七下8.1幂的运算—同底数幂的除法课型:新授
学习目标:
1、了解同底数幂的除法性质
2、能推导同底数幂的除法性质的过程,并会运用这一性质进行计算
学习重点:同底数幂的除法运算、零指数幂和负整指数幂
学习难点:零指数幂和负整指数幂
学习过程:
一、学习准备
1、同底数幂的乘法、幂的乘方、积的乘方法则:
2、观察思考
积的乘方规律:(文字叙述)
(符号叙述)
规律条件:①②规律结果:①②
3、阅读课本第47页例1格式,完成下面练习:
①下面的计算对不对?如果不对,应怎样改正?
()()()
()()()
②计算
二、合作探究:
1、观察思考:同底数幂的除法运算中,当时,你得到什么结论?
算式运算过程
结果
零指数幂性质:(文字叙述)(符号叙述)
2、思考:同底数幂的除法运算中,当时,你又得到什么结论?
算式运算过程
结果
负整数指数幂性质:(文字叙述)(符号叙述)
3、阅读课本第52页例5,完成下面练习:
4、用分数或小数表示下列各数:
5、计算:
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、计算的结果为().A.10B.100C.D.
2、计算的结果是().A.1B.C.D.
3、A.B.C.D.
4、(1)(2)(3)
(4)(5)(6)
思维拓展:
1、(1)(2)
2、已知,求整数x的值.
文章来源:http://m.jab88.com/j/31431.html
更多