88教案网

七年级数学下《不等式与不等式组》专项精讲含解析

作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“七年级数学下《不等式与不等式组》专项精讲含解析”,大家不妨来参考。希望您能喜欢!

第九章不等式与不等式组(专项精讲)
章末整合归纳
常考专题整合

常考专题一不等式的性质
主要考查利用不等式的性质判断不等式的变形是否正确,题型以选择题为主.
例1:下列式子中,一元一次不等式有()
①;②;③;④;⑤;⑥;⑦.
A.6个B.5个C.4个D.3个
解析:③中不是整式,⑥中含2个未知数,所以③⑥不是一元一次不等式,①②④⑤⑦都是一元一次不等式,故选B.

例2:若,则下列不等式不一定成立的是()
A.B.
C.D.
解析:根据不等式的性质针对四个选项进行分析即可.A.根据不等式的基本性质1,可知一定成立;B.根据不等式的基本性质2,∵,∴一定成立;C.根据不等式的基本性质3,∵,∴一定成立;D.根据不等式的基本性质3,,若都为负数,则不成立.
思维点拨本题主要考查了不等式的基本性质,熟记不等式的基本性质是解题的关键.此类题目也可以用举反例的方法排除.

常考专题二一元一次不等式(组)的解法
解一元一次不等式(组)是数学学习中必须掌握的基本运算技能,是解决实际问题的基础,解不等式(组)时,要严格依据不等式的性质按照解不等式(组)的步骤进行.

例3:解下列不等式或不等式组,并把解集在数轴上表示出来:
(1);(2)
分析:(1)解不等式并把解集在数轴上表示出来;(2)分别解不等式,并把解集在数轴上表示出来.
解:(1)解不等式得,在数轴上表示如下:
(2)解不等式①,得,解不等式②,得,
在数轴上表示如下:
故不等式组的解集为.
思维点拨一元一次不等式与一元一次不等式组的解法是整章的重点,要熟悉它们的解法,一方面要注意每个步骤的易错之处,另一方面要正确地画出数轴,找出解集,进一步确定特殊解.

常考专题三一元一次不等式(组)的特殊解
例4:若是不等式组的最大整数解.求的值.
分析:先求出不等式组的解集,在解集中找出最大整数解,即是的值,再把的值代入所求代数式求值即可.
解:由不等式①,得.
由不等式②,得.
所以不等式组的解集为.
解集中最大的整数为,所以.
把代入中,得
原式

思路归纳求不等式(组)的特殊解时,先求出解集,再找满足条件的解,一般是求最大(小)整数解,非负(正)整数解,正(负)整数解.

常考专题四求解不等式(组)中的字母参数问题
当不等式(组)与方程(组)、字母参数这些知识综合时,要认真理解题意,寻求解决的方法.

类型1已知不等式的一个解,求字母的取值

例5:已知是关于的不等式的解,求的取值范围.
分析:先根据不等式的解的定义,将代入不等式,得到,解此不等式,即可求出的取值范围.
解:∵是关于的不等式的解,∴,解得.
思维点拨本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,根据不等式的解的定义得出是解题的关键.

例6:已知关于的不等式组的整数解共有3个,求的取值范围.
分析:先求出不等式的解集,用含有的代数式表示出来,再根据整数解的个数,确定的取值范围.
解:由不等式①,得.
由不等式②,得.
因为不等式组有解,
所以该不等式组的解集为.
又因为只有3个整数解,即为2,3,4.
所以的取值范围为,
则.
思维点拨解此类问题时应特别注意不等式中等号的取舍.

类型2根据二元一次方程组和解不等式求字母取值

例7:关于,的二元一次方程组的解是正整数,则整数的值为____.
解析:把看成常数,求出方程组的解,再根据题意转化成关于的不等式组,求解即可.解方程组得∵,是正整数,∴解得,∵为整数,∴或6或7,又∵,是正整数,∴时,,不是整数,不合题意舍去,∴或7.
答案:5或7
解题方法本题运用了常量法,常量法是将题中的某一未知字母视为常数,用这个字母表示未知数,再根据未知数的取值范围来确定未知字母的取值.在不等式(组)与方程(组)的综合应用中,常会用到常量法,将方程(组)的问题转化为解不等式(组),求字母取值的问题.
例8:已知关于、的的方程组的解满足不等式,求实数的取值范围.
分析:先解方程组,求得、的值,再根据,解不等式即可.
解:由可得
∵,∴,∴.
思维点拨本题是一元一次不等式和二元一次方程组的综合题,用分别表示出,,再解不等式是解题的关键.

类型3已知不等式组解集的情况求字母的取值

例9:已知关于的不等式组无解,求的取值范围.
分析:把看成常数,解不等式组,再根据原不等式组无解,求出的取值范围.
解:解不等式①,得,
解不等式②,得,
因为该不等式组无解,所以不等式①和②的解集在数轴上的表示如图所示:
所以.
当时,代入不等式组,解得,且,
此时,不等式组无解,满足题意.
所以的取值范围为.
思维点拨“”这种特殊情况易被忽视,检验等号是否满足题意在解题时必不可少.

常考专题五列一元一次不等式(组)解应用题
一元一次不等式(组)的应用是中考考查的重点之一,题型丰富多变,内容多与社会热点相联系,既可单独考查,也可与其他知识综合考查.

例10:某校住校生宿舍有大小两种寝室若干部.据统计,该校高一年级男生740人,使用了大寝室55间和小寝室50间,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.
(1)求该校的大小寝室每间分别住多少人?
(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?
分析:(1)设该校的大寝室每间住人,小寝室每间住人,根据题意列出方程组,再解方程组即可;(2)设这些女生入住大寝室间,则小寝室间,由题意可得,再根据“高一新生中有不少于630名女生将入住寝室80间”可列出关于的不等式组,解不等式组即可.
解:(1)设该校的大寝室每间住人,小寝室每间住人,由题意,得
解得
答:该校的大寝室每间住8人,小寝室每间住6人.
(2)设这些女生入住大寝室间,则小寝室间,由题意,得
解得.
∴可取75或76或77或78或79或80.
答:共有六种安排住宿的方案.
思维点拨本题考查了二元一次方程组及一元一次不等式组的应用,解题的关键是仔细审题,分别找出等量关系与不等关系.

思想方法归纳
思想方法一数形结合思想
求不等式解集的过程是代数内容,用数轴表示不等式解集的过程,是将代数问题几何化的过程.本章中数形结合思想主要应用于:①将一元一次不等式的解集在数轴上表示出来,或在解不等式组的过程中,在数轴上分别表示各个不等式的解集,并找出公共部分;②利用数轴判断不等式(组)的解集情况,进而求字母取值.

例11:已知关于的不等式的解集如图所示,则的值为()
A.0B.C.1D.2
解析:根据数轴可知不等式的解集为,∵,∴,∴,∴.
答案:C
思想方法本题运用了数形结合思想.有关不等式的问题中,有些问题需要我们借助图形反馈的信息来解决.
思想方法二方程思想
不等式中的方程思想是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换和解决问题.

例12:若不等式组的解集为,那么的值等于____.
解析:先用字母,表示出不等式组的解集:,然后根据已知解集是,对应得到关于、的方程,,解得,.所以.
答案:
思想方法本题运用了方程思想,根据不等式组的解集构造方程,进而求解,是解决此类问题的基本思路.

思想方法三建模思想
本章在解决实际问题中的方案选择、优化设计以及最大利润问题时,会用到建模思想,由实际问题构造不等式(组),从而解决问题.

例13:在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一个班不足3幅,但不少于1幅,可列出不等式组,求出其整数解即可.
解:(1)该校原有的班数是(个)
(2)设新学期所增加的班数是个.由题意得:
解得.
∵为整数,∴或3.
答:新学期所增加的班数是2个或3个.
思想方法本题运用了建模思想.解这类题的关键是从问题中找出不等关系,建立不等式(组)的模型,求出不等式(组)的解集后,再根据题目的实际情况确定出未知数的具体值.m.Jab88.com

综合压轴探究
综合探究一元一次不等式(组)的综合应用

例14:在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际情况,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
分析:(1)先设每台电脑万元,每台电子白板万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出,的值即可;(2)先设需购进电脑台,则购进电子白板台,根据总费用不超过30万元,但不低于28万元列出不等式组,求出的取值范围,再根据只能取整数,得出购买方案,然后根据每台电脑的价格和每台电子白板的价格,算出每种方案的总费用,进行比较,即可得出最省钱的方案.
解:(1)设每台电脑万元,每台电子白板万元,根据题意,得
解得
答:每台电脑0.5万元,每台电子白板1.5万元.
(2)设需购进电脑台,则购进电子白板台,根据题意,得
解得,
∵只能取整数,∴,16,17.
∴有三种购买方案:
方案1:购进电脑15台,购进电子白板15台,所需费用为(万元);
方案2:购进电脑16台,购进电子白板14台,所需费用为(万元).
方案3:购进电脑17台,购进电子白板13台,所需费用为(万元).
答:有3种购买方案,购买17台电脑和13台电子白板时费用最低.
思维点拨本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出数量之间的关系,列出二元一次方程组和一元一次不等式组,注意只能取整数.关于方案设计问题,一般需分情况讨论,另外要检验方案的可操作性.

相关阅读

不等式与不等式组导学案


老师会对课本中的主要教学内容整理到教案课件中,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,才能在以后有序的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“不等式与不等式组导学案”,欢迎大家阅读,希望对大家有所帮助。

第六课时利用不等关系分析比赛
课型:新授
课时:1课时
主备人:初一数学组
学习目标:
1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;
2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;
3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;
4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会。
学习重点:利用不等关系分析预测比赛结果
学习难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性
学习过程
一.自主学习
1、什么叫一元一次不等式(组)?

2、怎样求解一元一次不等式(组)?列一元一次不等式(组)解应用题的步骤是什么?
二、合作探究:
某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?
(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?
(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?

三、巩固运用:
有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由。
(学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:
(1)如果小组中有一个队的战绩为全胜,A队能否出线?
(2)如果小组中有一个队的积分为10分,A队能否出线?
(3)如果小组中积分最高的队积9分,A队能否出线?)
四、反思总结:

五、达标检测
1、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分一个队打14场比赛负5场共得19分.那么这个队胜了几场?

2、某次篮球联赛中,火炬队与月亮队要争出线权.火炬队目前的战绩是17胜13负(其中有一场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.为确保出线,火炬队在后面的比赛中至少要胜多少场?
(在分析解决前述问题的过程中,自然会引发一些争论,提出一些问题假设,如:
(1)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜几场就一定能出线?
(2)如果月亮队在后面的比赛中3胜(包括胜火炬队1场)2负,那么火炬队在后面的比赛中至少要胜几场才能确保出线?
(3)如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中战绩如何几
(4)如果火炬队在后面的比赛中胜3场,那么什么情况下它一定出线?)
第七课时复习不等式与不等式组
课型:复习课
课时:2课时
主备人:初一数学组
一、知识点:
1、不等式和一元一次不等式的含义。
①如:-3﹥-5,b+1≤3,2x﹤y,-1﹤x≤3,x≠1等,含有的式子可称作不等式;②如:y-3﹥-5,b+1≤2b-3,2x+1﹤4等,是不等式并只含有未知数,同时未知数的次数是,则可称为一元一次不等式。
2、不等式的解、解集、解不等式的概念。
举例:判断下列哪些是不等式x+4﹥7的解?哪些不是不等式的解?
-4,-3.5,1,2.3,3,0,17,4,7,11。
分析:由3+3=6可知:(1)当x﹥3时,不等式x+4﹥7成立;(2)当x﹤3或x=3时,不等式x+3﹥6不成立。也就是说,任何一个大于3的数都是不等式x+4﹥7的解(如题目中的x=7就是不等式x+4﹥7其中的1个解)。这样的解有无数个,因此x﹥3表示了能使不等式成立的未知数“x”的取值范围,我们把它叫做不等式x+4﹥7的解的集合,简称解集。
而求不等式的解或解集的过程叫做。
3、不等式的三个性质:(思考:与等式基本性质对比有何异同?)
不等式性质1:
不等式性质2:
不等式性质3:
4、不等式解集的数轴表示。举例:(注意数轴看作由无数个点组成,每一个点都与一个数对应,注意空心点和实心点的用法。)

5、解一元一次不等式的一般步骤:(与解一元一次方程类似)
(1);(2);(3);(4);(5)(注意不等号开口的方向)。
6、由两个一元一次不等式组成的不等式组的解集的四种情形:
不等式组(其中:﹤)
在数轴上表示不等式组的解集口诀

同大取大

同小取小
﹤﹤
大小小大中间找
无解大大小小是无解
解题的关键:不等式组中的两个不等式的解集有无公共部分,且公共部分是什么。
7、列一元一次不等式(组)解应用题的步骤
(步骤与列一元一次方程解应用题类似,关键是设元和找出题目中各数量存在的不等关系。)
二、基础训练:
1.用恰当的不等号表示下列关系:
①x的3倍与8的和比y的2倍小:
②老师的年龄a不小于你的年龄b小:
2.已知ab用””或””连接下列各式;
(1)a-3----b-3,(2)2a-----2b,(3)-a3------b3(4)4a-3----4b-3(5)a-b---0
3.的与12的差不小于6,用不等式表示为__________________.
4.当_____时,代数式的值至少为1.
5.不等式6-12x0的解集是_________.
6.当x________时,代数式的值是非正数.
7.不等式组的解为.
8.若方程的解是正数,则的取值范围是_________
9.若点P(1-m,m)在第二象限,则(m-1)x1-m的解集为_______________.
10.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为米/分,则可列不等式组为__________________,小明步行的速度范围是_________.
三、典型例题:
【例1】下列不等式,那些总成立?那些总不成立?那些有时成立而有时不成立?
(1)-9.4﹤2,(2)3﹥0,(3)b+5﹤0,(4)︱x︱﹥0,(5)﹤0,(6)5+x﹥5-x。
分析:主要考虑未知数的取值,特别是正数、负数和零。

【例2】若﹤﹤0,则下列式子:①+1﹤+2,②﹥1,③+﹤,④﹤中,正确的有()。A、1个B、2个C、3个D、4个
分析由﹤﹤0得,、同为负数并且︱︱﹥︱︱。如取=-2,=-1代入式子中。
【例3】不等式2-7≤5的正整数解有()。A、7个B、6个C、5个D、4个
分析:先求出不等式的解:≤6,再从中找出符合条件的正整数。
【例4】如果的值是非正数,则的取值范围是()。
A、≤1B、≥1C、≤-1D、≥-1
分析:非正数也就是:0和负数,即≤0。
【例5】不等式组的解集是()。A﹥-B﹤-C≤1D-﹤≤1
分析:先求出每一个不等式的解集,再看两个解集的公共部分是什么。
解不等式①得:﹥-,解不等式②得:≤1;
解集在数轴表示如下:

∴原不等式组的解集为:-﹤≤1(大小小大中间找)。
【例6】不等式组无解,则的取值范围是()。
A、=2B、﹥2C、≤2D、≥2
分析:根据大大小小是无解,可得是较大的数,2是较小的数(但可以等于2)即:≥2。
【例7】不等式组的整数解是:__________________。
分析:先求出不等式组的解集-﹤≤1,再从中选出整数:0和1。
四、巩固运用:
1、下列式子:①-3﹤0,②4x+3y﹥0,③x=3,④,⑤x≠5,⑥x-3﹤y+2,其中是不等式的有()。A、5个B、4个C、3个D、2个
2、有理数、在数轴上位置如图所示,用不等式表示:
①+____0,②____0,③︱︱____︱︱。
3、若﹥,则下列式子一定成立的是()。
A、+3﹥+5B、-9﹥-9C、-10﹥-10D、﹥
4、下列结论:①若﹤,则﹤;②若﹥,则﹥;③若﹥且若=,
则﹥;④若﹤,则﹤。正确的有()。A、4个B、3个C、2个D、1个
5、若0﹤﹤1,则下列四个不等式中正确的是()。
A、﹤1﹤,B、﹤﹤1,C、﹤﹤1,D、1﹤﹤。
6、如果不等式(+1)﹥(+1)的解为﹤1,则必须满足________。
7、求下列不等式的解集,并把解集在数轴上表示出来。
(1)2-5﹥5-11(2)3-2(1-2)≥1

(3)4-7﹥3-1(4)2(-6)﹤3-

7、解不等式组
○1○2○3

8、关于的方程的解x满足2x10,求的取值范围

9、当关于、的二元一次方程组的解为正数,为负数,则求此时的取值范围?

10、不等式的解集为,求的值。

11、某商品的进价为500元,标价为750元,商家要求利润不低于5%的售价打折,至少可以打几折?

12、学校计划组织部分三好学生去某地参观旅游,参观旅游的人数估计为10--25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,两家旅行社表示可给予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余游客八折优惠。学校应怎样选择,使其支出的旅游总费用较少?

第九章不等式与不等式组检测题
(满分100分,时间60分钟)
一、填空题(共10小题,每题3分,共30分)
1.“的一半与2的差不大于”所对应的不等式是.
2.不等号填空:若ab0,则;;.
3.若1,则0用“”“=”或“”号填空).
4.直接写出下列不等式(组)的解集:①②③.
5.当时,代数式的值不大于零.
6.某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是.
7.不等式1,的正整数解是.
8.不等式的最大整数解是.
9.不等式的解集为3则.
10.不等式组的解为.
二、选择题(共4小题,每题4分,共16分)
11.不等式的解集在数轴上表示正确的是()

12.不等式的解集为()A.B.0C.0D.
13.不等式6的正整数解有()A.1个B.2个C.3个D.4个
14..已知关于的不等式组无解,则的取值范围是()
A.B.C.D.
三、解答题(共54分)
15.解不等式(组)(4×6=24分)

16.(7分)代数式的值不大于的值,求的范围

17.(7分)方程组的解为负数,求的范围.

18.(8分)某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分.某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?

19.(8分)国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

不等式及不等式组


不等式及不等式组
知识网络
一、不等式与不等式的性质
1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:
(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a>b,c为实数a+c>b+c
(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b,c>0ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0ac<bc.
二、不等式(组)的类型及解法
1、一元一次不等式:
(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.
(2)一元一次不等式的解集用数轴表示有以下四种情况,如下图所示:

(1)如图中所示:

(2)如图中所示:

(3)如图中所示:
(4)如图中所示:
用数轴表示不等式的解集,应记住下面的规律:
大于向右画,小于向左画,有等号(,)画实心点,无等号(,)画空心圈.
(3)解一元一次不等式的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤将项的系数化为1.
注意:解不等式时,上面的五个步骤不一定都能用到,并且不一定按照顺序解,要根据不等式的形式灵活安排求解步骤.
2、一元一次不等式组:
(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
几个一元一次不等式合在一起,就组成了一个一元一次不等式组.
几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
不等式组解集的确定方法:若ab,则有:
(1)的解集是xa,即“同小取小”.(2)的解集是xb,即“同大取大”.
(3)的解集是axb,.(4)的解集是无解,即“一大一小中间找”.

初一数学不等式与不等式组教案(2)


各个知识点,典型例题,中考例题,易错题型,随堂训练知识点一 不等式的概念像 , , 等用不等号表示不等关系的式子,叫做不等式。常见的不等号有 。例1 用适当的符号表示下列关系:(1) a的3倍与6的差大于0;(2) x的平分不小于5;(3) m与n的和的平方不小于m与n的平方的和;(4) a与3的差是非负数。 知识点二 不等式的解法及不等式的解集(1) 不等式的解对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的数,都叫做这个不等式的解。若要判断某个未知数的值是否是不等式的解,可直接将该值代入不等式的左右两边看不等式是否成立,如果成立,则是,否则不是。例2 下列各数哪些是不等式 的解?

点击此处免费下载本资源

()优秀的教学 资源网站,本站所有资源免费下载,欢迎您下次再来。

文章来源:http://m.jab88.com/j/25270.html

更多

最新更新

更多