88教案网

直线与椭圆的位置关系导学案

一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生们能够在上课时充分理解所教内容,减轻高中教师们在教学时的教学压力。你知道怎么写具体的高中教案内容吗?下面是小编精心为您整理的“直线与椭圆的位置关系导学案”,供大家参考,希望能帮助到有需要的朋友。

直线与椭圆的位置关系导学案
教学目标:
(1)会判断直线与椭圆的位置关系,理解直线与椭圆相交所得的弦长公式;
(2)通过求弦长具体实例,发现求弦长的一般规律,体验从特殊到一般的认识规律;
(3)通过几何关系与代数运算的不断转化,感悟解析几何基本思想,培养学生逻辑推理能力和运算能力.
教学重点:直线与椭圆的弦长公式探究
教学难点:从特殊到一般规律的发现,“数”和“形”之间的相互转化.
教学过程:
教师:直线与圆有哪些位置关系?如何判断?
学生:直线与圆的位置关系及其判定:
几何方法:相离、相切、相交.
代数方法:方程组无解相离、有唯一解相切、有两组解相交.
教师:由于圆的特殊性,几何方法显得简单,而代数方法具有一般性.自然引出下面问题.类比直线和圆,直线与椭圆有哪些位置关系?
(板书::,E:)
学生:直线与椭圆有三种位置关系:相离、相切、相交.或直线与椭圆的公共点个数可能是零个、一个、两个.
教师:当直线与椭圆没有公共点时,称直线与椭圆相离;当有一个公共点时,称直线与椭圆相切,这条直线叫椭圆的一条切线;当直线与椭圆有两个公共点时,称直线与椭圆相交.(板书:相离、相切、相交)
板书课题:直线椭圆位置关系
教师:请大家研究下面问题如何解决
判断出直线与椭圆E:的位置关系是_______
学生1:画图,直线与y的交点(0,1)在椭圆内部,所以直线与椭圆相交.
学生2:由(板书),得,
,直线与椭圆相交.

教师:(学生思考解答时,教师画出椭圆)学生1的方法简捷明了,使得我们对问题有了直观的认识,为什么多数同学没有这样解答呢?从“数形结合”是思考问题的首选。
但我们的认识不能停留在此,要进一步深入;如果将直线改为,在化草图的情况下方法1就不适合了,而方法2具有一般性.(板书
消去y得,.
时相离、时相切、时相交。
教师:上述问题中,设直线与椭圆交于A,B两点,你如何求线段AB的长|AB|呢?
(学生独立解答教师巡视)运算过程中想一想能否优化运算过程,简化运算。
教师提示.
发现下面三种运算,请该生板书
学生1:,;
A(,),B(,).
|AB|=
.
学生2:,;
A(,),B(,).
|AB|=
=.
学生3:,;
=
|AB|=
=.
教师:运算是一件既容易又困难的工作,容易是指谁都会算,困难是指算得既简洁又准确。学生2注意到提取公因数,比学生1的算法要简单;学生3(如果没有学生这样做,老师从学生2中引导出来)注意到与之间关系,使得要研究4个未知量的问题转化为两个未知量的问题。同过大家的实践,可以发现对于直线上两点,结论。这是由于直线上点的横纵坐标是线性变化的。
大家再仔细观察解题过程,还能发现那些结论?
学生:在|AB|=中,;()
教师:上述结论是偶然还是必然?能否推广到一般情况使得我们连两个未知数都可以不求了?
学生:当直线与椭圆相交时|AB|=成立。
教师:小结一下我们上面的探究,(1)计算不是一味地算,要观察数式之间的联系,比如提取公因式、配方等如学生2;(2)在解析几何中利用数式的几何意义如学生3;(3)从具体过程中发现一般规律,如弦长公式。
教师:解析几何思想方法告诉我们,代数结论要翻译成几何结论,那么|AB|=在图形中的有怎样几何的意义呢?
教师:(如果前面没有得到)
|AC|=||,|BC|=,由勾股定理
可得|AB|=,比较|AB|=,
得到。
(如果前面得到了)由,可求得,那么。
教师:这说明弦长公式我们可以从代数和几何两个角度去理解。
练习:已知直线直线与椭圆E:交于A,B两点,求AOB的面积。
小结:请同学总结回顾本节课你学到了什么知识?有什么体会?
直线与椭圆的位置关系及判定方法、弦长公式|AB|=;弦在x轴上的投影||,或,以及用代数法解决几何问题的方法.
解题要反思,从解题过程和结论中能否发现规律;做解析几何题目不是程序化操作,要思考运算背后的几何意义.

检测题:
1.直线被椭圆截得的弦长为_______________.;

2.直线y=k(x+1)与椭圆的位置关系为______________;

3.直线被椭圆截得的弦长为___________;

4.已知直线直线与椭圆E:交于A,B两点,若三角形AOB的面
积1,求直线的斜率的值.

5.已知直线直线与被椭圆E:截得弦长为,求直线的方
程.
.
6.判断直线y=kx+b与椭圆位置关系时,若我们消去的是x,得到的是关于y的二元一次方程:(A),弦长公式有变化吗?你能利用这节课的思想方法证明你的结论吗?

相关推荐

直线与直线之间的位置关系


2.1.7直线与直线之间的位置关系-两点间距离
一、三维目标
1、知识与技能:掌握直角坐标系两点间距离,用坐标法证明简单的几何问题。
2、过程和方法:通过两点间距离公式的推导,能更充分体会数形结合的优越性。
3、情态和价值:体会事物之间的内在联系,,能用代数方法解决几何问题
二、教学重点,难点:重点,两点间距离公式的推导。难点,应用两点间距离公式证明几何问题。
三、教学方式:启发引导式。
教学用具:用多媒体辅助教学。
四、教学过程
(一)、情境设置,导入新课
课堂设问一:回忆数轴上两点间的距离公式,同学们能否用以前所学的知识来解决以下问题
平面直角坐标系中两点,分别向x轴和y轴作垂线,垂足分别为,直线相交于点Q。
在直角中,,为了计算其长度,过点向x轴作垂线,垂足为过点向y轴作垂线,垂足为,于是有
所以,=。
由此得到两点间的距离公式,
在教学过程中,可以提出问题让学生自己思考,教师提示,根据勾股定理,不难得到。
(二)、例题解答,细心演算,规范表达。
例1:以知点A(-1,2),B(2,),在x轴上求一点,使,并求的值。
解:设所求点P(x,0),于是有
由得解得x=1。
所以,所求点P(1,0)且通过例题,使学生对两点间距离公式理解。应用。
解法二:由已知得,线段AB的中点为,直线AB的斜率为k=
线段AB的垂直平分线的方程是y-
在上述式子中,令y=0,解得x=1。所以所求点P的坐标为(1,0)。因此
同步练习:书本112页第1,2题
(三)、巩固反思,灵活应用。(用两点间距离公式来证明几何问题。)
例2证明平行四边行四条边的平方和等于两条对角线的平方和。
分析:首先要建立直角坐标系,用坐标表示有关量,然后用代数进行运算,最后把代数运算“翻译”成几何关系。
这一道题可以让学生讨论解决,让学生深刻体会数形之间的关系和转化,并从中归纳出应用代数问题解决几何问题的基本步骤。
证明:如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立直角坐标系,有A(0,0)。
设B(a,0),D(b,c),由平行四边形的性质的点C的坐标为(a+b,c),因为
所以,
所以,
因此,平行四边形四条边的平方和等于两条对角线的平方和。
上述解决问题的基本步骤可以让学生归纳如下:第一步:建立直角坐标系,用坐标表示有关的量。
第二步:进行有关代数运算。第三步;把代数结果“翻译”成几何关系。
思考:同学们是否还有其它的解决办法?
还可用综合几何的方法证明这道题。
(四)、课堂小结:主要讲述了两点间距离公式的推导,以及应用,要懂得用代数的方法解决几何问题,建立直角坐标系的重要性。
(五)、课后练习1.:证明直角三角形斜边上的中点到三个顶点的距离相等。
2.在直线x-3y-2=0上求两点,使它与(-2,2)构成一个等边三角形。
3.(1994全国高考)点(0,5)到直线y=2x的距离是。
五、教后反思:

直线与圆的位置关系


总课题圆与方程总课时第35课时
分课题直线与圆的位置关系分课时第1课时
教学目标依据直线和圆的方程,能够熟练的写出它们的交点坐标;能通过比较圆心到直线的距离和半径之间的大小判断直线和圆的位置关系;理解直线和圆的方程组成的二元二次方程组的解的对应关系.
重点难点通过方程组的解来研究直线和圆的位置关系;及圆的几何性质在解题中应用.
引入新课
问题1.直线和圆的位置关系有几种情况?直线和圆的位置关系是用什么方法研究的?

问题2.我们在解析几何中已经学习了直线的方程和圆的方程分别为,,怎样根据方程判断直线和圆的位置关系呢?

1.已知直线和圆的方程分别为,,,如何求直线和圆的交点坐标?

2.方程组的解有几种情况?

我们通常有如下结论:
相离相切相交
方程组______解方程组______解方程组有____________解

例题剖析
例1求直线和圆的公共点坐标,并判断它们的位置关系.

例2自点作圆的切线,求切线的方程.

变式训练:(1)自点作圆的切线,求切线的方程.
(2)自点作圆的切线,求切线的方程.

例3求直线被圆截得的弦长.

巩固练习
1.判断下列各组中直线与圆的位置关系:
(1),;__________________________;
(2),;___________________;
(3),._____________________.
2.若直线与圆相交,则点与圆的位置关系是.
3.(1)求过圆上一点的圆的切线方程;
(2)求过原点且与圆相切的直线的方程.

课堂小结
通过解方程组来判断交点的个数;通过圆心到直线的距离与半径的大小比较来判断圆与直线的位置关系.
课后训练
一基础题
1.直线与圆的位置关系是.
2.直线和圆交于点,,则弦的
垂直平分线方程是.
3.斜率为的直线平分圆的周长,则直线的方程
为.
4.已知过点的直线被圆截得的弦长为,
求直线的方程.

5.已知圆与直线相交于,两点,
为坐标原点,若,求的值.
6.已知过点的直线与圆相交,
求直线斜率的取值范围.

7.求半径为,且与直线切于点的圆的方程.

8.求圆心在轴上,且与直线,直线都相切
的圆的方程.

二提高题
9.已知圆的方程是,求证:经过圆上一点的切线方程
是.

三能力题
10.已知圆,直线.
(1)当点在圆上时,直线与圆具有怎样的位置关系?
(2)当点在圆外时,直线具有什么特点?

空间直线与直线之间的位置关系


第二课时空间中直线与直线之间的位置关系
(一)教学目标
1.知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;
(3)理解并掌握公理4;
(4)理解并掌握等角公理;
(5)异面直线所成角的定义、范围及应用。
2.过程与方法
让学生在学习过程中不断归纳整理所学知识.
3.情感、态度与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.
(二)教学重点、难点
重点:1、异面直线的概念;2、公理4及等角定理.
难点:异面直线所成角的计算.
(三)教学方法
师生的共同讨论与讲授法相结合;
教学过程教学内容师生互动设计意图
新课导入问题:在同一平面内,两条直线有几种位置关系?空间的两条直线还有没有其他位置关系?师投影问题,学生讨论回答
生1:在同一平面内,两条直线的位置关系有:平行与相交.
生2:空间的两条直线除平行与相交外还有其他位置关系,如教室里的电灯线与墙角线……
师(肯定):这种位置关系我们把它称为异面直线,这节课我们要讨论的是空间中直线与直线的位置关系.以旧导新培养学生知识的系统性和学生学习的积极性.
探索新知1.空间的两条直线位置关系:
共面直线

异面直线:不同在任何一个平面内,没有公共点.

师:根据刚才的分析,空间的两条直线的位置关系有以下三种:①相交直线—有且仅有一个公共点
②平行直线—在同一平面内,没有公共点.
③异面直线—不同在任何一个平面内,没有公共点.
随堂练习:
如图所示P50-16是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.
答案:4对,分别是HG与EF,AB与CD,AB与EF,AB与HG.现在大家思考一下这三种位置关系可不可以进行分类
生:按两条直线是否共面可以将三种位置关系分成两类:一类是平行直线和相交直线,它们是共面直线.一类是异面直线,它们不同在任何一个平面内.
师(肯定)所以异面直线的特征可说成“既不平行,也不相交”那么“不同在任何一个平面内”是否可改为“不在一个平面内呢”
学生讨论发现不能去掉“任何”
师:“不同在任何一个平面内”可以理解为“不存在一个平面,使两异面直线在该平面内”培养学生分类的能力,加深学生对空间的一条直线位置关系的理解
(1)公理4,平行于同一条直线的两条直线互相平行
(2)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
例2如图所示,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.
证明:连接BD,
因为EH是△ABD的中位线,
所以EH∥BD,且.
同理FG∥BD,且.
因为EH∥FG,且EH=FG,
所以四边形EFGH为平行四边形.师:现在请大家看一看我们的教室,找一下有无不在同一平面内的三条直线两两平行的.
师:我们把上述规律作为本章的第4个公理.
公理4:平行于同一条直线的两条直线互相平行.
师:现在请大家思考公理4是否可以推广,它有什么作用.
生:推广空间平行于一条直线的所有直线都互相平行.它可以用来证明两条直线平行.
师(肯定)下面我们来看一个例子
观察图,在长方体ABCD–A′B′C′D′中,∠ADC与∠A′D′C′,∠ADC与∠A′B′C′的两边分别对应平行,这两组角的大小关系如何?
生:从图中可以看出,
∠ADC=∠A′D′C′,
∠ADC+∠A′B′C′=180°
师:一般地,有以下定理:……这个定理可以用公理4证明,是公理4的一个推广,我们把它称为等角定理.
师打出投影片让学生尝试作图,在作图的基础上猜想平行的直线并试图证明.
师:在图中EH、FG有怎样的特点?它们有直接的联系吗?引导学生找出证明思路.

培养学生观察能力语言表达能力和探索创新的意识.

通过分析和引导,培养学生解题能力.
探索新知3.异面直线所成的角
(1)异面直线所成角的概念.
已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)异面直线互相垂直
如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a、b,记作a⊥b.
例3如图,已知正方体ABCD–A′B′C′D′.
(1)哪些棱所在直线与直线BA′是异面直线?
(2)直线BA′和CC′的夹角是多少?
(3)哪此棱所在的直线与直线AA′垂直?
解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线.
(2)由BB′∥CC′可知,∠B′BA′为异面直线B′A与CC′的夹角,∠B′BA′=45°.
(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.师讲述异面直线所成的角的定义,然后学生共同对定义进行分析,得出如下结论.
①两条异面直线所成角的大小,是由这两条异面直线的相互位置决定的,与点O的位置选取无关;
②两条异面直线所成的角

③因为点O可以任意选取,这就给我们找出两条异面直线所成的角带来了方便,具体运用时,为了简便,我们可以把点O选在两条异面直线的某一条上;
④找出两条异面直线所成的角,要作平行移动(作平行线),把两条异面直线所成的角转化为两条相交直线所成的角;
⑤当两条异面直线所成的角是直线时,我们就说这两条异面直线互相垂直,异面直线a和b互相垂直,也记作a⊥b;
⑥以后我们说两条直线互相垂直,这两条直线可能是相交的,也可能是不相交的,即有共面垂直,也有异面垂直这样两种情形.
然后师生共同分析例题加深对平面直线所成角的理解,培养空间想象能图力和转化化归以能力.
随堂练习1.填空题:
(1)如图,AA′是长方体的一条棱,长方体中与AA′平行的棱共有条.
(2)如果OA∥O′A′,OB∥O′B′,那么∠AOB和∠A′O′B′.
答案:(1)3条.分别是BB′,CC′,DD′;(2)相等或互补.
2.如图,已知长方体ABCD–A′B′C′D′中,AB=,AD=,AA′=2.
(1)BC和A′C′所成的角是多少度?
(2)AA′和BC′所成的角是多少度?学生独立完成
答案:.
2.(1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=,B′C′=,所以∠B′C′A′=45°.
(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BB′所成的角.
在Rt△BB′C′中,B′C′=AD=,BB′=AA′=2,
所以BC′=4,∠B′BC′=60°.
因此,异面直线AA′与BC′所成的角为60°.
归纳总结1.空间中两条直线的位置关系.
2.平行公理及等角定理.
3.异面直线所成的角.学生归纳,教师点评并完善培养学生归纳总结能力,加深学生对知识的掌握,完善学生知识结构.
作业2.1第二课时习案学生独立完成固化知识
提升能力
附加例题
例1“a、b为异面直线”是指:
①a∩b=,且a∥b;
②a面,b面,且a∩b=;
③a面,b面,且∩=;
④a面,b面;
⑤不存在面,使a面,b面成立.
上述结论中,正确的是()
A.①④⑤正确B.①③④正确
C.仅②④正确D.仅①⑤正确
【解析】①等价于a和b既不相交,又不平行,故a、b是异面直线;②等价于a、b不同在同一平面内,故a、b是异面直线.故选D
例2如果异面直线a与b所成角为50°,P为空间一定点,则过点P与a、b所成的角都是30°的直线有且仅有条.
【解析】如图所示,过定点P作a、b的平行线
a′、b′,因a、b成50°角,∴a′与b′也成50°角.过P作∠A′PB′的平分线,取较小的角有
∠A′PO=∠B′PO=25°.
∵∠APA′>A′PO,
∴过P作直线l与a′、b′成30°角的直线有2条.
例3空间四边形ABCD,已知AD=1,BD=,且AD⊥BC,对角线BD=,AC=,求AC和BD所成的角。
【解析】取AB、AD、DC、BD中点为E、F、G、M,连EF、FG、GM、ME、EG.
则MG
EM
∵AD⊥BC∴EM⊥MG
在Rt△EMG中,有
在RFG中,∵EF=
∴EF2+FG2=EG2
∴EF⊥FG,即AC⊥BD
∴AC和BD所成角为90°.
【点评】根据异面直线成角的定义,异面直线所成角的求法通常采用平移直线,转化为相交直线所成角,注意角的范围是.

直线与平面的位置关系


总课题点、线、面之间的位置关系总课时第11课时
分课题直线与平面的位置关系(三)分课时第3课时
教学目标了解直线和平面所成角的概念和范围;能熟练地运用直线和平面垂直的判定定理和性质定理.
重点难点直线与平面所成角的概念.
引入新课
1.通过观察一条直线与一个平面相交,思考如何量化它们相交程度的不同.
2.平面的斜线的定义:;
叫做斜足;叫做这个点到平面的斜线段.
3.过平面外一点向平面引斜线和垂线,那么过斜足与垂足
的直线就是;
线段就是线段.
4.斜线与平面所成的角的概念
,其范围是.
指出右上图中斜线与平面所成的角是,你能证明这个角是与平面内经过点的直线所成的所有角中最小的角吗?
一条直线垂直于平面时,这条直线与平面所成的角是;
一条直线与平面平行或在平面内,我们说他们所成的角是.
思考:直线与平面所成的角的范围是.
例题剖析
例1如图:已知,分别是平面垂线和斜线,分别是垂足和斜足,,,求证:.

能用文字语言表述这个结论吗?

例2如图,∠BAC在平面内,点P,∠PAB=∠PAC.求证:点P在平面内的射影在∠BAC的平分线上.
[思考]:
(1)若∠PAB=∠PAC=60°,∠BAC=90°,则直线PA与所成角的大小__________.

(2)从平面外同一点引平面的斜线段长相等,那么它们在内射影长相等吗?反之成立吗?

(3)若将例2中条件“∠PAB=∠PAC”改为“点P到∠BAC的两边AB、AC的距离相等”,结论是否仍然成立?

(4)你能设计一个四个面都是直角三角形的四面体吗?

巩固练习
1.如图,,平面,则在的边所在直线中:
(1)与垂直的直线有:
(2)与垂直的直线有:
2.在正方体中,直线与平面
所成的角是
3.如果PA、PB、PC两两垂直,那么P在平面ABC内的射影一定是△ABC的()
A.重心B.内心C.外心D.垂心
4.如图,一块正方体木料的上底面内有一点,要经过点在上底面内画一条直线与垂直,应怎样画?

课堂小结
平面的斜线及斜线在平面内的射影的概念;直线与平面所成的角概念、范围.
课后训练
一基础题
1.若直线与平面不垂直,那么在平面内与直线垂直的直线()
只有一条有无数条是平面内的所有直线不存在
2.设PA、PB、PC是从点P引出的三条射线,每两条的夹角都等于60°,
则直线PC与平面APB所成角的余弦值是.
3.在三棱锥P-ABC中,顶点P在平面ABC内的射影是△ABC的外心,
则三条侧棱PA、PB、PC大小关系是_________________.
二提高题
4.在四棱锥中,是矩形,平面.
(1)指出图中有哪些三角形是直角三角形,并说明理由;
(2)若,试求与平面所成角的正切值.

5.求证:如果平面内的一条直线与这个平面的一条斜线垂直,那么这条直线就和这条斜线在这个平面内的射影垂直.

三能力题
6.在三棱锥P-ABC中,点P在平面ABC上的射影O是△ABC的垂心,求证:PA⊥BC.

文章来源:http://m.jab88.com/j/14059.html

更多

最新更新

更多