相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。上课才能够为同学讲更多的,更全面的知识。那你有没有为了一个问题而去做过一份教案呢?小编收集整理了一些北京版五年级下册《长方体和正方体的表面积》数学教案,仅供参考,希望能为您提供参考!
北京版五年级下册《长方体和正方体的表面积》数学教案
教学目标:
1.通过观察、操作,帮助学生认识长方体和正方体的表面积的意义,建立表面积的概念。
2.结合具体情境,掌握长方体和正方体表面积的计算方法,会计算长方体和正方体的表面积。
3.在实际应用中,培养学生的数学应用意识,感受数学与生活的紧密联系,提高应用数学知识解决生活问题的能力。
教学重点:
表面积的意义
教学难点:
长方体和正方体表面积的计算方法
教学准备:
教师预备长方体、正方体表面积展开的教具,学生每人预备长方体、正方体纸盒和火柴盒各1个,课件
教学过程:
一、创设情境、提出问题
师:同学们,上节课我们认识了长方体和正方体,回忆一下,谁能说一说长方体和正方体有哪些联系和区别?(学生回答)
师:今天咱们继续来探索长方体、正方体的新知识。观察信息窗2,说一说你们看到了什么?(学生观察、思考,回答老师提出的问题。)
师:看到这些问题,你们想提出什么问题?
学生可能提出的问题:
(1)我想知道将这两个盒子展开后各是什么形状?
(2)我想知道盒子展开后6个面共多少平方厘米?
【问题是数学的心脏,让学生观察情境图,进而提出问题,这样符合学生的认知规律,能激发学生的学习兴趣。】
二、自主合作,探究新知
1、长方体、正方体的表面积的概念。
师:我们先来解决第一位同学提出的问题。请同学们拿出自己准备好的盒子,将它的6个面展开,看看各是什么形状?
(学生动手操作,提示学生对照实物,并充分发挥想象来完成。)
师:注意展开前长方体纸盒的每个面在展开后是哪个面。为了便于对照,可以在展开前的每个面上分别用上、下、前、后、左、右标明。请大家试试看。
(选一个长方体或正方体纸盒展开图贴在黑板上。用课件动态展示长方体的展开过程。)
学生在小组内讨论,分别用上、下、前、后、左、右标明。展开的这个图形的所有面的大小就是盒子的表面积。通过观察课件和动手操作实物模型,你能用自己的话说一说,什么是长方体或正方体的表面积吗?学生回答问题。
【通过摸摸、看看、剪剪,使学生在观察中充分感知,在动手中展开思维,在操作中尝试发现,从而理解表面积的意义。】
2、长方体表面积的计算方法。
教师指着两个展开图说明:长方体或正方体6个面的总面积叫做它的表面积。(板书课题:长方体和正方体的表面积)
在日常生活和生产中,常常碰到要计算长方体的表面积。怎样算长方体的表面积呢?
(1)课件出示问题:做这个长方体纸盒需要多少硬纸板?
(2)提问:要求“做这个长方体纸盒需要多少硬纸板”就是要计算什么?就是要计算这个长方体的表面积,也就是求长方体6个面的总面积。
(3)学生尝试计算
小组讨论,用什么办法把自己的计算方法和小组内的同学交流。
(4)全班交流方法。结合课件演示。
①10×6×2 + 10×2×2 +6×2×2
分别算出上、下,前、后,左、右面的面积之和,然后算总和。
②(10×6+10×2+6×2)×2
(长×宽+长×高+高×宽)× 2
因为长方体6个面中分别有3组相对的面的面积相等,所以是先算出上、前、左这三个面的面积之和,再乘以2。
多媒体展示长方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
或者长方体的表面积=长×宽×2+长×高×2+宽×高×2。
③引导学生比较后提问:这两种计算方法有什么不同?
(第一种方法是先分别算出上、下面的面积和,前、后面的面积和,以及左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘上2。)
提问:这两种方法有什么联系吗?引导学生说出:根据乘法分配律可以把第一个式子改变成第二个式子。第二个式子更简便些。
【教师让学生通过看实物图和平面展开图,想一想、量一量、算一算,大胆猜想,探索尝试计算等。不仅学生自己主动参与了 获取知识的过程,而且也自己探索到解决问题的方法。】
3、强化练习:求下列长方体的表面积(课件出示)
4、探究正方体的表面积计算方法
师:正方体化妆品盒的表面积怎样求呢?(多媒体出示:棱长为5厘米的正方体的表面积是多少?)
师:在练习本上独立完成。
汇报交流:由学生根据列式总结出正方体的表面积计算方法:
正方体的表面积=一个面的面积×6
(幻灯片出示:正方体的表面积=棱长×棱长×6)
【老师把迁移类推的机会留给了学生,让学生自己去发现,类推出正方体表面积的计算方法,不仅培养了学生的逻辑思维能力,而且培养了学生的再创造能力。】
5、强化练习:求下列正方体的表面积(课件出示)
三、提高练习:(课件出示)
1、求下面长方体和正方体的表面积
2、制作这样一个电脑包装箱至少需要多少平方厘米纸板?
3、分析在计算下列物体面积时,应考虑几个面的面积?
4、一个玻璃鱼缸的形状是正方体,棱长3dm。制作这个鱼缸时至少需要玻璃多少平方分米? (鱼缸的上面没有盖。)
5、如图所示:把一个长方体切成两个同样大的正方体,表面积比原来( )了 ( )平方厘米。
【当堂训练,由易到难,有层次性和趣味性,力求突出重点,解决难点,把抓基础知识和解决生活实际问题紧密结合起来。】
四、课堂总结:
今天我们学习了什么新知识?什么是长方体和正方体的表面积?准确计算长方体表面积的要点是什么?
五、达标练习:(课件出示)
1、求下面长方体和正方体的表面积
2、亮亮家要给一个长 0.75 m,宽 0.5 m,高 1.6 m 的简易衣柜换成布罩,至少需要用布多少平方米?
3、一个正方体礼品盒,棱长 1.2 dm,包装这个礼品盒至少用多少平方分米的包装纸?
板书设计:
长方体和正方体的表面积
长方体或正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。老师需要提前做好准备,让学生能够快速的明白这个知识点。这样可以让同学们很容易的听懂所讲的内容,那么一份优秀的教案应该怎样写呢?小编收集整理了一些“人教新课标五年级下册《长方体和正方体的表面积》数学教案”,欢迎阅读,希望您能阅读并收藏。
《长方体和正方体的表面积》教学设计文稿
一、教材分析:
1、内容说明:《长方体和正方体的表面积》是新课标人教版小学数学五年级下册第三单元第二小节的内容。
2、内容解析:这部分内容是在学生认识并掌握了长方体和正方体特征的基础上教学的。计算长方体和正方体的表面积在生活中应用广泛。学习这部分内容可进一步加深学生对长方体和正方体特征的理解,解决一些实际问题。同时,还可以发展学生的空间观念,为日后学习长方体和正方体的其它知识提供必备的条件。
二、学情分析:
五年级学生的思维能力主要是直观形象到逻辑思维的过渡阶段。要想理解长方体表面积的计算方法,必须理解每个面的长和宽各是多少。学生往往因不能根据长方体的长、宽、高想象出每个面的长和宽各是多少,以致计算中出现错误。为此,我在教学中加强了学生的动手操作,并利用多媒体课件辅助教学,突破难点。
三、教学目标:
1、使学生在操做、观察活动中,理解表面积的意义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生能够灵活运用长方体和正方体表面积的知识解决生活中的实际问题。
3、培养学生积极探索、自主参与的意识和能力,进一步发展空间观念。
4、结合具体情境,让学生体会数学与生活的联系。增强学生的学习兴趣与信心。
教学重点:掌握长方体和正方体表面积的计算方法,并能运用所学的知识解决生活中的实际问题。
教学难点:根据长方体的长、宽、高确定每个面的长和宽。
四、教学内容与过程:
教学内容:本节课教学表面积的认识,长方体和正方体表面积的计算两部分知识。结合学生特点,我先让学生认识表面积的概念,再重点探索长方体表面积的计算方法,正方体的表面积计算将由学生自学完成。
教学方法:根据《新课程标准》中所倡导的学习方式是“主动参与、乐于探索、勤于动手”,构建和谐的课堂气氛。确定本课教学方法:操作感知、观察发现、引导探究、自主探究、合作交流。充分激发学生的学习兴趣,增强教学的直观性,有利于落实教学重点,突破难点。
教学流程:
一、创设情景,导入课题
二、动手操作,建立表象
三、观察讨论,自主探究
四、优化训练,拓展运用
五、总结评价,体验成功
一、创设情景,导入课题:
利用课件呈现情境图。小红要送妈妈一件礼物,他要用包装纸包装盒子,要裁多大纸呢?学生交流后导入课题。
设计意图:新课标强调,教师必须服务于学生的需要。我们应跟据已有的生活经验和实际情况,灵活的使用教材,使学生体会到数学在生活中的广泛应用,激发学习兴趣。
二、动手操作,建立表象:
指导学生动手操作,将长方体纸盒沿棱剪开,再展开,更清楚的看出长方体各面的联系。了解表面积的意义。
设计意图:《新课程标准》指出:“动手操作、自主探索与合作交流是学生学习数学的重要方式”。这一环节的设计,给学生充分的活动时间,探索新知。
三、观察讨论,自主探究:
现代化信息技术是解决数学问题的强有力工具。这一环节是本课的重点,因此,我设计了多媒体课件,更好地揭示知识的发生发展过程及其本质,帮助学生理解知识,发展思维。学生将通过观察、比较、讨论,探索长方体表面积的计算方法。
在学生理解了表面积的意义后,将学习例题1,既长方体表面积的计算。这时,我将直观形象地向学生展示长方体拆成平面展示图。让学生通过观察比较,很清楚的看到长方体各面的长和宽与长方体长、宽、高的关系,再通过交流,探索长方体表面积的计算方法,完成例1.正方体是特殊的长方体,例2将由学生自主探究,合作完成。
“鼓励算法多样化”是新课程的一个重要理念,在此,我将引导学生思考,激发学生创新,探索不同的计算方法。
四、优化训练,拓展练习:
在学完新知后将完成教材34页、35页的做一做,36页的5题。巩固所学的知识,使学生能灵活运用所学知识解决实际问题,感受到数学在生活中的广泛应用。
五、总结评价,体验成功:
指导学生总结学习的收获,体验成功的喜悦。
设计意图:让学生自我评价,既能梳理所学的知识,又可以培养他们的反思意识。
五、评价和反思:
数学教学中,要从学生已有的知识以及学生熟悉的生活情境出发,这是新大纲中所强调的。遵循新大纲的理念,从生活实际引入,使学生在观察和操作中,形成表象,建立概念。引导学生在探索中发现和总结出计算长方体和正方体表面积的方法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,培养创新意识。
例1:做一个微波炉的包装箱(如下图),至少要用多少平方米的硬纸板?
长0.7米,宽0.5米,高0.4米
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。从而在课堂上与学生更好的交流,你知道怎样才制作一份学生爱听的教案吗?以下是小编收集整理的“西师大版五年级下册《长方体、正方体的表面积》数学教案”,仅供您在工作和学习中参考。
西师大版五年级下册《长方体、正方体的表面积》数学教案
教学目标:
1、结合长方体和正方体的展开与折叠的情景,探究长方体和正方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算。
2、在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能运用所学知识解决一些实际问题。
3、通过亲身参与探索实践活动,去获得积极的成功的情感体验,并从中体验数学活动充满着探索与创造。
教学重点:
在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。
教学难点:
探索并理解长方体、正方体的表面积及其计算方法。
教学准备:
长方体、正方体纸盒、课件、剪刀
教学过程:
一、复习旧知、有效铺垫
1、图形的世界中我们认识了很多好朋友,一起看大屏幕(出示长方形),认识吗?你知道长方形面积怎么计算吗?(指名说,师板书)
再来看(出示长方体),这是新认识的长方体,你还记得长方体的面、顶点、棱的特征吗?(重点板书:长方体6个面)(前—后,左—右,上—下)
二、寻找联系、引入新知
1、审题读取数据
(出示相关数据)关于这个长方体,你能获取哪些信息?(引导学生读出长方体的长、宽、高,并发现相对的面,颜色相同。)
同学们手中也有一个相同的长方体,你能像老师这样摆放,并标出上下左右前后六个面吗?(试一试,并指名指一指)
2、动手填写数据
上节课,我们学习了展开与折叠,谁能说一说将这样一个长方体纸盒展开后,将得到一个什么样的图形?(将得到一个六个面相连接的平面图形,即长方体展开图)
在上节课的学习中,我们还知道由于剪的方法不同,得到的长方体的展开图也是不一样的。下面,老师就将这个长方体展开,得到的一个像这样的展开图(出示展开图)。
现在,请同学们仔细观察这个长方体以及它的展开图,你能分辨得出这个长方体的六个面分别对应于展开后图形中的哪个部分吗?
同学们手中都有一个展开图,请同学们一起来动手做一个活动,先看要求,(出示)
活动要求:
(1)判断长方体的六个面分别对应于展开图的哪个部分,将上下左右前后标在展开图的各个面上。
(2)根据长方体各条棱的长度,将合适的数据填在展开图的方框中。
明白了吗?动手试试看。
指名试一试,这个同学完成的如何,和你标的一样吗?
反馈:谁能来说说,你是怎么填的?
三、情境引入、探索新知
1、揭示长方体表面积概念
同学们很善于观察,找出了长方体与其展开图之间的联系,那么你想不想通过自己的本领知道我们做这样一个纸盒需要多少纸板吗?
适时引导学生思考,求至少需要多少面积的纸板其实就是求什么?(所有面的面积之和)
长方体6个面的面积之和就是长方体的表面积。(补充板书)拿出手中的长方体,摸一摸它的6个面,体验一下它的表面之和。
2、 估计长方体纸盒表面积
谁能先来估计一下这个长方体纸盒的表面积是多少?
(引导学生说出估计的过程与方法,并适时的渗透一些估计的方法与技巧。)
3、 小组交流并计算
结合这个长方体及它的展开图,想一想,你准备如何计算它的表面积?四人小组内介绍一下你的方法。用你喜欢的方法计算。
4、 全班交流与汇报
学生板书汇报自己的方法,并让其他同学给予相应的评价。
5、概括计算长方体表面积的方法
方法一:6个面面积相加
方法二:计算3个面的面积×2,依据相对的面的面积相等的特点。
方法三:计算三对面的面积再相加
请同学们仔细观察这三种方法,谁能说一说,这三种方法之间有什么联系?有什么相同之处?请同学们开动脑筋,灵活的计算长方体的表面积。
总结求表面积的方法:要想求长方体的表面积,需要知道什么?知道了长宽高,应该怎样计算呢?
6、知识推广
思考:求正方体表面积,需要知道什么?
出示课本第18页试一试,引导学生完成。
四、巩固练习
1、基本练习
计算下面图形的表面积(课本第19页练一练第一题)。
独立完成,集体纠正。
2、拓展练习
想一想,一个长方体的饮料盒,它的长、宽、高分别是6.5cm、3.8cm、10.5cm。如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少?
分析题意,独立完成,集体纠正。
老师要承担起对每一位同学的教学责任,在开展教学工作之前。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。这样不仅拉进了学生与自己的距离,还让学生学到了知识,你知道有哪些教案是比较简单易懂的呢?下面是由小编为大家整理的沪教版五年级下册《正方体、长方体的表面积(练习)》数学教案,仅供参考,大家一起来看看吧。
沪教版五年级下册《正方体、长方体的表面积(练习)》数学教案
教学目标:
通过练习使学生能熟练地求正方体、长方体的表面积。
教学重点和难点:
重点:正方体、长方体的表面积的计算。
难点:正方体、长方体的表面积的计算。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:
长方体体积计算公式:v=abh 正方体体积计算公式:v=a3
长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2
一.练习
1. 计算下面形体的表面积。(单位:厘米)
(1)解:
(2)
(1)S=2(ah+ab+bh)
=2×(6×2+6×1+1×2)
=2×(12+6+2)
=2×20
=40(平方厘米)
答:长方体的表面积是40平方厘米。
(2)解:S=6a2
=6×62
=6×(6×6)
=6×36
=216(平方厘米)
答:正方体的表面积是216平方厘米。
(3)解:S=2(ah+ab+bh)
=2×(3×12+3×1+1×12)
=2×(36+3+12)
=2×51
=102(平方厘米)
答:长方体的表面积是102平方厘米。
(4)解:S=2(ah+ab+bh)
=2×(4×4+4×3+3×4)
=2×(16+12+12)
=2×40
=80(平方厘米)
答:长方体的表面积是80平方厘米。
(5)解:S=2(ah+ab+bh)
=2×(5×5+5×1+1×5)
=2×(25+5+5)
=2×35
=70(平方厘米)
答:长方体的表面积是70平方厘米。
2. 想一想,上面形体(4)(5)的表面积还可以怎么求?
求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的面积之和,就是它的表面积。
3. 填空:
(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。
(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。
(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。
(4)正方体的表面积是(6×(7×7))(填算式)。
(5)长方体表面积计算公式是(S=2(ah+ab+bh))。
(6)正方体表面积计算公式是(S=6a2)。
4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。
解:2×3=6(平方厘米)
2×6=12(平方厘米)
3×6=18(平方厘米)
答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。
5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?
解:S=2(ah+ab+bh)
=2×(5×3+5×4+4×3)
=2×(15+20+12)
=2×47
=94(平方厘米)
答:长方体的表面积是94平方厘米。
6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?
解:4米=40分米
S=2(ah+ab+bh)
=2×(15×3+15×40+40×3)
=2×(45+600+120)
=2×765
=1530(平方分米)
答:长方体的表面积是1530平方分米。
总结:长方体表面积计算公式是S=2(ah+ab+bh),正方体表面积计算公式是S=6a2。
检测目标达成练习:练习册P15
教学反思:
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。所以大多数老师都会选择制定一份教学计划。让同学听的快乐,老师自己也讲的轻松。你知道怎样才制作一份学生爱听的教案吗?下面是小编精心整理的“沪教版五年级下册《正方体、长方体的表面积》数学教案”,欢迎阅读,希望您能阅读并收藏。
沪教版五年级下册《正方体、长方体的表面积》数学教案
【教学目标】
[认知目标]:
1. 知道物体外部所有面的总面积叫做它的表面积。
2. 能正确计算正方体和长方体的表面积。
[能力目标]
让学生自主探究正方体和长方体表面积的计算方法。
[情感目标]
通过实际的操作过程,体验学习的快乐。
【教学重点】
掌握与理解正方体、长方体表面积的含义及计算表面积的方法。
【教学难点】
正方体、长方体表面积的推导过程。
【教学准备】
教学课件、长方体、正方体的附页等。
【教学过程】
一、复习导入:
1. 正方形的面积计算公式是什么?
板书:正方形的面积
S = a2
2. 请学生观察老师手中的正方体,回答问题?
(1)正方体有几个面?
(2)有什么特征?
(3)如何计算它们的面积?
3. 这节课让我们学习有关求正方体面积的知识。
4. 揭示课题:正方体的面积
【说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】
二、探究新知:
(一)正方体的表面积。
1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。
2. 先仔细观察正方体表面的展开图,然后回答问题?
(1)正方体表面的展开图是由六个什么形状的面组成的?
(2)这六个面的形状都相同吗?
(3)面积都相等吗?
(4)面积的总和是多少?
这个正方体表面的展开图有6个正方形的面,它们的形状都相同,面积都相等。
面积的总和 = 6 × ( 棱成 × 棱长)
= 6 ×( 5 × 5)
= 150( cm3)
3. 正方体有六个大小相同的正方形面,六个面的面积总和称为正方体的表面积。
4. 小结。
【说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】
三、练一练:
(一)求下面正方体的表面积?
1. 正方体的棱长为6dm,求它的表面积。
解: S = 6 a2
=6×6×6
=216(cm2)
答:它的表面积是216平方厘米。
2. 正方体的棱成为7cm,求它的表面积。
一、探一探,练一练:
1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。
2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?
3. 交流讨论。(课件演示)
其中:a、c、e、f这四幅能够拼成正方体。
b和d的图形不能拼成正方体。
4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。
(1)三面涂上红色的1立方厘米的正方体积木有多少个?
(2)两面涂上红色的1立方厘米的正方体积木有多少个?
(3)一面涂上红色的1立方厘米的正方体积木有多少个?
(4)没有面涂上红色的1立方厘米的正方体积木有多少个?
5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。
6. 利用课件反馈。
7. 小结。
【说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】
五、巩固练习:
(一)看图练习:
1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。
2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。
3. 下面图形中哪些能围成正方体?哪些不能围成正方体?
(二)拓展小练习:
1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?
2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?
3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?
4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?
5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?
6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?
7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?
8. 小结。
【说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】
六、总结:
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
〔教材简析〕
〔教学目标〕
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
〔教学重点〕
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体的表面积的意义,建立表面积的概念。
教学难点:
掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课
1、复习长方体的特征。
师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知
1、教学长方体表面积的概念。
师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?
接下来学生动手剪(强调要求)
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)
师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题
(1)我们知道长方体有6个面,哪些面的面积是相等的?
生:前后面,左右面,上下面是相等的。
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2
或者(长x宽+长x高+宽x高)x2 分别解释
教学例1。
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积
方法一:0.70.52+0.70.42+0.50.42=1.66(平方米)
方法二:(0.70.5+0.70.4+0.50.4)2=1.66(平方米)
(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结
三、深化提高,综合应用
1、完成教材第25页练习六的习题。
先让学生独立完成,再组织交流。
2、完成教材第24页做一做。
(1)指导学生读题,理解题意,让学生发现本题中没有底面这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
《长方体和正方体的表面积》教案
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:理解长方体的表面积的意义,建立表面积的概念。
教学难点:掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课
1、复习长方体的特征。
师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知
1、教学长方体表面积的概念。
师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?
接下来学生动手剪(强调要求)
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)
师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题:
(1)我们知道长方体有6个面,哪些面的面积是相等的?
生:前后面,左右面,上下面是相等的。
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2
或者(长x宽+长x高+宽x高)x2 分别解释
教学例1。
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积
方法一:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2=1.66(平方米)
方法二:(0.7×0.5+0.7×0.4+0.5×0.4)×2=1.66(平方米)
(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结
三、深化提高,综合应用
1、完成习题1。
先让学生独立完成,再组织交流。
2、完成习题2。
(1)指导学生读题,理解题意,让学生发现本题中"没有底面"这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
苏教版六年级上册《长方体和正方体的表面积(1)》数学教案
第一单元 长方体和正方体
第3课时 长方体和正方体的表面积(1)
教学内容:
课本第6页例4、“试一试”和“练一练”,练习二第1-4题。
教学目标:
1、理解表面积的含义,能正确计算6个面完整的长方体和正方体的表面积。
2、培养学生用不同方法解决问题的能力。
教学重点:
理解并掌握长方体和正方体的表面积的计算方法。
教学难点:
能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
课前准备:
长方体教具
教学过程:
一、复习准备
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。
出示长方体和正方体纸盒。
提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?
二、探究新知
1、探究长方体表面积的计算方法。
(1)出示例6:如果告诉你这个长方体纸盒的长宽高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
在交流中明确:只要算出这个长方体六个面的面积之和就可以了。
(2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这六个面的面积之和?
(3)学生独立列式,指名汇报,师根据学生回答进行板书。
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。
2、探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少需要多少硬纸板的问题,如果纸盒是正方形的你还会解决同样的问题吗?
(2)学生独立尝试解答。
(3)组织交流反馈,提醒学生根据正方体的特征进行思考。
3、揭示表面积的含义
我们刚才在求长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。
三、应用拓展
1、做“练一练”。
先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。
2、做练习二第1题。
让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。
3、做练习二第2题。
让学生独立依次完成两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题。
四、课堂总结
通过今天的学习你有什么收获?什么是长方体或正方体的表面积?可以怎样计算长方体或正方体的表面积?长方体表面积的计算方法与正方体的表面积的计算方法有什么联系?
五、布置作业
练习二第3、4题。
教学反思:
作为杰出的教学工作者,为了教学顺利的展开。通常大家都会准备一份教案来辅助教学。这样可以让同学们很容易的听懂所讲的内容,你知道有哪些教案是比较简单易懂的呢?为了让您在使用时更加简单方便,下面是小编整理的“人教版五年级下册《长方体和正方体的认识》数学教案”,供您参考,希望能够帮助到大家。
人教版五年级下册《长方体和正方体的认识》数学教案
教学目标 :
1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;
2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;
3、培养学生的观察、概括能力。 教学
教学重点:
掌握正方体的特征。
教学难点:
正方体与长方体的比较。
课前准备:
教法学法 实践法、讨论法
教学过程:
一、复习导入
1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?
2、口答:说出每个图形的长、宽、高各是多少。
3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。
(揭示课题:正方体的认识)
二、概括特征
1、以小组为单位发学具。
2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。
3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。
4、汇报交流
(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。
(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。
(3)让生说说有几个顶点?你是怎么验证的?
5、提问:谁能完整地说一说正方体有什么样的特征?
多指名几个同学说特征。
6、结合直观图小结:正方体6个面是完全相同的正方形,它有12
条棱,每条棱的长度都相等。它还有8个顶点。
7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?
8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。
三、观察比较,体会异同
1、提问:长方体和正方体有哪些相同点,有哪些不同点?
2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。
3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。
4、根据比较结果,想一想正方体和长方体有什么关系?
不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。
练习 完成P20做一做
总结 今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?
作业布置
板书设计 :
正方体的认识
6个面 (完全相同,都是正方形)
立体图形→正方体 12条棱 (长度相等)
8个顶点
《长方体和正方体的表面积》教学设计
课题:长方体和正方体的表面积
教学目标 :
1、理解长方体、正方体每个面的长、宽与长方体长、宽、高的关系,从而建立表面积的概念。
2、探索长方体和正方体表面积的计算方法。根据实际情况计算出长方体、正方体的表面积。
3、发展学生空间概念,培养解决问题的能力。
教学重点:表面积的意义。
教学难点:长方体正方体表面积的计算方法
一、 引入课题 学习新知
1.说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
3、老师现在做了一个"长6㎝,宽5㎝,高4㎝"的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?
4、请同学们在展开图上标出"上、下、前、后、左、右"六个面,谁也来帮老师在黑板上标明。 生:上台演示、
5、大胆猜想,动手测量,探索求法。
师:你怎样理解表面积?那怎样求长方体或正方体的表面积呢?
生:测量、记录、计算。 (做完后,生汇报)
6、找几名代表说一说所在小组的意见。
解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)
6×5×2+6×4×2+5×4×2 =60+48+40 =148(平方厘米)
解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2) (6×5+6×4+5×4)×2 =74×2
=148(平方厘米)
(4)比较上面两种解法有什么不同?它们之间有什么联系?
二、 结合实际,灵活应用
1、个别学习-------表面积的概念
(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用"上"、"下"、"左"、"右"、"前"、"后"标在6个面上。
(2)沿着长方体和正方体的棱剪开并展平。
(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗? 学生试着说一说。
2、小组合作学习-------计算塑料片的面积
(1)想:这个问题,实际上就是要我们求什么? 使学生明确:就是计算这个长方体的表面积。 (2)学生分组研究计算的方法。
三、 深化提高,综合应用
1、 把一个长10m,宽3m,高2m的长方体木块分成3个小长方体,它的表面积增加了多少平方米?(课件演示)
2、 分组讨论人,交流汇报。
生:沿高的方向坚分(与左右面平行,课件演示),增加了像左右面一样大的四个面。增加的面积是3×2×4=24(m2)。
生:也可以沿长的方向横分(与上下面平行,课件演示),增加了像上下面一样大的四个面。增加的面积是10×3×4=12(m2)。
生:还可以沿宽的方向竖分(与前后面平行,课件演示),增加了像前后面一样大的四个面。增加的面积是10×2×4=80(m2)。
四、 归纳知识,总结学法
1、同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
2、 结论及板书:
=长×宽×2+长×高×2+宽×高×2 长方体的表面积
=(长×宽+长×高+宽×高)×2
长方体与正方体的展开图
教学内容:苏教版六年级数学
教学目标:
1、通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。
2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。
3、进一步感受图形学习的乐趣,增强合作意识。
教学重、难点: 引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。
教学准备:
教师准备:记号笔、磁铁、长方体和正方体展开图纸12张。
学生准备:一把剪刀、一个长方体、一个正方体纸盒及课本第123页上的图形
教学过程:
课前热身:我们课前先来欣赏一首古诗好吗?出示古诗,全班齐读。
一、激趣导学
1、出示中秋节商店的图片。
师:瞧,再过几天就是中秋节了,商店里卖什么的特别多?(月饼)王老师也想买个月饼礼盒送给家里的老人。
(出示)从数学的角度看,漂亮的包装盒是什么形体的?(长方体、正方体)
2、师:它是怎么做出来的?你知道吗?(出示各种展开的盒子)
(出示课题)。
二、探究解决
(一)初步感知正方体展开图
1、学习例题,出示正方体,依次说出相对的面。
请一个同学上台来剪。
将剪好的展开图放在实物投影上。
问:观察展开图,你发现了什么?
师:同学们想象一下,左右两个面有点像你头上的哪个部位?(两只耳朵)
2、师:这两只耳朵还可以长在哪儿?
师问:想象一下这两个图形沿虚线折叠能围成正方体吗?怎么想的?(出示不对称的图形。)
出不在同一边了,指名学生上来说一说。
引导学生说出:先确定下面,然后在脑海中想象,依次确定后面、上面、右面、下面、左面、前面。
师小结:今后我们在解决此类问题的时候,就可以用边想象边标注的方法。(板书:想象、标注)
(二)、深入认识展开图的规律
1、师:刚才的正方体是按规定的棱展开的,你能沿着其他棱把正方体展开吗?请你用自己动手试试。
活动提示:1、沿棱剪开,不能剪散。2、如果你的展开图黑板上没有,请贴上来。
师:请同学们仔细观察黑板上的展开图有没有重复?将翻转后和旋转后重复的展开图去掉。
师:请同学们数数,一共发现了多少种展开图?
2、面对这些无序的展开图,让我们给它分分类好吗
学生汇报,板书共分四类的方法。
3、找规律记忆的方法。
4、火眼金睛试一试
5、判断(抢答)
(三)长方体展开图的学习
1、出示:拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,并与同学交流。
要求:展开后交流一下相对的面有什么特点?
引导总结。
长方体展开图也有11种,出示。
三、拓展延伸
1、"练一练"。
学生打开书独立完成。
2、练习题
(1)出示要求:先想象,后标注,再验证。
(2)学生独立完成。
(3)介绍看互相垂直的棱的方法。
3、思考题:小壁虎的难题
4、欣赏展开的美
其实,许多的立体图形都是可以展开的,让我们一起来欣赏一下好吗?
四、总结升华
出示全课总结让学生说一说
《人教版五年级下册《长方体和正方体的表面积》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案五年级”专题。
文章来源:http://m.jab88.com/j/112847.html
更多