老师要承担起对每一位同学的教学责任,在开展教学工作之前。因此,老师会想尽一切方法编写一份学生易接受的教案。对教学过程进行预测和推演,从而更好地实现教学目标,你们见过哪些优秀教师的小学教案吗?下面是小编为大家整理的“人教版五年级下册《求平均数》数学教案”,供大家参考,希望能帮助到有需要的朋友。
人教版五年级下册《求平均数》数学教案
一、教学目标:
1、初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。
2、掌握简单的求平均数的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题的能力。
二、教学重点:
灵活选用求平均数的方法解决实际问题。
三、教学难点:
平均数的意义。
四、教学过程:
(一)故事导入:
课件出示;一个老猴子在森林中摘了12个桃子,回到家后叫来了三只小猴分桃子给他们,猴一7个、猴二4个、猴三1个。
师:对老猴分桃这件事,你有什么话想说吗?
生:三只猴分的桃子不一样多。
生:应该三只猴分的一样多
根据学生的回答板书:不一样多 一样多
(二)探究新知:
1、用磁性小圆片代替桃子(老师将磁性小圆片按照7、4、1、分别排列在黑板上)
请同学们仔细观察,四人小组讨论一下,你们能用哪些方法可以使每组的个数一样多。
2、交流反馈
(1)引出移多补少、(2)(7+4+1)÷3
师:观察移动后的小圆片,思考:移动后什么变了,什么没有变?
板书: 总数不变
一样多 不一样多
3、小结,并揭示课题
师:刚才我们通过移一移,算一算的方法,得出了一个同样的数4,这个数就叫平均数
(板书课题)
4、刚才有同学用(7+4+1)÷3=4的方法算出了他们的平均数,现在老师再摆一组为8个,这时平均数又是多少呢?会吗?
生:会。(生自己完成)
反馈 (7+4+1+8)÷4=5
比较归纳得出 : 总数÷份数= 平均数
(三)应用数学
教师课件出示列举生活中的平均数问题,学生自己阅读这些信息
1、 国家旅游局关于2004年“十一”黄金旅游周旅游信息的公告
(1) 上海东方明珠平均每天的门票收入为130万元,北京故宫平均每天门票收入为200万元
(2) 南京中山陵平均每天接待游客70000人,北京故宫平均每天接待游客50000人。
2、春暖花开北京连续5天日平均气温超过10℃。
3、三年级1班平均身高为136厘米。
(四)、研究平均身高
1、刚才谈到了平均身高,要求全班同学的平均身高,该怎么办呢?
出示三年级某班的身高统计表(单位:厘米)
①140 141 139 143142 145
②135 134 136 131 132 134
③130 131 132 130 128 127
④128 129 128 127 127 125
⑤124 127 124 125 124 123
⑥123 122 120 123 124 122
2、师:估计,全班的平均身高会在什么之间或是多少厘米?该怎么办?现有三种方案,你选择哪一种呢?
A、 选择第一排最矮的
B、 选择第六排最高的
C、 选择第一组有高,有矮的
师:说说你为什么这样选择?
3、学生试算
4、师:看到这个平均身高,你有什么想法?对于这个平均身高还有没有更大胆的想法,它还能代表哪些范围内的大概平均身高?
学生反馈
(五)、巩固发展。
选一选(用手势表示)
1、少先队第三中队发动队员种树,第一天种了180棵、第二天、第三天共种了315棵,平均每天种多少棵?( )
2、(180+315)÷2 2、(180+315)÷3
3、气象站在一天的1点、7点、13点、19点,测得的温度分别是摄氏8度、15度、24度、17度。请算出这天的平均气温。( )
4、(8+15+24+17)÷4 2、(8+15+24+17)÷(1+7+13+19)
(六)、拓展练习
1、猜老师平均每个月的开支
2、教师板书:平均每月开支1000元 提问,你知道这句话的意思吗?
老师把今年前三个月的开支情况做了大概的统计,
出示:2005年陈老师1——3月每月开支情况统计表
月份1月2月3月4月
金额108010201050
你能不能帮老师算一算,今年前三个月的平均每月开支多少元?
3、学生反馈
4、你们能不能预测一下老师4月份的开支大概是多少?
5、如果要使前4个月每月平均开支不超过1000元,四月份老师最多能花多少钱?
五、总结:
“求平均数”是新教材“ 统计与概率”领域内容的一部分。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表表示信息,所以看懂统计图表是现代公民必备的数学素养。基于此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上,放在根据数据做出必要推断上。
六、教学反思:
根据儿童追求公平的心理,创设了老猴子分桃子这样一个不公平的问题情境,引出平均数这一概念。让学生初步感知平均数的意义,领悟可以用移多补少的方法或计算的方法求平均数。在教学时,我给合班级学生的实际情况,开发、挖掘教材,便于学生在循序渐进过程中不断的掌握新知。鼓励儿童进行积极的反思性的学习,在课堂上经常问这样的问题,“说说你是怎么想的呢?”或者“你是根据什么得出这个结论(猜想)的呢”这样让学生充分地把他们的思维过程展示出来。
教学引入这一环节设计:从学生角度出发,充分地调动起学生的学习动机和学习兴趣,正确把握学生的起点,给学生的学习提供了思考,尝试的机会,便于帮助学生理解知识。教师教学中,合理挖掘教材,做到优化学习。求平均数的内容既具有挑战性又具有趣味性,教师没有停留在单纯的计算上,而是注重倾听学生介绍想法,
联系生活实际,感受数学的作用,数学来源于生活,又高于生活,应用于生活。因此,数学教学要紧密联系学生的生活实际。这节课从情境引入到新知探究,再到巩固发展,都是从身边搜集素材,让学生体会到现实生活中原来包含很多数学问题,有利于学生产生学习和探索数学的动机。同时又有了扩展,如:所搜集的阅读资料,体现了数学的现时价值。
人教版五年级上册《积的近似数》数学教案
第1单元 小数乘法
第6课时 积的近似数
【教学内容】:教材P11例6及练习三第1、2、3题。
【教学目标】:
知识与技能:使学生掌握用“四舍五入”法取积的近似数。
过程与方法:利用已有知识经验,让学生学会根据题目要求与实际需要求积的近似数,并培养学生自主探索和迁移类推的能力。
情感、态度与价值观:使学生感受数学与实际生活的联系,渗透人类与动物和谐相处的育人理念。
【教学重、难点】
重 点:正确地进行“四舍五入”。
难 点:应用“四舍五入”法取积的近似数。
【教学方法】:自主学习,交流互动。
【教学准备】:多媒体。
【教学过程】
一、情境导入
我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值呢?(用“四舍五入”法)(出示如下表格)用“四舍五入”法求出小数的近似值。
保留整数保留一位小数保留两位小数2.0954.3071.先思考再回答:
(1)怎么样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值应各是多少?指生回答。
2.揭题:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似数。
二、互动新授
1.激趣谈话:狗是人类的好朋友,特别是经过训练后的警犬,可以帮助警察叔叔破获很多案件,比如追捕逃犯、搜查违禁品等。同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。(出示教材第11页情境图)
(1)学生自主回答。
(2)师补充:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。
(3)出示:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。根据信息,你能提出什么问题?
根据学生回答板书问题:狗约有多少亿个嗅觉细胞?
追问:怎么列式呢?让学生独立列算式并计算出算式的积。(求0.049的45倍,就是求45个0.049是多少,用乘法计算,即0.049×45。)
学生算出:0.049×45=2.205
(4)(出示)追问学生:如果给题目加一个要求:保留一位小数,如何求积的近似数呢?
先让学生独立求出2. 205的近似数,再交流:0.049×45=2.205≈2.2(亿个)
让学生先说一说怎样保留积的一位小数,然后在小组内讨论交流。
小组交流后,指名汇报:0.049×45≈2.2(亿个),
2.205要保留一个小数,因为0
(5)小结:求2.205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是O,0
(6)提出问题:求积的近似数的一般方法是什么?
小组交流讨论,指一小组汇报并加以引导小结。
师小结:求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。
2.拓展延伸。
出示生活中要按实际情境取近似值的实际例子:(出示题目):一个箱子可以装13.5千克土豆,27箱的土豆可以装多少千克?(得数保留整数)
学生独立列式计算:13.5×27=364.5(千克)
这时可能会出现两种情况:有的学生约等于365千克,有的可能约等于364千克。
这时教师要组织学生小组讨论交流:到底应该保留多少呢?
通过讨论,学生会得出:364.5不够365千克,所以27箱不能装365千克土豆,只能装364千克。
接着提问:如果是做衣服用多少布料,保留整数时要怎么办?
引导学生小结:如果要算能装多少东西或用多少材料,即使小数大于四也要舍去,只保留整数部分。所以在实际应用中,小数乘得的积可以根据需要或题目要求取积的近似数。
最后引导学生总结取近似数的一般方法是:保留整数,就看第一位小数是几;保留一位小数,就看第二位小数是几;保留两位小数,就看第三位小数是几……然后按“四舍五入”法保留小数位数。
三、巩固拓展
1.完成教材第11页“做一做”第1题。
按题目要求先计算出算式的乘积。完成后组织学生集体订正,并说一说你是怎么取积的近似值的。
2.完成教材第11页“做一做”第2题。
先让学生根据题目的条件列出算式计算,再集体订正。
学生汇报:3. 85×2.5=9.625(元)≈9.63(元)时,问:题目没有要求取近似值,你为什么要保留两位小数呢?提醒学生在解决问题时要根据生活实际灵活处理。
强调:由于在实际生活中,付款时通常只算到“分”,即保留两位小数,因此9. 625要约等于9.63。
四、课堂小结
师:这节课你们都学会了什么知识?有什么收获呢?
生1:这节课我知道了如何用“四舍五入”法求积的近似值。
生2:我还学会了有时还要根据生活实际来求积的近似值。
五、作业:教材第13页练习三第1、2、3题。
【板书设计】:
人教版五年级上册《商的近似数》数学教案
教学内容:教材P32例6及练习八第1、2、3、8题。
教学目标:
知识与技能:能理解商的近似数的意义。
过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:根据题意正确求出商的近似数。
教学方法:注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:多媒体。
教学过程
一、温习旧知
1、按要求求下列各数的近似数。
(1)保留一位小数 3.72 4.18 9.98
(2)保留两位小数 5.347 7.602 3.996
2、 做完第1、2题后,说一说。
(1)近似数中小数末尾的“0”为什么不能去掉?
(2)为什么要用约等号?
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书:
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳:
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
布置作业:
板书设计:
商的近似数
按要求取
求商的近似数时,计算到比保留的小数位数
多一位,再将最后一位“四舍五入”。
按实际需要取
人教版五年级上册《用字母表示数的应用(2)》数学教案
第5单元 简易方程
第5课时 用字母表示数的应用(2)
【教学内容】:教材P59例5及练习十三第5、6、7、8题。
【教学目标】:
知识与技能:
1.在实际情境中理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。
2.在探索数量关系的过程中,体会用字母表示数的优越性,感受数学的简洁美。
3.渗透不完全归纳思想和代数思想,培养符号化意识,提高概括能力。
过程与方法:经历用字母表示数来解决生活中实际问题的过程,掌握用字母表示复杂数量关系的方法。
情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。
【教学重、难点】
重 点:理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。
难 点:用字母表示应用题中的复杂数量关系。
【教学方法】:设置数学问题,引导学生练习。在练习中体验、交流、感悟。
【教学准备】:多媒体、小棒。
【教学过程】
一、游戏导入
抓小棒的游戏。
1.明确操作要求:同学们每次抓的小棒根数是老师抓的3倍。
2.教师分别抓1根、3根、7根小棒,学生抓出相应的根数。
在此基础上提问:怎样求出你应抓的根数?
3.教师抓一大把时,问:你和你的同桌一共抓几根呢?
当a= 60时,你们小组的同学一共抓几根?当a等于200时呢?
二、探索新知
教材第59页例5。
1.摆三角形所用小棒的根数。
(1)教师:摆1个三角形需要几根小棒?摆2个、3个、4个呢?
指名学生回答:摆1个三角形需要3根小棒,摆2个需要6根,摆3个需要9根……
教师:你能发现什么规律?
小组讨论并派出代表发言。
引导学生得出所用的小棒的根数是摆的三角形个数的3倍。
(2)教师:假如摆x个三角形,需要几根小捧?
学生:3x根。
教师:x表示什么?这儿的x可以是哪些数?
学生小组交流,教师指名汇报。
(3)教师:当x等于6时,就是摆了几个三角形?需要几根小棒?当x 等于20时呢?
学生小组讨论交流。
2.摆正方形所用小棒的根数。
(1)教师:摆1个正方形需要几根小棒?摆2个、3个、4个呢?如果摆x个正方形需要几根小棒?这儿的x表示什么?
指名学生回答:摆1个正方形需要4根小棒,摆2个需要8根,摆3个需要12根……
提问:你能发现什么规律?
小组讨论并派出代表发言。
引导学生得出所用的小棒的根数是摆的正方形个数的4倍。摆x个正方形需要4x根小棒,这里的x表示正方形的个数。
(2)教师出示另一个正方形,用x表示边长,问:这时的x表示什么?分别用字母表示出正方形周长计算公式和面积计算公式。
指名学生汇报,根据学生汇报板书:
正方形的周长计算公式:C = 4x
正方形的面积计算公式:S = x × x = x2
经过举例让学生明白字母可以表示不同的数量,所表示的意义也不同。
3.摆正方形和三角形共用小棒的根数。
(1)教师:已知摆一个三角形所需的小棒是3根,摆一个正方形所需的是4根,那摆一个正方形和一个三角形需要多少根小棒?
学生齐答。
(2)教师:那摆2个、3个、4个呢?甚至x 个呢?
引导:摆x个三角形和正方形的图形,所用小棒的根数应是摆x个三角形和x个正方形所用根数的和。
学生独立列式,指名口答。
教师板书:3x+4x=(3+4)x=7x
引导学生发现:这是运用了乘法分配律。
求x等于8时,一共用了多少根小棒?
学生自主解题,汇报:当x=8时,7x=7×8=56(根),一共用了56根小棒。
4.教师归纳总结:同一个字母可以表示不同的数量,并且表示的意义不同。同一个字母表示相同的意义、相同的数量时,可运用乘法分配律进行运算。
三、巩固练习
1.完成教材第59页的“做一做”。
找两名学生板演,其他学生在稿纸上完成,然后集体订正。
(1)220x+120x = (220+120)x =340x (千米),所以经过x小时,动车和普通列车一共行了340x千米。
(2)220x -120x =lOOx (千米),所以经过x 小时,动车比普通列车多行了lOOx 千米。
2.完成教材第61页练习十三第6题。
学生读题,理解题意,再独立练习,通过小组交流检验答案。
四、课后小结
通过这节课,你有什么新的收获?
五、作业:教材第61页练习十三第5、7、8题。
【板书设计】
用字母表示数的应用
正方形的周长计算公式:C= 4x
正方形的面积计算公式:S=x ×x =x2
3x +4x =(3+4)x =7x 乘法分配律
一、复习求两个数的最小公倍数和最大公因数
1.书本114页第5题
学生独立完成,集体讲评时说说用什么方法?这三题分别属于什么情况?
2.出示:6和12 7和8 8和12 9和15
学生同桌快速说出两个数的最小公倍数
3.课件出示:
(1)用长5厘米、宽3厘米的长方形拼成正方形,正方形的边长最短是多少厘米?
(2)一包巧克力,如果平均分成给8个小朋友,正好分完;如果平均分给10个小朋友, 也正好分完。这包巧克力至少有多少块?
(3)公交车起点站每隔10分钟发一次3路车,每隔15分钟发一次4路车,两辆车同时发车后,再隔开多少时间又同时发车?
(4)一般学生,人数在30到50之间,在体操表演时,总能刚好分成6人一行,12人一行,24人一行。这班学生有多少人?
课件依次出示,学生读题理解后,独立完成,四人板演。
讲评板演时指名说说这四题实际上就是求什么?
4.书本114页第6题
学生独立完成,交流时说说如何求这两个数的最大公因数。
5.课件继续出示:
(1)把25厘米和30厘米的两根彩带剪成长度一样的短彩带且没有剩余,每根段彩带最长是多少厘米?
(2)把一张长15厘米,宽10厘米的长方形剪成同样大小且面积尽可能大的正方形,纸没有剩余,可以剪多少个?剪出的正方形的边长是多少厘米?
(3)用96朵红花和72朵白花做花篮,如果每个花篮里的红花朵数都相等,白花朵数也都相等。每个花束最小有几朵花?
学生读题后自主完成,三人板演。讲评时注意与最小公倍数题的对比。
二、复习确定位置
1.指名说说用什么来表示位置?
2.数对是怎样表示的?
3.板书(3,4)(5,6)(x,5)(5,y)说说每个数对所表示的位置。
4.书本119页第28题
(1)学生读题理解后独立完成。
(2)全班交流。
三、全课总结
这节课我们复习了什么知识?你觉得解决这类问题要注意什么?
四、布置作业
人教版五年级上册《一个数除以小数(2)》数学教案
第3单元 小数除法
第5课时 一个数除以小数(2)
【教学内容】:教材P29例5及练习七第2、4、6第题。
【教学目标】:
知识与技能:掌握除数是小数的除法计算方法,注意被除数位数不够时的计算方法,会正确地计算。
过程与方法:经历一个数除以小数的计算过程,体验迁移应用的学习方法。
情感、态度与价值观:在学习活动中,体验知识之间的相互联系和数学知识的应用价值,感受发现知识的快乐,激发学习的兴趣。
【教学重、难点】
重 点:归纳一个数除以小数的计算方法。
难 点:掌握被除数位数不够时,用“0”补足再除。
【教学方法】:讲解法。迁移转化,小组合作交流。
【教学准备】:多媒体。
【教学过程】
一、复习回顾
教师:我们上节课已经对一个数除以小数的计算有了一定的了解,那老师现在就来考考大家。
根据商不变的性质填空,并说明理由。
4.68÷1.2=( )÷12 2.38÷0.34=( )÷( )
5.2÷0.32=( )÷32 161÷0.46=( )÷( )
指定一个小组学生轮流回答。
教师:同学们都掌握得很好,那同学们可以总结一下这些题目所考查的知识点吗?这个知识点的内容是什么?(引导学生向商不变性质的知识点靠拢,并回忆商不变的性质的具体内容。)
教师:既然同学们都已经掌握了,那我们现在就更进一步地来学习一个数除以小数的知识。[板书课题:一个数除以小数(2)]
二、探索新知
1.教学第29页例5。
(1)教师出示第29页例5:12.6÷0.28=
(2)组织学生尝试计算,然后指名汇报。
学生计算时可能会有两种不同结果:
(3)教师:你们认为哪一个计算是正确的?说说你的理由。
组织学生观察计算过程,并在小组中讨论交流,使学生明确:计算时,被除数和除数应同时扩大相同的倍数。当被除数位数不够时,要在被除数的末尾用“0”补足,再计算。
教师根据学生的意见,将错误的计算擦掉。
2.归纳除数是小数的除法计算方法。
教师:一个数除以小数应怎样计算呢?
组织学生在小组中相互交流,归纳后汇报。
教师根据学生汇报归纳总结:计算一个数除以小数,先移动除数的小数点,使它变成整数:除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在末尾用“0”补足);然后按除数是整数的除法计算。(一看,二移,三算)学生在教材第29页填空。
三、巩固练习
1.教材第29页“做一做”第2题。
(1)教师出示第2题。组织学生观察计算过程,判断计算得对不对,错在哪里,并在小组中相互交流。
(2)指名回答问题。
(3)教师:正确的计算是怎样的呢?请大家自己算一算吧!
学生在练习本上重新计算这些题。
2.教材第30页练习七第4题。
(1)教师:观察这些算式,你能很快算出来吗?
学生练习,然后汇报结果。
(2)教师引导学生观察第2组算式,使学生明确:被除数不变,除数除以多少,商就乘以多少;除数乘以多少,商就除以多少(0除外)。
3.列竖式计算。
621÷0.003= 72 8÷0.56= 5.04÷0.012= 2.7÷0.75=
指名板演,其余学生在练习本上完成,集体订正。
4.小明帮李奶奶买西红柿,每千克2.98元,付给售货员阿姨20元,找回5.1元。他买了多少千克西红柿?
指名读题,引导学生理解题意。
四、课堂小结
同学们都学到了哪些知识,能不能灵活地运用呢?
五、作业:教材第30页练习七第2、6题。
【板书设计】
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。要根据班级同学的具体情况编写教案。上课才能够为同学讲更多的,更全面的知识。你知道怎样才制作一份学生爱听的教案吗?以下是小编收集整理的“人教版五年级下册《分数的意义》数学教案”,欢迎大家阅读,希望对大家有所帮助。
人教版五年级下册《分数的意义》数学教案
教学目标:
知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1.教学例
1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例
2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。
分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例
3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
人教版五年级上册《练习十七(2)》数学教案
教学内容:教材P82练习十七第10、12、14、15题。
教学目标:
知识与技能:
1.巩固相遇问题的解题方法。
2.培养学生初步的逻辑思维能力和解决稍复杂的行程问题的能力。
过程与方法:经历列方程解决相遇问题的练习过程,进一步提高学生分析问题、解决问题的能力。
情感、态度与价值观:在学习活动中,激发学生的学习兴趣,培养学生的抽象思维能力,体会数学的应用价值。
教学重点:熟练掌握相遇问题的解题方法。
教学难点:找等量关系,掌握列方程的方法。
教学方法:练习讲解。练习巩固。
教学准备:多媒体。
教学过程
一、复习回顾
上一节课我们学习了列方程解相遇问题,那谁能说一下列方程解相遇问题的关键是什么?(学生讨论交流,然后指名回答。)
教师小结:列方程解相遇问题的关键在于找准题目中的数量关系。
今天我们就通过几道习题来巩固一下用方程解相遇问题的解题方法。
二、练习讲解
1.易错题分析
出示:甲乙两地相距660千米,一辆货车的速度是每小时行32千米,一辆客车的速度是每小时行34千米,两车分别从甲乙两地同时出发相向而行,经过几小时相遇?
易错原因:学生在解决相遇时间的问题中,能很好地利用等量关系式列方程,但在列方程时,部分学生对方程的格式书写不够规范。
学生尝试解答: 解:设经过x 小时两车相遇。
(32+34)x =660
教师小结:列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
2.教材第82页练习十七第12题。组织学生阅读题目,获取题目的有用信息。
教师:怎样列方程解决这个问题呢?组织学生独立思考后,在小组中交流解决问题的思路。
学生根据“总路程=(甲车速度+乙车速度)×相遇时间”列出算式,指名汇报。教师根据学生汇报板书:解:设乙车每小时行x 千米。3.5(68+x )=455
三、巩固拓展
1.画线段图解决稍复杂的行程问题
出示:甲、乙两城相距420km,一辆汽车从甲城开往乙城,一辆摩托车同时从乙城开往甲城。汽车每小时行驶75km,3小时后两车相距15km。摩托车每小时行驶多少千米?
学生阅读题目,理解题目意思。
思路导引:
情况一:两车行驶3小时未相遇,两车还相距15km。用线段图表示:
根据上面的线段图可知:汽车3小时行驶的路程+摩托车3小时行驶的路程+15km=甲、乙两城之间的距离。由这个等量关系可以列出相应的方程。
情况二:两车相遇后,又继续行驶,两车相距15km。用线段图表示:
根据上面的线段图可知:汽车3小时行驶的路程+摩托车3小时行驶的路程-15km=甲、乙两城之间的距离。由这个等量关系可以列出相应的方程。
学生尝试解答:
情况一: 情况二:
解:设摩托车每小时行驶x km. 解:设摩托车每小时行驶x km.
75×3+3x +15=420 75×3+3x -15=420
240+3x =420 210+3x =420
3x =180 3x =210
x =60 x =70
教师小结:通过线段图,找出两车相距15km存在的两种情况是解答本题的关键。
3.教材第82页练习十七第15*题。
学生先自己看图,从图中获取信息,找出等量关系并列方程。对学生有疑问的地方教师予以解惑。
四、课堂小结。经过这节练习课,你是不是对列方程解决相遇问题有了更深有了更深的了解。
作业:教材第82页第10、14题。
板书设计:
练习十七(2)
总路程=(甲车速度+乙车速度)×相遇时间
汽车3小时行驶的路程+摩托车3小时行驶的路程+15km=甲、乙两城之间的距离
汽车3小时行驶的路程+摩托车3小时行驶的路程-15km=甲、乙两城之间的距离
人教版五年级上册《解方程(2)》数学教案
第5单元 简易方程
第10课时 解方程(2)
【教学内容】:教材P69例4、例5及练习十五第6、8、9、13题。
【教学目标】:
知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±bx=c与a(x ±b)=c类型的方程。
过程与方法:进一步掌握解方程的书写格式和写法。
情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
【教学重、难点】
重 点:理解在解方程过程中,把一个式子看作一个整体。
难 点:理解解方程的方法。
【教学方法】:观察、分析、抽象、概括和交流。
【教学准备】:多媒体。
【教学过程】
一、复习导入
1.出示习题。解下面方程:4x =8.6 48.34-x =4.5
学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。
2.引出:这节课我们来继续学习解方程。(板书课题:解方程)
二、互动新授
1.出示教材第69页例4情境图。
引导学生观察,并说一说图意。再让学生根据图列一个方程。
学生列出方程3x +4=40后,让学生说一说怎么想的。
(一盒铅笔盒有x 支铅笔,3盒铅笔盒就有3x 支铅笔。)
在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。
2.让学生试着求出方程的解。
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。
学生可能会疑惑:方程的左边是个二级运算不知该如何解。
也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。
师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )
让学生尝试继续解答,订正。
根据学生的回答,板书解题过程:
3x +4=40
解: 3x =40-4
3x =36 (先把3x 看成一个整体)
3x ÷3=36÷3
x =12
让学生同桌之间再说一说解方程的过程。
3.出示教材第69页例5:解方程2(x -16)=8。
先让学生说一说方程左边的运算顺序:先算x -16,再乘2,积是8。
思考:你能把它转换成你会解的方程吗?
让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:
(1)利用例4的方法来解。
让学生说一说自己的思考,重点说一说把什么看作一个整体?
(先把x -16看作一个整体。)板书计算过程:
2(x -16)=8
解:2(x -16)÷2=8÷2(把x -16看作一个整体)
x -16=4
x -16+16=4+16
x =20
(2)用运算定律来解。
引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。
根据学生回答,板书计算过程:
2(x -16)=8
解: 2x -32=8 (运用了乘法分配律)
2x -32+32=8+32 (把2x 看作一个整体)
2x =40
2x ÷2=40÷2
x =20
4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。
(可以把方程的解代入方程中计算,看看方程左右两边是否相等。)
三、巩固拓展
1.完成教材第69页“做一做”第1题。
先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)
2.完成教材第69页“做一做”第2题。
先让学生自主解方程,再集体订正。
3.完成教材第71页“练习十五”第8题。
先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。
四、课堂小结
这节课你学会了什么知识?有哪些收获?
引导总结:
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、作业:教材第71~72页练习十五第6、9、13题。
【板书设计】:
解方程
例4:3x +4=40
解: 3x =40-4 (先把3x 看成一个整体)
3x =36
3x ÷3=36÷3
x =12
例5:2(x -16) =8 (把x -16看作一个整体)
方法1: 方法2:
解:2(x -16)÷2=8÷2 解:2x -32=8 (运用了乘法分配律)
x -16=4 x -32+32=8+32 (把2x 看作一个整体)
x -16+16=4+16 2x =40
x=20 2x ÷2=40÷2
X=20
人教版五年级上册《用字母表示数》数学教案
第5单元 简易方程
第1课时 用字母表示数
【教学内容】:教材P52~53例1、例2及练习十二第1、3、7、8题。
【教学目标】:
知识与技能:理解用字母表示数的意义和作用。
过程与方法:能正确掌握含有字母的乘法式子的简写。
情感、态度与价值观:在探索现实生活数量关系的过程中,体验用字母表示数的简明性。
【教学重、难点】
重 点:理解用字母表示数的意义和作用。
难 点:掌握含有字母的乘法式子的简写。
【教学方法】:观察、比较、思考、交流。
【教学准备】:多媒体。
【教学过程】
一、情境导入
1.导入:你今年几岁了?再过两年呢?再过三年、四年、n年呢?
学生回答自己的年龄,根据教师的问题回答:过几年就用年龄十几,n年就加n。
2.质疑:这里的n表示的是什么?(一个数)
3.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)
二、互动新授
(一)教学用含字母的式子表示数量关系。
1.出示教材第52页例1。
引导:图中小红和爸爸也在探讨年龄的问题,从中你了解了哪些信息?
学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。
2.让学生尝试用算式表示爸爸的年龄。
出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。
3.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?
通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄。
追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便?
小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。
4.重点引导学生用字母来代替。
引导:说一说你是怎么写的?为什么这样写?
学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)
思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a……都表示什么?
(都表示小红的年龄。)(板书:小红的年龄)
追问:是不是只能用这些字母表示?还能用其他字母表示吗?
引导学生理解:可以用任意字母来表示小红的年龄。
质疑:这些字母可以表示哪些数呢?能表示200吗?
先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。
引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。
5.质疑:这些含有字母的式子都表示什么呢?
(表示爸爸的年龄,也表示小红比爸爸小30岁。)
归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)
6.提问:如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少?
学生自主计算,汇报:a+30=11+30=41(岁)
当a=12时呢?学生汇报:a+30=12+30=42(岁)
(二)教学教材第53页例2。
1.引导:同学们想不想知道月球上到底有什么秘密呢?让我们一起来瞧瞧。
(出示教材第53页例2):观察情境图,说一说你知道哪些数学信息。
学生汇报:在月球上,人能举起物体的质量是地球上的6倍;在地球上我只能举起l5kg。
你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?
拓展:是月亮的质量小的原因,月球引力是地球的六分之一。
2.探索:在地球上能举起l千克的物体,那么在月球上能举起多少千克?在地球上能举起2千克的物体、3千克的物体,在月球上能举起多少千克呢?
出示:教材第53页的表格。
通过刚才的列式,你能用含有字母的式子表示出入在月球上能举起的质量吗?
学生自主思考,集体交流。
引导学生把人在地球上能举起的质量用字母表示(以用x表示为例):
人在月球上能举起的质量就是x×6千克。
3.简写乘号。
直接教学:x×6,我们可以写成6x,中间的乘号省略不用写。在省略乘号时,一般要把数字写在字母的前面。
想一想:式子中的字母可以表示哪些数?
引导学生小结:人能举起的质量是有限的,因此字母表示的数也是有一定范围的,不能过大。
4.(出示教材第53页情境图)图中小朋友在月球上能举起的质量是多少?
学生自主解答,集体交流:6x=6×15=90(千克)
三、巩固拓展
1.完成教材第53页“做一做”。先让学生说一说长方形纸条的面积公式:长×宽。
引导:此题的宽是3cm,怎样用含有字母的式子表示长方形纸条的面积?
放手让学生自主完成,列式汇报:3x。教师提示乘号简写的注意事项。
2.完成教材第55页“练习十二”第1题。
先让学生回忆厘米、千克用什么字母表示(厘米:cm;千克:kg),再自主完成。
四、课堂小结
这节课你学会了什么知识?有哪些收获?
引导总结:
1.含有字母的式子,不但可以用字母表示数,还可以表示一个结果以及两个数量之间的关系。在特殊情况下,字母的取值是有一定范围的。
2.在省略乘号时,一般要把数字写在字母前面。
五、作业:教材第55、56页练习十二第3、7、8题。
【板书设计】:
用字母表示数
表示数
表示两个数量之间的关系
乘法简写:省略乘号,数字在字母前面。
苏教版五年级上册《用字母表示数(2)》数学教案
第八单元 用字母表示数
用字母表示数(2)
教学目标:
课本第102--102页。
教学目标:
1.让学生理解并学会用字母表示数,能用含有字母的式子表示数量关系或计算公式;会用数代替字母求出含有字母的式子的值;进一步掌握常见图形的面积、周长计算公式。
2.让学生经历把实际问题用含有字母的式子进行表达的过程,体会用字母表示数的简洁和便利,发展符号感。
教学重点:
理解用含有字母的式子表示数量关系。
教学难点:
把数代入含有字母的式子求值。
教学准备:
课件
教学过程:
一、揭示课题,认定目标
开门见山,导入课题。
今天这节课,我们学习用含有字母的式子表示稍复杂的数量关系和计算公式。
二、自主学习,建构模型(预设16分钟)
1.自学例题4。
(1)明确题目中图和表的意思。
(2)自学。
导学单(时间4分钟)
1.增加的三角形个数和共用小棒的根数有什么关系?有疑惑的可以先用小棒摆一摆,再填表。
2.如果增加a个三角形,共用多少根小棒怎么表示?
3.当a等于8时,共用多少根小棒?等于15呢?
导学要点:
增加几个三角形,共用小棒的根数就是3加几个2。
口答a等于8时,共用多少根小棒。
(3)全班交流。
分析学生出现的各种情况,进行适当评析。
2.自学例题5。
出示:教材例5情景图。
导入:你能用自己的语言说说图的意思吗?
导学单(时间4分钟)
1.根据情景图用式子表示水壶里还剩多少毫升橙汁。
2.同桌交流,说一说自己的想法,看看谁的式子更简捷。
3.看书本101页,自学当x等于250时,怎样算还剩多少毫升橙汁,注意写的格式。
点拨:1lOO-z-z-z这种算法是依次减去每个茶杯的毫升数,1100一3z的算法是先求出3个茶杯的总毫升数,然后从冷水壶中橙汁的总毫升数减去3个茶杯的总毫升数,求出冷水壶里剩下橙汁的毫升数。
比较:这两种算法,你认为哪种比较简单?
展示学生的作业,并让学生上台讲解应该怎样书写:
当x=250时,
1100-3x
=1100-3×250
=1100-750
=350
答:冷水壶里还剩350毫升橙汁。
总结:如果一些题目中的条件是用字母来表示的,我们第一步要用含有字母的式子来表示要解决的问题,当告诉你字母的具体数值时,就按照一定的格式把数代入式子,计算出式子的数值,这时不必写单位名称。
(1.写含有字母的式子或公式。2.代入式子计算。)
3.尝试练习例6
导学单(时间3分钟)
1.先写出公式,再把数值代入公式计算。
2.对照书本第102页例6的解答,与书本不同在哪儿,进行改正。
三、组织练习,完善认知(预设15分钟)
(一)适应练习
1、课本第102页练一练第1、2、3、4题。
剩下的数量等于一共的量减去运走的(用去)的量。
2、课本第103页练习十八第4、5题。
提示,能简写的要简写。
长方形的周长c=2(a+b)
(二)比较练习
1、一个等腰三角形的一个底角是a度,那么顶角是多少度?
2、一个等腰三角形的一个顶角是a度,那么一个底角是多少度?
提示:画个图,标出有关数据,再列式子。
(三)创编练习
一场篮球比赛中,运动员高叔叔投进了X个2分球,3分球他共得到y分。
1、用式子表示高叔叔一共得到的分数。
2、当X=12、Y=9时,求高叔叔一共得到的分数。
四、课堂总结
通过这节课的学习,你学到了什么新知识呢?
教学反思:
人教版五年级上册《可能性(2)》数学教案
第4单元 可能性
第2课时 可能性(2)
【教学内容】:教材P45~46例2、例3及练习十一第5、8题。
【教学目标】:
知识与技能:让学生知道事件发生的可能性是有大小的。
过程与方法:进一步学习,在有多种结果的事件中,比较各种结果发生的可能性大小的方法:先得出结果总数,再看哪种结果在总数占的比例多。
情感、态度与价值观:培养学生的动手操作、归纳和判断能力。
【教学重、难点】
重 点:会比较两种结果事件的可能性大小。
难 点:能根据可能性的大小逆向思考比较事件数量的多少。
【教学方法】:游戏教学法;自主探索、合作交流。
【教学准备】:多媒体、盒子、彩色棋子。
【教学过程】
一、复习引入
1.出示:
(1)用合适的语言描述下面事件发生的可能性。
①太阳( )从东边落下。 ②明天( )考试。
③冬天( )会下雪。 ④掷一枚硬币( )正面朝上。
(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?
引导学生说出:可能是红棋子也可能是黄棋子,因为盒子里面既有红色棋子也有黄色棋子。
质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?
引导学生思考,在小组内交流讨论。学生可能会说,最有可能摸到红色棋子,因为盒子里红棋子比黄棋子多。
2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)
二、互动新授
1.体验可能性有大有小。
出示教材第45页例2情境图。
(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)
(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)
(3)追问:这说明了什么?
(摸到红棋子的可能性比较大,蓝棋子的可能性小。)
(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色。)那是不是一定能摸到红色呢?
(不一定,因为蓝色摸到的可能性虽小,但也有可能会摸到。)
2.动手操作。
(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。
小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?
指名小组汇报,对不同结果的小组进行比较。
(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?
引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)
(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。
3.出示教材第46页例3。
(1)先让学生观察出示的记录结果,再指名回答例题中的问题。
(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。
八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大,摸出黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)
(2)引导学生总结:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。
三、巩固拓展
1.完成教材第45页“做一做”。
先让学生自主思考,小组交流,再汇报。并说出为什么这么想。
引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。
2.完成教材第46页“做一做”第1题。
先让学生观察,从图中能得到哪些信息,再说一说。
(盒子里红色的棋子最多,黄色的棋子最少。)
引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)
四、拓展小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:1.事件发生的可能性有大有小。2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。3.摸到的可能性大,说明在总数中占的数量多,摸到的可能性小,说明在总数中占的数量少。
五、作业:教材第47~48页练习十一第5、8题。
【板书设计】:
可能性(2)
大←→数量多
可能性
小←→数量少
人教版五年级上册《用数对确定物体的位置》数学教案
第2单元 位 置
第1课时 用数对确定物体的位置
【教学内容】:教材P19例1及练习五第1、2题。
【教学目标】:
知识与技能:使学生在具体的情境中认识“列”与“行”的含义,知道确定第几行、第几列的规则,初步理解数对的含义,会用数对表示具体情境中的位置。
过程与方法:使学生体验数学与生活的密切联系,进一步提高用数学的眼光观察生活的意识。
情感、态度与价值观:培养学生的空间意识能力,进一步培养数感。
【教学重、难点】
重 点:会用数对确定物体的位置。
难 点:正确区分“列”和“行”的顺序。
【教学方法】:自主探索,合作交流。
【教学准备】:多媒体。
【教学过程】:
一、情境引入:
1.导入:同学们,你们想不想知道其他班级上课的情境是什么样的呢?今天咱们就去五年级某班看一看。看,这是张亮所在班级的学生,多整齐!你能告诉老师张亮的位置吗?
(出示教材第19页情境图中张亮那一列同学的座位)
学生可能说:第3个、从前面数第3个、从后面数第3个等。
教师引导学生分析,要在一列座位中确定一个人的位置只要清数方向和第几个就行了。
2.揭题:今天我们就来学习如何用数对来表示物体的位置。
(板书课题:用数对确定物体的位置)
二、互动新授
(一)明确行、列的意义
1.师引导:这么多表示方法有些乱,同学们所说的“排”,在数学上竖排叫“列”,横排叫“行”。 (板书:列行)
并明确:数“列”的时候习惯上从左往右数,依次为第1列、第2列……数“行”的时候习惯上从前往后数,依次为第1行、第2行……把教材第19页情境图上的每一列和每一行按顺序写上,同桌互相指一指。
说明:通常情况下,描述物体位置时先说列,再说行。
让学生用正确的方法描述张亮的位置。(第2列、第3行)
2.引导:你能用刚学习的知识描述一下其他同学的位置吗?(举例王艳、赵雪,周明的位置等)
让学生随便指图上一人,同桌互相说一说他的位置。(学生练习)
(二)认识数对
1.引导:表示位置我们还可以用“数对”来表示。这就是今天我们要学习的主要内容:用数对确定位置。张亮在第2列、第3行的位置,可以用数对(2,3)表示。
2.质疑:根据描述的习惯,你认为括号里这两个数各表示什么?
(第一个数表示第几列,第二个数表示第几行。)
强调并让学生明确数对的第一个数表示第几列,第二个数表示第几行。
(三)用数对表示位置,根据数对确定位置
1.让学生用数对分别表示图中其他同学的位置。(王艳、赵雪等)
学生回答:王艳的位置用数对表示是(3,4),赵雪的位置用数对表示是(4,3)。
2.讨论我们用数对表示物体位置时要注意什么问题?
(不要把列和行弄颠倒了。)
(四)应用知识
1.先说一说自己班里,哪里是第一列,哪里是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。
2.你能用数对表示你的前后左右邻居的位置吗?说一说,并思考有什么发现。
(1)让学生互相说一说,并讨论。
(2)师引导:前后邻居数对的第一个数与自己相同,左右邻居数对的第二个数与自己相同。
3.做游戏:教师说数对,学生根据数对找出相应的同学。
4.找数对:大家来找一找生活中的数对。
学生自由发言,指名学生说一说,如找座位,找楼座等。
三、巩固拓展
完成教材第19页“做一做”。
先让学生分组讨论,然后再说一说。
四、课堂小结
师:同学们,这节课你们都学会了哪些知识?
生1:我学会了怎样用数对表示位置。
生2:我知道了数对中第一个数表示列,第二个数表示行。
师:除了以上两位同学所说的之外,在用数对表示物体的位置时还要注意,列是从左往右数,行是从前往后数。
五、作业:教材第21页练习五第1、2题。
【板书设计】
用数对确定物体的位置
竖排一列 左一右
横排一行 前一后
数对(列,行)
《人教版五年级下册《能被2、3、5整除的数》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案五年级”专题。
文章来源:http://m.jab88.com/j/112844.html
更多