沪教版五年级上册《梯形的面积》数学教案
【教学内容】九年义务教育课本数学五年级第一学期(试用本)第65页
【教学目标】
1. 知识与技能
(1)通过拼、摆等操作活动,探究并掌握梯形面积的计算方法。
(2)能根据梯形面积计算公式,正确计算梯形的面积。
2. 过程、能力与方法
通过观察、比较、分析以及动手操作等自主探究活动,经历梯形面积公式的推导过程,发展空间观念。
3. 情感、态度与价值观
在个体探究与合作学习相结合的学习活动中获取新知,体验成功的喜 悦。
【教学重点】理解梯形面积的计算方法,正确计算梯形的面积。
【教学难点】梯形面积计算方法的推导过程。
【教学准备】
课件、剪刀、梯形纸。
【教学过程】
一、复习导入
1. 复习长方形、平行四边形、三角形的面积计算方法。
2. 出示课题:梯形的面积
二、新知探究
1. 联想猜测、探求方案
猜测:计算梯形的面积,需要知道什么条 件?
【策略说明:学生之前已亲历了平行四边形和三角形面积公式的探究过程,对“转化”思想在推导平面图形面积公式中的作用已有了 较深的感受,因此放手让学生自主解决,创设出较大的探究空间以激发学生的创造性。】
2. 小组合作,实验 探究。
探究:利用已有知识,计算梯形面积。
(1)提出小组合作的要求
(2)自主探究,合作学习
(3)全班汇报交流
【策略说明:通过小组合作,让学生自主探究,用不同的方法把梯形转化成了学过的图形并进行计算,初步感知梯形面积计算的方法。】
3. 归纳总结,推导公式
归纳:梯形面积的计算公式。
(1)指导看书
(2)反馈交流
【策略说明:再次合作,运用运算定律和运算性质,统一梯形面积的计算方法,归纳梯形面积计算公式。】
4.巩固新知:
求出以下梯形的面积(每个小方格都是边长为1厘米的正方形)
【策略说明:通过练习,让学生体会 ,如果几个梯形的上底、下底和高分别对应相等,那么它们的面积不受形状的影响,也分别相等。】
三、拓展思维
介绍利用梯形面积的其他推导方法
【策略说明:通过媒体演示将三角形、梯形、平行四边形统一起来,初步渗透梯形中位线的概念,可对梯形的面积计算方法加以拓展,延伸,并进一步促进学生空间观念的发展 。】
四、综合练习
在方格纸上画一个面积为6平方厘米的梯形。
【策略说明:利用方格图,画规定 面积的梯形,既可以巩固梯形的计算方法, 也可以再一次沟通梯形与其他平面图形面积计算之间 的关系,达到灵活运 用,举一反三的目的。】
作为一位刚入职不久的新任教师,在授课上的经验比较少。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。从而在课堂上与学生更好的交流,那你有没有为了一个问题而去做过一份教案呢?下面是由小编为大家整理的“沪教版五年级下册《表面积的变化》数学教案”,仅供参考,大家一起来看看吧。
沪教版五年级下册《表面积的变化》数学教案
[教学目标]
1、 使学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发 现拼接前后有关几何体表面积的变化规律,并让学生 应用发现的规律解决一些简单实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体会图形学习与实际生活的 联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
[教学重点与难点] :
通过操作,比 较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规 律,学会分析。
[教学准备]
多媒体课件,各小组准备8个1立方厘米的正方体,2个完全相同的长方体,以及10盒同样的火柴盒。
[教学过程]
一、导入
【出示课件】
老师前两天去超市购物,发现同一种肥皂有两种不同的包装,你觉得哪种好些呢?如果从环保的角度来考虑问题,你们觉得哪种包装更省包装纸?说的是否正确呢?包装纸的大小其实就是要包装物体的表面积,这节课就来研究表面积的变化(板书课题)
二、探究正方体或长方体拼接表面积变化规律
(一)、 探究正方体拼接表面积变化规律
活动一:两个正方体拼成长方体后表面积的变化情况。
1、谈话:同学们,这是两个体积1立方厘米的正方体,在同学们桌上就有一些体积1立方厘米的正方体,你能用这两个正方体拼成一个长方体吗?动手拼一拼 。
2、学生拼后反馈两种拼法。
3、提问:有的同学拼成了一个横着的长方体,有的同学拼的是竖着的长方体。不管是哪一种,观察一下,体积有没有变化?
4、提问:体积没有变化,比较一下拼成的长方体的表面积与原来两个正方体的表面积的和,你有什么发现?
(1)学生可能的发现:
(2)追问:谁来指一指,少的两个面在哪?其他同学看着直观图想象一下少了哪两个面?
5、出示表格。教师小结:刚才我们用2个正方体拼成一个长方体,原来一共有12个面,拼成后减少了原来2个面的面积。
课件出示数据:2、12、2
小组交流,合作完成。
正方体的个数2345……n原来正方体一共有几个面……拼了几次……拼成后减少了原来几个面的面积……活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。
1、谈话:3个、4个甚至更多个相同的正方体像这样摆成一行,拼成一个长方体,
体积是否变化?表 面积比原来减少几个正方形面的面积?请同学们小组合作拼一拼,完成这张操作汇报单。
2、 生小组活动,师巡视。
3、汇报。
谈话:用3个正方体拼,原来一共有几个面?拼成后减少了原来几个面的面积? 4个呢?5个呢?课件相机把数据填入表格。
提问:用6个拼,是个什么情况?请同学们想一想,也可以动手拼一拼。
提问:用8个拼又是什么情况呢?汇报后也请学生拼一拼。
4、谈话:在刚才拼的过程中,你们发现什么规律了吗?先自己想一想,然后在小组里交流你的想法。
学生可能的发现:
(1)原来正方体有一共有几个面,只要乘6就可以了。
(2)每多一个正方体,表面积就多减少2个正方形面的面积。
(3)正方体的个数减1就是拼的次数,再 乘2就是减少了几个正方形面的面积
5、验证:我们一起到表格中来看一看,是不是蕴藏着这样的规律?
6、拓展、加深体验:8个是个什么情况?15个呢?谁能再来说一说这里蕴含 的规律?
(二)、探究长方体拼接表面 积变化规律
活动三:用两个相同的长方体拼成大长 方体,表面积的变化情况。
1、谈话:刚才我们研究了几个正方体拼成一排时表面积的变化,那长方体在拼 摆过程中又有什么变化呢?我们继续来研究。
2、提问:这是两个同样大的长方体,长是10厘米,宽是7厘米,高是4厘米,你能用这两个长方体拼成三个不同的大长方体吗?在小组里拼一拼。
3、学生拼后反馈三种拼法。
4、提问:用两个长方体可以拼成三个不同的大长方体,联系刚才摆的过程,你发现 什么变了?什么没有变?
可能的发现:
(1)拼成长方体后,体积没有变化,表面积有变化。
(2)都比原来减少了2个面的面积,不同的拼法减少的面积就不同。
追问:谁也来指一指,少的两个面在哪?其他同学看着直观图想象一下少了哪两个面?
5、提问:课件出示观察在这拼成的长方体中哪个大长方体的表面积最大,哪个最小?你是怎么想的?
引导学生发现:3号长方体表面积最大,1号长方体表面积最小,因为减少的面积越少,拼成的大长方体的表面积就越大。
6、验证:我们就来算一算,三个大长方体的表面积分别比原来到底减 少了多少?学生计算、反馈。通过计算我们知道了把两个长方体拼成大的立体图形,表面积都会减少,但不同的拼法减少的面积也会不一样。
如果要把这样的三个长方体包装起来,你觉得用哪种方法最节约包装纸?
沿着最大面拼接的方法最节省包装纸。
教师谈话:在日常生活当中有很多地方都运用了这一原理。【出示生活中的图片或实物】
(三)、拼拼说说,运用规律
1、过渡:1、 刚才我们通过操作发现,几个相同的正方体或长方体,拼成一个较大的长方体,表面积都发生了变化,而且都有一定的规律。现在老师就要检验哪个组运用知识解决问题的能力最强,看看谁能运用刚才发现的规律解决一些问题?
2、出示题目:用6个体积是1立方厘米的正方体
(1)可以拼成几种不同的长方体,
(2)不同的拼法减少的表面积是否一样?为什么?
(3)哪个长方体的表面积大?大多少?先自己想一想,然后在小组里交流你是怎样想的?
3、谈话:生活中像这样物体的拼接问题还是很多的,今天我们就来开展一个拼装火柴盒的实践活动。
(1)谈话:同学们桌上有10盒火柴,把10盒火柴包装成一包有哪些不同的方法?先在小组里拼一拼,看看有哪些不同的包装方法?
(2)学生小组操作。
(3)学生展示摆法。
(4)这几种摆法中,哪种最节省包装纸?先自己想一想,然后和小组的同学交换一下意见。
(5)反馈可能出现几种摆法,就请同学们再在小组里拼一拼,比一比,说一说, 然后让学生在比较中得出最节省的包装方法。 教师引导学生具体分析每一种包装方法,并适当说明理由。
“怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)
怎 样拼最少呢?(5盒叠一起,并排两叠)
三、全课小结:
提问:这节课我们通过摆一摆,说一说,研究了物体拼摆过程中表面积的变化情况,你有什么收获呢?如果 给你若干个相同的正方体或长方体,怎样拼表面积最小呢?
板书设计
表面积的变化
拼接一次正方体表面积就减少两个正方形的面积
正方体的个数-1=拼接的次数
拼接的次数ⅹ2=减少正方形的面积
沪教版五年级上册《组合图形的面积》数学教案
教学准备
1. 教学目标
1、运用适当的分割拼补的方法明 确图形的组合关系。
2、利用已经学过的基本图形面积计算公式正确计算出组合图形的面积。
2. 教学重点/难点
教学重点:
将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。
教学难点:
合理 利用图形中标出的长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。
3. 教学用具
教学课件
4. 标签
教学过程
一、 复习引入
1、 我们已学过哪些平面图形?
2、 说出它们的面积计算公式 ?
3、 谁能用上面两个或三个拼成一个图形?
4、 揭题:组合图形的面 积
二、 探究新知
1、 出示:下面是一个组合图形,你会求它的面积吗?
1、 小组讨论
2、 小组汇报,集体交流
三、 巩固练习
1、求组合图形的面积
课堂小结
总结
这节课你有什么收获?
课后习题
作业设计
练习册62页
在上课时老师为了能够精准的讲出一道题的解决步骤。在上课前要仔细认真的编写一份全面的教案。让同学们很好的吸收课堂上所讲的知识点,那么教案怎样写才好呢?小编收集整理了一些沪教版五年级下册《方程》数学教案,仅供您在工作和学习中参考。
沪教版五年级下册《方程》数学教案
教学目标:
1、 能解ax÷2= b a(x+b) ÷2= c 类型的方程
2、 初步体会利用等量关系分析问题的优越性
教学重点和难点:
重点:能解ax÷2= b a(x+b) ÷2= c 类型的方程
难点:初步体会利用等量关系分析问题的优越性
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:
(1)2x+8=16 (2)x÷5=10
(3)x+7x=8 (4)9x-3x=6
(5)6x-8=4 (6)5x+x=9
一 、探索新知,讨论探究,展示思维过程
出示例1
解方程: 8x÷2=28
1、学生尝试解答
师: 请观察方程,想一想,可以怎样化简?
生: 先将8x看作一个整体来解
生: 也可以先将8x÷2化简为4x来解.
2 、组织交流.
师: 请用这两种方法来解这个方程
板书: 分析: 先求8x的值 分析:先化简 8x÷2=(8÷2)x
解: 8x = 28×2 解: (8÷2)x=28
8x = 56 4x=28
x = 56÷8 x=28÷4
x = 7 x=7
3 、比较这两种解法的不同,并总结出第二种的好处是什么?
4.、小练习: 解下列方程
(1) 6x÷2=21 (2) 2x÷4=7
(3) 4x÷4=1 (4) 64x÷16=24.4 检验
小结:每做一题就要检验,养成检验的好习惯。
5、试解 x÷2+x÷4=6的方程
6、用第二种方法解下列方程:
4x÷2=16 7x÷2=49
三 、出示例2
7(x+3) ÷2=28
师: 先求什么?再求什么?
请生按课本提示继续完成此题的分析内容
师: 把该题的解方程过程仔细看一看
如何检验呢?分几步进行呢?
师: 你还能怎么解呢?(如也可化简为 3.5(x+3)再来解
四 、练一练
解方程
5(x+3) ÷2=10 7x+44.45+4x=100
36x+44×3=240 48 +3x=9x 检验
五 、师生小结
作业布置:
解方程
3(x+3) ÷2=12 6x+6×45=930
64x÷16=24.4 4 +7x=9x 检验
板书设计:
8x÷2=28
分析: 先求8x的值 分析:先化简 8x÷2=(8÷2)x
解: 8x = 28×2 解: (8÷2)x=28
8x = 56 4x=28
x = 56÷8 x=28÷4
x = 7 x=7
教学效果的反馈:
作为杰出的教学工作者,为了教学顺利的展开。所以大多数老师都会选择制定一份教学计划。从而在课堂上与学生更好的交流,你们见过哪些优秀教师的小学教案吗?以下是小编为大家收集的“沪教版五年级下册《体积》数学教案”,仅供参考,欢迎大家阅读。
沪教版五年级下册《体积》数学教案
教学内容:P38-40
教学目标:
1、通过具体的实验活动,了解体积的实际含义,初步理解体积的概念。
2、结合生活实际经验,能直接比较物体的体积大小。
3、通过实验活动、讨论交流等形式,获得体积的守恒性的经验。
4、感受数学与生活的密切联系,提高学习数学的兴趣。
教学重点:理解体积的概念。
教学难点:在不计损耗的情况下,获得体积的守恒性的经验。
教学过程:
一、揭示“体积”概念
1、理解“空间”
(1)出示:一个空杯子
师问:这是什么?里面有什么呢?看不见的东西有吗?
师:像这样杯子里被空气占领的地方就是杯子的空间。板书:空间
(2)问:那假如我们教室没有桌子也没有学生,都被什么占领了?被空气占领的地方叫做教室的“空间”。
(3)问:你们知道我们外面最大的空间是什么?
(4)师:刚才我们说这里面就是杯子的空间,(师倒水),现在这一部分的空间被谁占领了?(水),说明水也占有一定的“空间”。
2、理解“空间有大有小”
(1)师:现在如果我将这个小石块放入杯中,请大家先想象一下,可能会怎样呢?(水面会上升)你们都同意吗?
(2)师操作,学生观察,问:水面为什么会上升呢?(因为石块占有一定空间。)
(3)师:如果老师把这一块石块放入杯中,现在又会怎样呢?(水会溢出来)都同意吗?
(4)师操作,学生观察,师:水真的溢出来了,那为什么后面这一次水会溢出来呢?(因为第二块石头占的空间大。)
师:也就是石头所占的空间是有大有小的,是吗?
3、揭示体积概念:从刚才的实验中,我们知道两块石头都占有一定的空间,并且它们所占的空间有大有小。其实,生活中任何一个物体都占有一定的空间,物体所占空间有大有小,我们把物体所占空间的大小叫物体的体积。板书:概念、齐读、出示课题、问:什么是体积?
二、“体积”的直接比较
1、出示:小老鼠和大象
师:现在你看到了什么?谁占的空间大?谁占的空间小?
那么我们还可以用刚刚学过的哪个词来描述一下这副图?
(大象的体积大,老鼠的体积小。)
师:大象占的空间大,体积也就大;老鼠占的空间小,体积也就小。
2、下面两幅图中,你能直接说说,谁的体积大?谁的体积小?
师:西瓜和橘子,谁的体积大?谁的体积小?为什么?
3、师:那么你能举例说说我们身边的物体,谁的体积较大,谁体积较小?
4、比较两根木棍的体积大小
师:刚才我们举的这些物体非常明显地可以判断出体积的大小,所以我们用眼睛直接来判断了,下面老师提供这样一种情况:
1)甲乙两根木料一样长,他们的体积( )
(1)甲>乙 (2)甲=乙 (3)甲
(用手势表示)师:大家意见不统一,谁来说说自己的想法?
2) (出示图片)师:我们来看图,现在你们觉得选择几呢?说说为什么?
3)小结:虽然两根木棍一样长,但是红色的木棍比较粗,它所占得空间大,所以它的体积比较大。在一样长的情况下,还要看粗细。
5、比较两本书的体积大小。
师:下面老师再提供一种情况:
1)丙丁两本书的封面面积一样大,它们体积( )。
(1)丙>丁 (2)丙=丁 (3)丙
(用手势表示)师:大家意见又不统一,谁来说说自己的想法?
2)(出示图片)师:我们来看图,现在你选几呢?为什么?
3)小结:虽然两本书的封面面积一样大,但乙书比较厚,所占空间比较大,所以它的体积比较大。在封面面积一样的情况下,还要看厚度。
5、师小结:从刚才的比较活动中,我们知道在比较物体体积大小的时候,要全面考虑,也就是要看他所占的空间大小,它占的空间大,那么它的体积就大。
三、“体积”的守恒性
师:接下去,老师要请你来思考这样3个问题:
1、 思考1:将一杯水倒入长方形盒中,水的高度变了吗?水的体积变了吗?
(同桌交流意见,全班交流)还有不同意见吗?
实验操作,问:水的高度发生变化了吗? 水的体积发生变化了吗?
你是怎么想的?你怎么来证明?
(总量没有变,还是同样这些水,体积没有变;把水倒回去,还是达到杯中原来的地方,这些水占的空间还是原来这些空间;把杯中水、盒中水分别倒入第三个容器中,到同样一个高度)
师操作:水在倒的时候,可能有少许水会沾在杯壁上,但是在不计这种损耗的情况下,可以说水的体积是不变的。
2、思考2:同一块橡皮泥,捏成各种样子,形状变了吗?体积变了吗?
(同桌交流意见,全班交流)不同意见有吗?
实验操作:将一块橡皮泥搓成一个球、搓成一长条
问:橡皮泥的形状发生变化了吗?橡皮泥的体积发生变化了吗? 怎么证明体积没有发生变化?
(将球和长条分别放入水杯中,水上升的高度一样,水上升的高度就是橡皮泥的体积)
师操作:在搓的过程中间,既没有又添加橡皮泥,也没有拿掉橡皮泥,所以在不计损耗的条件下,橡皮泥的体积没有发生变化)
3、思考3:把一个西瓜切成几块, 它的体积发生变化了吗?
(同桌交流意见,全班交流)都同意吗?
图片出示:把一个西瓜切成4份
问:怎么证明体积没有发生变化?
(把切开西瓜再合起来,发现在不计损耗的条件下,体积没有发生变化)
4、问:请你们想一想,刚才我们的3个实验,从数学角度出发,你发现了什么?
生:物体的形状发生了变化,但只要总量不变,体积就不变。(板书)
四、巩固“体积”知识
1、师:分散的3块体积和叠起来的3块体积变化吗?形状发生变化了吗?体积没有变?为什么?
2、下列各种情况体积会发生变化吗?为什么?
一个足球被踢进球门。
一个人从婴儿到成年。
一块砖被敲碎了。
3、哪个杯子里的水的体积大?为什么?
(用手势表示)
师:如果让你证明,你怎么证明?
(把两个苹果全部拿出来,你说哪一杯水的高度高?)
4、比较体积大小 (同桌互讲)
5、比较出这两个长方体的体积大小
1、 甲>乙 2、 甲
师:老师这里有2个长方体,哪一个长方体的体积大?(同意1的举手,2的......)
为什么会出现这么多分歧?(这两个长方体体积很难看出)
凭眼睛看,很难看出,那么你们有什么好办法?(生自由回答)
现在老师把这2个长方体分割成几个大小相同的小正方体,现在你们能判断他们的体积大小了吗?
五、总结:今天你有什么收获?
(什么是体积、体积有大有小、物体形状变了,总量没变,体积不变)
沪教版五年级上册《方程》数学教案
教学准备
1. 教学目标
能够根据事物间的等量关系正确列出等式。
学会运用加、减法以及乘、除法之间的关系解一步计算的方程。
理解和掌握简单方程的求解过程,并能正确 书写解题格式与检验方法。
2. 教学重点/难点
学会运用加、减法以及乘、除法之间的关 系来求方程的解。
能够根据事物间的等量关系正确列出等式。
3. 教学用具
教学课件
4. 标签
教学过程
一、新课导入
师:同学们,你们知道“曹冲称象”的故事吗?……那么,在当时的情况下,聪明的曹冲是怎么来称出大象的体重的呢?(生答)
师(归纳):由于大象的重量就相当于那堆石头的重量,因此,只要把那些石头的重量相加,我们就能得到大象的体重了。(媒体演示)
出示等量关系式: 石头的总重量 = 大象的体重
二、新课探索
探究一 认识方程
1. 出示(课本45页的图1)
师:图上的天平处于什么状态?
生:平衡状态
师:天平平衡说明什么?
生:天平左边物体的重量=天平右边物体的重量
师:我们能否把图中的数字和字母带入等量关系式呢?
生:2x=250
2. 出示(课本45页的图2)
师:小丁丁的身高和爸爸一样吗?
生:不一样
师:那么如果他像图上那样站在木凳上呢?
生:那就一样高了。
师:因此我们可以得到的等量关系是?
生:小丁丁的身高+木凳的高度=爸爸的身高
师:如果小丁丁的身高为ycm,凳子的高度为625px,爸爸的身高为4325px 。那么,把这些数字和字母带入等量关系式,我们可得到的式子为?
生:y+25=173
3. 出示(课本45页的图3)
师:你们能看图找到 等量关系式以及相对应的字母式吗?
同桌讨论完成
学生汇报:上排积木的长度=下排积木的长度
所以:x+7=12 3y=12
4. 师生互动,交流总结
出示一些算式请学生分类,并说说你是根据什么进行分类的
2x=250 9 0=810÷ 9 x+7=12 3y=12
67-33=34 y+25=173 3×2=6 5+17=18+4
根据在算式是否有未知数(或字母)来进行分类。
⑴ 2x=250 y+25=173 x+7=12 3y=12
⑵ 3×2=6 5+17=18+4 67-33=34 90=810÷9
师:仔细观察这两组算式,它们有什么共同点和不同点?
[第一组算 式都有未知数(或字母),而第二组算式却没有未知数(或字母)。]
小结:像这样含有未知数的 等式叫方程。
跟进练习:判断下列哪些是方程。
5x-15 32+67=79 24+8=40 -8 7y=42
750÷15=50 4x+12=20
探究二 解方程
1. 出示例题:求出x+3=9中的未知数x
⑴ 师:先请一个同学来说一说求x的方法。(生口述)现在我们把求x的过程用正确的格式表示出来:
x+3=9
解:
x=9-3, 思考: 一个加数 = 和 - 另一个加数
x=6.
⑵ 师:(指例题)我们把使得方程左右两边相等的未知数的值,叫做“方程的解”,像上面,X = 6就是方程x + 3 = 9的解。而我们求方程的解的过程,叫做“解方程”。
⑶ 师:现在我们在回到前面来看看刚才我们求出的未知数的值是不是方程的解呢?
⑷ 学生对练习一进行口头验算。
跟进练习:
1、解方程
10+x=100 x-32=64 x÷11=12
3x=54 70-x=61 72÷x=3
(学生练习)
1. 练一练:对上面的方程进行检验。
(学生互查)
l 说说你是如何进行检验的。
1. 出示例2:解方程:6x=19.8
师:你们愿意再来试一试吗? (学生同桌合作完成)
汇报板书:
6x=19.8
解: x =19.8÷6, 思考:一个因数=积 ÷ 另一个因数
x=3.3.
2. 师:要想知道我们求出的解是否正确,怎么办呢?我们可以用“代入法”进行检验。(讲述方法和格式)
出示:
检验:
把x=3.3代入原方程6x=19.8
方程左边=6×3.3=19.8
方 程右边=19.8
因为左边=右边
所以,x=3.3是原方程6x=19.8的解。
课堂练习:
解方程:
9x=72 51-x=23 624÷x=6 x-82=39
课堂小结
三、本课小结
1. 含有未知数的等式叫做方程;
2. 使方程左右 两边相等的未知数的值,叫做方程的解 。
3. 求方程的解的过程,叫做“解方 程”。
课后习题
四、课后作业
练习册P51
身为一位人名教师,我们要给学生一个优质的课堂。为了不消耗上课时间,就需要有一份完整的教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,你们知道那些比较有创意的教学方案吗?小编特地为您收集整理“沪教版五年级下册《自然数》数学教案”,仅供您在工作和学习中参考。
沪教版五年级下册《自然数》数学教案
教学目标:
1、认识自然数,知道自然数的有关知识
2、了解自然数的六种含义
教学重点和难点:
重点:自然数的认识
难点:自然数的含义
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:直接写得数:
0.29-0.17= 8.36÷0.1= 1.6+2.5= 0.3×0.3=
0.01×3.4= 8.3-4.7+1.7= 12.4×101-12.4=
一、引入阶段。
1、揭示课题:今天我们要学习一个新知识:自然数。
2、什么叫做自然数?课本P6
二、中心阶段。
1、最小的自然数是几?“0”是自然数的一个起点,它是最小的自然数,有没有最大的自然数呢?(学生自由讨论)
2、读一读:9,4608,0000,0000
九兆四千六百零八亿
这是小巧读到的最大的自然数,这是最大的自然数吗?
9460800000000+1比9460800000000大
小结:没有最大的自然数
2、自然数可以表示什么呢?比如“3”这个数?
学生交流。
教师根据学生交流归纳板书:
有关知识 含义
0是自然数 序数:第几个
每一个自然数都只有一个 基数:几个
自然数接在它的后面 次数:多少次
自然数n的后一个自然数是“n+1” 量数、大小:多长、多大、多重
最小的自然数是0,没有最大的自然数 计算结果
代码:电话号码、邮政编码、坐标等
三、巩固练习:
1、下面各数,哪些是自然数,请你将它们圈出来。
8、39、、1、0、72、0.06、4987、328
2、填空题:
1、2、3、······这些用来计数和编序的数在生活中随处可见,他们被称为( )
,后来人们又把表示“没有”的( )也归为自然数。自然数可以表示( )、( )、( )、( )、( )、( )、( )等很多不同的含义。
自然数n后一个自然数是( )。
3、判断:
(1)最小的自然数是1。( )
(2)两个自然数的差一定是自然数。( )
(3)在相邻的两个自然数中,后一个数总比前一个数大1。( )
(4)一个自然数不是单数,就是双数。( )
(5)最大的自然数是99999999999。( )
三、总结。
检测目标达成的练习:
一、选择题:
1、下列各数中( )是自然数。
A、1 B、1.1 C、 D、以上都不是
2、最小的自然数是( )
A、0 B、1 C、0.1 D、不存在
3、最大的自然数是( )
A、9 B、99 C、9999999999 D、不存在
4、如果一个自然数是a,那么接在它后面的一个自然数是( )
A、a-1 B、a C、a+1 D、a+2
二、练习册P7
教学反思:
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。让同学听的快乐,老师自己也讲的轻松。那么优秀的教案是怎么样的呢?以下是小编为大家收集的“沪教版五年级下册《正数和负数》数学教案”,欢迎阅读,希望您能阅读并收藏。
沪教版五年级下册《正数和负数》数学教案
教学目标:
1、结合温度,海拔等角度认识具有相反意义的量。
2、知道两个相反意义的量的分界点。
3、会举出两个相反意义的量。
4、认识正数,负数,知道正号用“+”来表示,可以省略不写,负号用符号“-”来表示
5、会读写正数与负数。
6、会用正数与负数表示两个相反意义的量。
教学重点和难点:
重点:知道正、负数所表示的实际含义。
难点:初步会用正负数表示简单实际问题中具有相反意义的量。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:能简便计算就简便计算:
120×0.4×0.9×0.25 9.36×6.4+4.6×9.36-10×0.936
一. 导入阶段
开门见山:生活中有很多具有相反意义的量。
二. 结合实例,认识相反意义的量
1、出示实例:出示实例: “零上温度和零下温度” .
(1) 请仔细观察下面的温度计,它们分别显示了海口和哈尔滨冬季某一天的最低温度.
(2) 提问: 你能读出这两个城市这一天的最低气温吗?
(从温度计上可以看出,海口的最低气温是零上12℃,哈尔滨的最低气温是零下25℃.)
(3) 补充说明: ℃读作摄氏度.
(4) 进一步理解零上温度和零下温度的含义:零上12℃比0℃高12℃,零下25℃比0℃低25℃.
(零上温度就是比0℃高,零下温度就是比0℃低.)
(5)总结:“零上温度和零下温度是一对具有相反意义的量”。
2、出示实例: “海平面以上和海平面以下”.
(1)从图中你可以了解到哪些信息?
(2)学生互相交流:
世界第一高峰珠穆朗玛峰大约比海平面高8844.43米.
地表的最低点在北太平洋西部的马里亚纳海沟,据目前测到的深度,比海平面低11034米.
(3) 归纳: 海平面以上高度和海平面以下深度也是一对具有相反意义的量.
3、举例生活中具有相反意义的量。
(收入 支出)(运进 运出 )(上升 下降 )(向左 向右)
4、尝试练习
用相反意义的量填空
1.小明骑车向东行200米,后来( )行200米,正好回到原来的出发地点。
2. 小王先向正北走80米,接着向正西走20米,然后向正南走80米,最后向( )走( )米,正好回到原来的出发点。
三、认识正、负数
1、师:为了方便简洁地对具有相反意义的量进行区分,我们常用正数和负数表示具有相反意义的量。
例:课本 P9图
如人们规定在零上温度前添上“+”号,而在零下温度前添上“-”号。
这天海口的最低气温是零上12℃,就记作+12℃;哈尔滨的最低气温是零下25℃,就记作-25℃。这样表示很方便。
正数前面的“+”号可以省略不写,如:+2,+10,可以写作2,10。
2、0既不是正数也不是负数,0是一个分界点。
四、巩固练习
1、练习册P4/2
2、填空
(1)零上21℃记作( ),零下14℃记作( )。
+18℃表示( ),-7℃表示( )。
(2)如果将高出地面的高度用正数表示,那么,金茂大厦高出地面340.1米,记作( )米;静安寺下沉式广场低于地面8米,记作( )米。
(3)如果将温度上升用正数表示,那么,温度上升6℃,记作( ),那么温度上升-6℃,表示( )。
(4)小明向东走30米,记作+30米,那么相西走30米,就记作( );如果他向正南走10米,记作+10米,那么向正南走-10米,表示( )。
四、实践阶段
1、你能说说存折中红线框出的数各表示什么吗?(课本 P10 b)
2、用正负数表示相对位置。(课本 P10 c)
五、总结
六、作业布置:练习册P8
板书设计
相反意义的量。
零上温度和零下温度是一对具有相反意义的量。
海平面以上的高度方向为上,海平面以下的高度为下是两个相反意义的量。
0既不是正数也不是负数,0是一个分界点。
教学反思:
沪教版五年级上册《梯形》数学教案
【教学目标】:
[认知目标]:
了解梯形各部分名称;理解掌握梯形的本质特征,认识几种特殊的梯形及其属性;培养观察比较、类比归纳、操作想象等能力,发展空间观念,形成一定的创新意识。
[能力目标]:
联系生活实际,通过观察、分类、比较、操作等方法,进行自主探究活动。
[情感目标]:
通过自主探究,合作交流,体验成功,建立自信,激发学习兴趣,培养 审美情趣。
【教学重点】:
掌握梯形的本质属性,理解梯形高的概念,会作梯形的高。
【教学难点】:
理解掌握梯形的本质属性。
【教学准备】:
教学课件 梯形、三角形、平行四边形图片若干 直尺、量角器、剪刀等
【教学过程】:
一、复习导入:
1.回顾学过的平面图形。
师:同学们,在以前的学习中,我们学习了很多平面图形,你们都知道哪些?(学生边说老师边出示: 正方形、长方形、平行四边形和三角形等)
2.透明色带操作。
师:请同学们用信封里的三角形和平行四边形的透明色带交叠,看看可以交叠出什么图形?(学生动手操作)
(1)生展示交叠的图形。
(2)师:你们交叠出了许多的图形,这些图形都有什么相同的特征吗?
(3)生自由回答
3.揭示课题。
(1)师:交叠出的都是一个什么图形呢?这就是我 们今天要探究学习的另一个平面图形“梯形”(出示课题)。
【说明:学生对梯形早已有了一定的感性认识,在交叠操作和与已知的平面图形比较中进一步感知梯形的本质属性,为后面进行梯形知识的建构奠定基础。】
二、合作探究。
1.师 :凭前面学习三角形、平行四边形的经验,你们想从哪些方面认识梯形呢?
预设:生可能从以下方面回答:
(1)定义
(2)各部分名称
(3)特征
……
师:那我们就按自己的想法先研究什么样的图形是梯形。
【说明:学生已经学过三角形、平行四边形等平面图形,对研究方法已有一定的掌握,这样教学以关注学生需求,教师可就着学生的思路进行教学,尊重学生,变“要学生学”为“学生要学”。】
2.合作探究梯形的定义。
(1)学生选择老师提供的研究材料(一些梯形的图片、量角器、直尺等),先独立思考,再以小组汇总意见讨论。(学生以组讨论,教师巡视,引导学生参与到活动中去。)
(2)组织小组汇报交流。
小组可能从以下几个方面回答:
① 通过数一数、量一量等方法得知有四个角、四条边、四个顶点、一组对边平行,另一组对边不平行的图形是梯形。
② 教师引导学生把“四个角、四条边、四个顶点”等特点归纳为“四边 形”
③ ②有一组对边平行,另一组对边不平行的四边形叫梯形。
④ 师引 导学生把两句话归为一句话“只有一组对边平行的四边形叫梯形”
③师:“只有”是什么意思?去掉“只”可以吗?
……
【说明:在这个教学环节中,教师以合作者、参与者的角色与学生一起研究讨论,学生由于有前面学习三角形、平行四边形等知识的基础,可以自己利用学具和材料去研究梯形的特征。教师留给学生充分的时间和空间,让他们先自主探究,再合作交流 完成学习任务。】
3.找 生活中的梯形。
师:在我们的实际生活中就有许多梯形,你能说说在生活中发现的梯形吗?
4.动手操作,创作梯形。
(1)学生利用纸、 笔、剪刀等学具折、画或剪出梯形。
(2)展示作品。
(3)学生判断、评析创作的作品是否是梯形。
【说明:通过找、画、折、剪、判断、评析等活动,让学生更进一步掌握梯形的特征。】
5.了解梯形各部分的名称
(1)学生自学课本了解梯形各部分名称,同桌拿起刚才创作的梯形指指各部分说说名称,并标出各部分的名称。
(2)学生把创作的梯形(标出各部分名称的)贴在黑板上展示。
师引导辨析 “底”和“腰”的区别。
(3)汇报交流,重点说说梯形的高在哪里。
师引导辨析是“两底”之间的距离才是梯形的高,梯形有无数条高。
6.画高练习
师示范画出 下面梯形的高,学生模仿练习
7.介绍特殊的梯形
(1)由画最后一个梯形的高引出直角梯形,归纳出直角梯形的定义。
(2)等腰梯形
①观 察发现等腰梯形的特征
学生拿出老师给准备的等腰梯形,以小组通过动手折一折、量一量等,实践找一找这样的梯形特殊在哪儿。
②汇报交流,互相补充,达成共识:两条腰相等,上面底角、下面底角分别相等等。
③归纳定义。
8.知识建构
师:现在,我们知道了四边形家族中又多了一个成员,你们能把这几位成员间的关系想办法清楚地表示出来吗?
学生分类整理学过的四边形,然后展示交流整理结果,组织互评,激励学生用不同的形式整理(如集合圈等)。
【说明:通过对所学过的四边形进行分类整理,可以让学生系统梳理掌握的知识。】
三、巩固练习:
1.根据梯形的特征进行判断、说明这些图形是不是梯形。
2.判断:
(1)长方形、平行四边形、梯形都是四边形 。()
(2)一个梯形中有一组对边平行。()
(3)互相平行的一组对边叫做梯形的腰。()
(4)所有的梯形都不是是轴对称图形。 ()
3.玩一玩
(1)你能把一个三角形和一个平行四边形分别只剪一刀就剪成一个梯形吗?
完成汇报时引导学生归纳出把这两种图形变成梯形都是要构造出只有一组对边平行的四边形,三角形是要创造出一组对边平行,而平行四边形则要破坏一组对边平行。
(2)用两个完全一样的梯形,拼出一种你熟悉的图形。
(3)利用多种梯形图片,摆出一种你最喜欢的图案。
【说明:学生通过多层次的练习,巩固知识,提升能力。最后的玩一玩,让学生在学中玩,玩中学,激发浓厚的学习兴趣,也体现了玩数学的教学理念,这样可以调动学生的积极性,学生主动参与到数学活动中去。】
四、总结:
师:谈谈你这节课的收获及感想,可以对你和同学们的表现做个评价。
【说明:学生畅所欲言总结收获、评价自我和他人,是对知识的梳理巩固,也体现学生的主体地位。学生通过自我的评价,相互的评价和教师的评价有机结合,全面反映学生的学习情况和状态。】
沪教版五年级上册《三角形的面积》数学教案
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:
教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
完全相同的三组(锐角、钝角、直角)不同的三角形卡片、
教学过程:
一、情境引入,明确目标
同学们,你们每天都佩戴着鲜艳的红领巾,代表你们是一名少先队员,是共产主义的接班人,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的面积(板书课题)
二、自主学习、合作探究
教师出示学具,学生动手操作、观察、分析、推理
(1)用两个完全一样的三角形拼一拼,能拼出什么图形?
(2)拼出的图形与原来的三角形有什么联系?
(3)拼出的图形的面积你会计算吗?
三、展示交流、点拨归纳
1、课件出示直角三角形、锐角三角形、钝角三角形拼成的图形
(1)想一想:每个直角三角形的面积与拼成的长方形或平行四边形的面积有什么关系?
(2)想一想:每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?
(3)想一想:每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?
2、学生回答,教师总结:
通过以上的实验可以看出:
两个完全一样的三角形可以拼成一个__________________。
这个平行四边形的底等于____________________________。
这个平行四边形的高等于____________________________。
每个三角形的面积等于拼成的平行四边形面积的________。
所以得出结论:
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
三、巩固训练、拓展提升
(1)这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米),高多少吗?(33厘米)
你能计算出它的面积吗?
在练习本上算一算
小结:通过这道题的解答,你明白了什么?
(2)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式这节课你们最大的收获是什么?(学会了三角形的面积怎样计算;学会了用转化的方法推导三角形的面积计算公式。)
下节课我们继续运用转化的思想探究梯形面积的计算方法。
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。所以大多数老师都会选择制定一份教学计划。让同学听的快乐,老师自己也讲的轻松。你知道怎样才制作一份学生爱听的教案吗?下面是小编精心整理的“沪教版五年级下册《正方体、长方体的表面积》数学教案”,欢迎阅读,希望您能阅读并收藏。
沪教版五年级下册《正方体、长方体的表面积》数学教案
【教学目标】
[认知目标]:
1. 知道物体外部所有面的总面积叫做它的表面积。
2. 能正确计算正方体和长方体的表面积。
[能力目标]
让学生自主探究正方体和长方体表面积的计算方法。
[情感目标]
通过实际的操作过程,体验学习的快乐。
【教学重点】
掌握与理解正方体、长方体表面积的含义及计算表面积的方法。
【教学难点】
正方体、长方体表面积的推导过程。
【教学准备】
教学课件、长方体、正方体的附页等。
【教学过程】
一、复习导入:
1. 正方形的面积计算公式是什么?
板书:正方形的面积
S = a2
2. 请学生观察老师手中的正方体,回答问题?
(1)正方体有几个面?
(2)有什么特征?
(3)如何计算它们的面积?
3. 这节课让我们学习有关求正方体面积的知识。
4. 揭示课题:正方体的面积
【说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】
二、探究新知:
(一)正方体的表面积。
1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。
2. 先仔细观察正方体表面的展开图,然后回答问题?
(1)正方体表面的展开图是由六个什么形状的面组成的?
(2)这六个面的形状都相同吗?
(3)面积都相等吗?
(4)面积的总和是多少?
这个正方体表面的展开图有6个正方形的面,它们的形状都相同,面积都相等。
面积的总和 = 6 × ( 棱成 × 棱长)
= 6 ×( 5 × 5)
= 150( cm3)
3. 正方体有六个大小相同的正方形面,六个面的面积总和称为正方体的表面积。
4. 小结。
【说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】
三、练一练:
(一)求下面正方体的表面积?
1. 正方体的棱长为6dm,求它的表面积。
解: S = 6 a2
=6×6×6
=216(cm2)
答:它的表面积是216平方厘米。
2. 正方体的棱成为7cm,求它的表面积。
一、探一探,练一练:
1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。
2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?
3. 交流讨论。(课件演示)
其中:a、c、e、f这四幅能够拼成正方体。
b和d的图形不能拼成正方体。
4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。
(1)三面涂上红色的1立方厘米的正方体积木有多少个?
(2)两面涂上红色的1立方厘米的正方体积木有多少个?
(3)一面涂上红色的1立方厘米的正方体积木有多少个?
(4)没有面涂上红色的1立方厘米的正方体积木有多少个?
5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。
6. 利用课件反馈。
7. 小结。
【说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】
五、巩固练习:
(一)看图练习:
1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。
2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。
3. 下面图形中哪些能围成正方体?哪些不能围成正方体?
(二)拓展小练习:
1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?
2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?
3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?
4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?
5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?
6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?
7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?
8. 小结。
【说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】
六、总结:
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
身为一位人名教师,我们要给学生一个优质的课堂。为了不消耗上课时间,就需要有一份完整的教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,你们知道那些比较有创意的教学方案吗?小编特地为您收集整理“沪教版五年级下册《组合体的体积》数学教案”,仅供您在工作和学习中参考。
沪教版五年级下册《组合体的体积》数学教案
教学目标:
1、会将组合体切割成几个长方体与正方体。
2、会计算简单组合体的体积。
教学重点和难点:
重点:将组合体切割成几个长方体与正方体并计算简单组合体的体积。
难点:合理切割,找准尺寸。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:计算下列正方体、长方体的体积。
一、导入阶段:
1、介绍组合体的计量方法
(1)这个形体你能直接用公式来计算吗?
(2)介绍组合体,有几个规则形体组合在一起,我们称组合体,怎样来计算组合体的体积呢?
今天我们要继续讨论求组合体的体积。
出示课题:组合体的体积
一、中心阶段:
1. 出示例题。
下面是一个铸铁零件,算一算它的体积是多少立方厘米。(单位:厘米)
(1.先把这个组合体切割成几个基本形体,分别计算体积后再相加。
2.我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。)
请你用这个方法试着算一算它的体积是多少立方厘米?
方法:(1)
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是40厘米,高是8厘米;长方体c的长是72厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
方法:(2)
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是30厘米,高是8厘米;长方体c的长是(72+9+9)厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
小结:
求组合体的体积可以怎么求?
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的尺寸。
要注意什么?
合理切割,找准尺寸。
二、练习阶段:
求下面各组合体的体积:(单位:厘米)
(1)
方法:(1)
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是5厘米,宽是7厘米,高是6厘米;长方体(2)的长是(8-5)厘米,宽是7厘米,高是(6-4)厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=5×7×6
=35×6
=210(立方厘米)
V(2)=abh
=(8-5)×7×(6-4)
=3×7×2
=21×2
=42(立方厘米)
V组=V(1)+V(2)
=210+42
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
方法:(2)
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是8厘米,宽是7厘米,高是(6-4)厘米;长方体(2)的长是5厘米,宽是7厘米,高4是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=8×7×(6-4)
=56×2
=112(立方厘米)
V(2)=abh
=5×7×4
=35×4
=21×2
=140(立方厘米)
V组=V(1)+V(2)
=112+140
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
(2)
方法
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是3厘米,宽是8厘米,高是3厘米;长方体(2)的长是9厘米,宽是8厘米,高3是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=3×8×3
=24×3
=72(立方厘米)
V(2)=abh
=9×8×3
=72×3
=216(立方厘米)
V组=V(1)+V(2)
=72+216
=288(立方厘米)
答:这个组合体的体积是288立方厘米。
总结:
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的尺寸。
板书设计
方法一 解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
方法二
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
教学反思:
老师要承担起对每一位同学的教学责任,在开展教学工作之前。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。这样不仅拉进了学生与自己的距离,还让学生学到了知识,你知道有哪些教案是比较简单易懂的呢?下面是由小编为大家整理的沪教版五年级下册《正方体、长方体的表面积(练习)》数学教案,仅供参考,大家一起来看看吧。
沪教版五年级下册《正方体、长方体的表面积(练习)》数学教案
教学目标:
通过练习使学生能熟练地求正方体、长方体的表面积。
教学重点和难点:
重点:正方体、长方体的表面积的计算。
难点:正方体、长方体的表面积的计算。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:
长方体体积计算公式:v=abh 正方体体积计算公式:v=a3
长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2
一.练习
1. 计算下面形体的表面积。(单位:厘米)
(1)解:
(2)
(1)S=2(ah+ab+bh)
=2×(6×2+6×1+1×2)
=2×(12+6+2)
=2×20
=40(平方厘米)
答:长方体的表面积是40平方厘米。
(2)解:S=6a2
=6×62
=6×(6×6)
=6×36
=216(平方厘米)
答:正方体的表面积是216平方厘米。
(3)解:S=2(ah+ab+bh)
=2×(3×12+3×1+1×12)
=2×(36+3+12)
=2×51
=102(平方厘米)
答:长方体的表面积是102平方厘米。
(4)解:S=2(ah+ab+bh)
=2×(4×4+4×3+3×4)
=2×(16+12+12)
=2×40
=80(平方厘米)
答:长方体的表面积是80平方厘米。
(5)解:S=2(ah+ab+bh)
=2×(5×5+5×1+1×5)
=2×(25+5+5)
=2×35
=70(平方厘米)
答:长方体的表面积是70平方厘米。
2. 想一想,上面形体(4)(5)的表面积还可以怎么求?
求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的面积之和,就是它的表面积。
3. 填空:
(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。
(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。
(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。
(4)正方体的表面积是(6×(7×7))(填算式)。
(5)长方体表面积计算公式是(S=2(ah+ab+bh))。
(6)正方体表面积计算公式是(S=6a2)。
4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。
解:2×3=6(平方厘米)
2×6=12(平方厘米)
3×6=18(平方厘米)
答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。
5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?
解:S=2(ah+ab+bh)
=2×(5×3+5×4+4×3)
=2×(15+20+12)
=2×47
=94(平方厘米)
答:长方体的表面积是94平方厘米。
6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?
解:4米=40分米
S=2(ah+ab+bh)
=2×(15×3+15×40+40×3)
=2×(45+600+120)
=2×765
=1530(平方分米)
答:长方体的表面积是1530平方分米。
总结:长方体表面积计算公式是S=2(ah+ab+bh),正方体表面积计算公式是S=6a2。
检测目标达成练习:练习册P15
教学反思:
《沪教版五年级下册《面积估测》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案五年级”专题。
文章来源:http://m.jab88.com/j/112758.html
更多