二、复习要求
1、向量的概念;
2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律;
3、向量运算的运用
三、学习指导
1、向量是数形结合的典范。向量的几何表示法--有向线段表示法是运用几何性质解决向量问题的基础。在向量的运算过程中,借助于图形性质不仅可以给抽象运算以直观解释,有时甚至更简捷。
向量运算中的基本图形:①向量加减法则:三角形或平行四边形;②实数与向量乘积的几何意义--共线;③定比分点基本图形--起点相同的三个向量终点共线等。
2、向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:
运算图形语言符号语言坐标语言
加法与减法
=
-=
记=(x1,y1),=(x1,y2)
则=(x1x2,y1y2)
-=(x2-x1,y2-y1)=
实数与向量
的乘积
=λ
λ∈R记=(x,y)
则λ=(λx,λy)两个向量
的数量积
·=||||
cos,
记=(x1,y1),=(x2,y2)
则·=x1x2y1y2
3、运算律
加法:=,()=()
实数与向量的乘积:λ()=λλ;(λμ)=λμ,λ(μ)=
(λμ)
两个向量的数量积:·=·;(λ)·=·(λ)=λ(·),()·=··
说明:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算,例如(±)2=
4、重要定理、公式
(1)平面向量基本定理;如果是同一平面内的两个不共线向量,那么对于该平面内任一向量,有且只有一对数数λ1,λ2,满足=λ1λ2,称λ1λλ2为,的线性组合。
根据平面向量基本定理,任一向量与有序数对(λ1,λ2)一一对应,称(λ1,λ2)为在基底{,}下的坐标,当取{,}为单位正交基底{,}时定义(λ1,λ2)为向量的平面直角坐标。
向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则=(x,y);当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)
(2)两个向量平行的充要条件
符号语言:若∥,≠,则=λ
坐标语言为:设=(x1,y1),=(x2,y2),则∥(x1,y1)=λ(x2,y2),即,或x1y2-x2y1=0
在这里,实数λ是唯一存在的,当与同向时,λ0;当与异向时,λ0。
|λ|=,λ的大小由及的大小确定。因此,当,确定时,λ的符号与大小就确定了。这就是实数乘向量中λ的几何意义。
(3)两个向量垂直的充要条件
符号语言:⊥·=0
坐标语言:设=(x1,y1),=(x2,y2),则⊥x1x2y1y2=0
(4)线段定比分点公式
如图,设
则定比分点向量式:
定比分点坐标式:设P(x,y),P1(x1,y1),P2(x2,y2)
则
特例:当λ=1时,就得到中点公式:
,
实际上,对于起点相同,终点共线三个向量,,(O与P1P2不共线),总有=uv,uv=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1。
(5)平移公式:
①点平移公式,如果点P(x,y)按=(h,k)平移至P(x,y),则
分别称(x,y),(x,y)为旧、新坐标,为平移法则
在点P新、旧坐标及平移法则三组坐标中,已知两组坐标,一定可以求第三组坐标
②图形平移:设曲线C:y=f(x)按=(h,k)平移,则平移后曲线C对应的解析式为y-k=f(x-h)
当h,k中有一个为零时,就是前面已经研究过的左右及上下移
利用平移变换可以化简函数解析式,从而便于研究曲线的几何性质
(6)正弦定理,余弦定理
正弦定理:
余弦定理:a2=b2c2-2cbcosA
b2=c2a2-2cacosB
c2=a2b2-2abcosc
定理变形:cosA=,cosB=,cosC=
正弦定理及余弦定理是解决三角形的重要而又基本的工具。通过阅读课本,理解用向量法推导正、余弦定理的重要思想方法。
5、向量既是重要的数学概念,也是有力的解题工具。利用向量可以证明线线垂直,线线平行,求夹角等,特别是直角坐标系的引入,体现了向量解决问题的程序性特点。
四、典型例题
例1、如图,,为单位向量,与夹角为1200,与的夹角为450,||=5,用,表示。
分析:
以,为邻边,为对角线构造平行四边形
把向量在,方向上进行分解,如图,设=λ,=μ,λ0,μ0
则=λμ
∵||=||=1
∴λ=||,μ=||
△OEC中,∠E=600,∠OCE=750,由得:
∴
∴
说明:用若干个向量的线性组合表示一个向量,是向量中的基本而又重要的问题,通常通过构造平行四边形来处理
例2、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量坐标。
分析:
用解方程组思想
设D(x,y),则=(x-2,y1)
∵=(-6,-3),·=0
∴-6(x-2)-3(y1)=0,即2xy-3=0①
∵=(x-3,y-2),∥
∴-6(y-2)=-3(x-3),即x-2y1=0②
由①②得:
∴D(1,1),=(-1,2)
例3、求与向量=,-1)和=(1,)夹角相等,且模为的向量的坐标。
分析:
用解方程组思想
法一:设=(x,y),则·=x-y,·=xy
∵,=,
∴
(2)若∠PED=450,求证:P、D、C、E四点共圆。
分析:
利用坐标系可以确定点P位置
如图,建立平面直角坐标系
则C(2,0),D(2,3),E(1,0)
设P(0,y)
∴=(1,3),=(-1,y)
∴
·=3y-1
代入cos450=
解之得(舍),或y=2
∴点P为靠近点A的AB三等分处
(3)当∠PED=450时,由(1)知P(0,2)
∴=(2,1),=(-1,2)
∴·=0
∴∠DPE=900
又∠DCE=900
∴D、P、E、C四点共圆
说明:利用向量处理几何问题一步要骤为:①建立平面直角坐标系;②设点的坐标;③求出有关向量的坐标;④利用向量的运算计算结果;⑤得到结论。
同步练习
(一)选择题
1、平面内三点A(0,-3),B(3,3),C(x,-1),若∥,则x的值为:
A、-5B、-1C、1D、5
2、平面上A(-2,1),B(1,4),D(4,-3),C点满足,连DC并延长至E,使||=||,则点E坐标为:
A、(-8,)B、()C、(0,1)D、(0,1)或(2,)
2、点(2,-1)沿向量平移到(-2,1),则点(-2,1)沿平移到:
3、A、(2,-1)B、(-2,1)C、(6,-3)D、(-6,3)
4、△ABC中,2cosB·sinC=sinA,则此三角形是:
A、直角三角形B、等腰三角形C、等边三角形D、以上均有可能
5、设,,是任意的非零平面向量,且相互不共线,则:
①(·)-(·)=0
②||-|||-|
③(·)-(·)不与垂直
④(32)·(3-2)=9||2-4|2中,
真命题是:
A、①②B、②③C、③④D、②④
6、△ABC中,若a4b4c4=2c2(a2b2),则∠C度数是:
A、600B、450或1350C、1200D、300
7、△OAB中,=,=,=,若=,t∈R,则点P在
A、∠AOB平分线所在直线上B、线段AB中垂线上
C、AB边所在直线上D、AB边的中线上
8、正方形PQRS对角线交点为M,坐标原点O不在正方形内部,且=(0,3),=(4,0),则=
A、()B、()C、(7,4)D、()
(二)填空题
9、已知{,|是平面上一个基底,若=λ,=-2λ-,若,共线,则λ=__________。
10、已知||=,||=1,·=-9,则与的夹角是________。
11、设,是两个单位向量,它们夹角为600,
则(2-)·(-32)=____________。
12、把函数y=cosx图象沿平移,得到函数___________的图象。
(三)解答题
13、设=(3,1),=(-1,2),⊥,∥,试求满足=的的坐
高二数学教案:《平面向量的坐标表示》教学设计
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
三、教学过程
(一) 知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=_________________
| |=_______________
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设 =(x1,y1), =(x2,y2),则
+ = - = λ = .
2.向量平行的坐标表示
设 =(x1,y1), =(x2,y2),则 ∥ ?________________.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;
(2)求满足 =m +n 的实数m,n;
练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2平面向量共线的坐标表示
例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ()
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1.向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.
2.两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则 的值为 ; 的最大值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(2014,安徽,13)设 =(1,2)
, =(1,1), = +k .若 ⊥ ,则实数k的值等于()
【思考】两非零向量 ⊥ 的充要条件: · =0? .
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的最大值为()
A.6 B.7 C.8 D.9
练:(2016,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..
第二章平面向量复习课(一)
一、教学目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2.了解平面向量基本定理.
3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4.了解向量形式的三角形不等式:|||-||≤|±|≤||+||(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(||+||)=|-|+|+|.
5.了解实数与向量的乘法(即数乘的意义):
6.向量的坐标概念和坐标表示法
7.向量的坐标运算(加.减.实数和向量的乘法.数量积)
8.数量积(点乘或内积)的概念,=||||cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1.实数与向量的积的运算律:
2.平面向量数量积的运算律:
3.向量运算及平行与垂直的判定:
则
4.两点间的距离:
5.夹角公式:
6.求模:
(二)习题讲解:《习案》P167面2题,P168面6题,P169面1题,P170面5、6题,
P171面1、2、3题,P172面5题,P173面6题。
(三)典型例题
例1.已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,
且||=2,||=1,||=3,用与表示
解:如图建立平面直角坐标系xoy,其中,是单位正交基底向量,则B(0,1),C(-3,0),
设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是=-,=,=-3所以-3=3+|即=3-3
(四)基础练习:
《习案》P178面6题、P180面3题。
(五)、小结:掌握向量的相关知识。
(六)作业:《习案》作业二十七。
第二章平面向量复习课(二)
一、教学过程
(一)习题讲解:《习案》P173面6题。
(二)典型例题
例1.已知圆C:及点A(1,1),M是圆上任意一点,点N在线段MA的延长线上,且,求点N的轨迹方程。
练习:1.已知O为坐标原点,=(2,1),=(1,7),=(5,1),=x,y=(x,y∈R)求点P(x,y)的轨迹方程;
2.已知常数a0,向量,经过定点A(0,-a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;
例2.设平面内的向量,,,点P是直线OM上的一个动点,求当取最小值时,的坐标及APB的余弦值.
解设.∵点P在直线OM上,
∴与共线,而,∴x-2y=0即x=2y,
有.∵,,
∴
=5y2-20y+12
=5(y-2)2-8.
从而,当且仅当y=2,x=4时,取得最小值-8,
此时,,.
于是,,,
∴
小结:利用平面向量求点的轨迹及最值。
作业:〈习案〉作业二十八。
文章来源:http://m.jab88.com/j/105381.html
更多