88教案网

高三化学第20讲卤素一轮复习精品学案

作为杰出的教学工作者,能够保证教课的顺利开展,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们充分体会到学习的快乐,帮助高中教师掌握上课时的教学节奏。高中教案的内容要写些什么更好呢?下面是小编为大家整理的“高三化学第20讲卤素一轮复习精品学案”,希望对您的工作和生活有所帮助。

贵州省天赋中学2011届高三化学一轮复习精品学案

第20讲卤素

1.通过实验了解氯气及其重要化合物的主要性质及在生产中的应用。

2.认识氯气及其重要化合物对生态环境的影响。

(一)卤素

1.分清氯水、溴水的成分,反应时的作用和褪色的原理。

氯水中正因为存在可逆反应Cl2+H2OHCl+HClO,使其成分复杂且随着条件的改变,平衡发生移动,使成分发生动态的变化。当外加不同的反应物时,要正确判断是何种成分参与了反应。氯水中的HClO能使有色物质被氧化而褪色。反之,也有许多物质能使氯水、溴水褪色,发生的变化可属物理变化(如萃取),也可属化学变化,如歧化法(加碱液)、还原法(如Mg、SO2等)、加成法(加不饱和的有机物)等。值得一提的是有时虽然发生化学变化,但仍生成有色物,如Br2与Fe或KI反应。

2.区分清楚萃取和分液的原理、仪器、操作以及适用范围与其他物质分离方法不同。

萃取和分液是物质分离的众多方法之一。每一种方法适用于一定的前提。分液适用于分离互不相溶的两种液体,而萃取是根据一种溶质在两种互不相溶的溶剂中溶解性有很大差异从而达到提取的目的。一般萃取和分液结合使用。其中萃取剂的合理选择、分液漏斗的正确使用、与过滤或蒸馏等分离方法的明确区分等是此类命题的重点和解决问题的关键。

命题以选择何种合适的萃取剂、萃取后呈何现象、上下层如何分离等形式出现。解题关键是抓住适宜萃取剂的条件、液体是否分层及分层后上下层位置的决定因素。分液操作时注意“先下后上、下流上倒”的顺序。为确保液体顺利流出,一定要打开上部塞子或使瓶塞与瓶颈处的小孔或小槽对齐,与大气相通。

第1课时氯及其化合物

一、氯气的性质及用途

1.物理性质:常温下,氯气是黄绿色、有刺激性、能溶于水、比空气重、易液化的有毒气体。

2.化学性质:氯气的化学性质很活泼的非金属单质。

(1)与金属反应(与变价金属反应,均是金属氧化成高价态)

如:①2Na+Cl22NaCl(产生白烟)

②Cu+Cl2CuCl2(产生棕黄色的烟)

③2Fe+3Cl22FeCl3(产生棕色的烟)

注:常温下干燥的氯气或液氯不与铁反应,所以液氯通常储存在钢瓶中。

(2)与非金属反应

如:①H2+Cl22HCl(发出苍白色火焰,有白雾生成)——可用于工业制盐酸

H2+Cl22HCl(会发生爆炸)——不可用于工业制盐酸

②2P+3Cl22PCl3(氯气不足;产生白雾)

2P+5Cl22PCl5(氯气充足;产生白烟)

(3)与水反应:Cl2+H2O=HCl+HClO

(4)与碱反应

Cl2+2NaOH=NaCl+NaClO+H2O(用于除去多余的氯气)

2Cl2+2Ca(OH)2=Ca(ClO)2+CaCl2+2H2O(用于制漂粉精)

Ca(ClO)2+CO2+H2O=CaCO3↓+2HClO(漂粉精的漂白原理)

(5)与某些还原性物质反应

如:①2FeCl2+Cl2=2FeCl3

②2KI+Cl2=2KCl+I2(使湿润的淀粉-KI试纸变蓝色,用于氯气的检验)

③SO2+Cl2+2H2O=2HCl+H2SO4

(6)与某些有机物反应

如:①CH4+Cl2CH3Cl+HCl(取代反应)

②CH2=CH2+Cl2→CH2ClCH2Cl(加成反应)

3.氯水的成分及性质

氯气溶于水得黄绿色的溶液----氯水。在氯水中有少部分氯分子与水反应,Cl2+H2O=HCl+HClO(次氯酸),大部分是以Cl2分子状态存在于水中。

注意:(1)在新制的氯水中存在的微粒有:H2O、Cl2、HClO、H+、Cl-、ClO-、OH-;久置氯水则几乎是盐酸溶液

①一元弱酸,比H2CO3弱

(2)HClO的基本性质②不稳定,2HClO===2HCl+O2↑

③强氧化性;

④漂白、杀菌能力,使色布、品红溶液等褪色。

(3)几种漂白剂的比较

漂白剂HClONa2O2(H2O2)SO2活性炭

漂白原理氧化漂白氧化漂白化合漂白吸附漂白

品红溶液褪色褪色褪色褪色

紫色石蕊先变红后褪色褪色只变红不褪色褪色

稳定性稳定稳定不稳定——

4.氯气的制法

(1)实验室制法

药品及原理:MnO2+4HCl(浓)MnCl2+2H2O+Cl2↑

强调:MnO2跟浓盐酸在共热的条件下才反应生成Cl2,稀盐酸不与MnO2反应。

仪器装置:发生装置---收集装置---吸收装置

实验步骤:检密—装药—固定—加热—收集

收集方法:向上排空气法(或排饱和食盐水法)

净化装置:用饱和食盐水除去HCl,用浓硫酸干燥

尾气处理:用碱液吸收

(2)氯气的工业制法:(氯碱工业)

2NaCl+2H2O2NaOH+H2↑+Cl2↑

二、氯化氢的性质和实验室制法

1.物理性质:无色、有刺激性气味的气体;极易溶于水(1:500)其水溶液为盐酸。

2.盐酸的化学性质:(挥发性强酸的通性)

3.氯化氢的实验室制法

(1)药品及反应原理:

NaCl+H2SO4===NaHSO4+HCl↑(不加热或微热)

NaHSO4+NaClNa2SO4+HCl↑(加热到500C—600C)

总反应式:2NaCl+H2SO4Na2SO4+2HCl↑

(2)装置:与制氯气的装置相似

(3)收集方法:向上排空气法

(4)检验方法:用湿润的蓝色石蕊试纸是否变红或用玻璃棒蘸浓氨水靠近是否有白烟产生

(5)尾气处理:用水吸收(倒扣漏斗)

【例1】(2010上海卷)右图是模拟氯碱工业生产中检查氯气是否泄漏的装置,下列有关说法错误的是

A.烧瓶中立即出现白烟

B.烧瓶中立即出现红棕色

C.烧瓶中发生的反应表明常温下氨气有还原性

D.烧杯中的溶液是为了吸收有害气体

答案:B

解析:此题考查化学实验、元素化合物的性质等知识。分析装置图,可知氨气和氯气接触时发生反应:4NH3+6Cl2=2NH4Cl+4HCl+N2,烧瓶中出现白烟,A对;不能出现红棕色气体,B错;该反应中氨气中的氮元素化合价升高,表现还原性,C对;烧杯中的氢氧化钠可以吸收多余的有害气体,D对。

知识归纳:对某种元素来讲,其处于最高价时,只有氧化性;处于最低价时,只有还原性;中间价态,则既有氧化性又有还原性。故此对同一种元素可以依据价态判断,一般来讲,价态越高时,其氧化性就越强;价态越低时,其还原性就越强;此题中氨气中的氮元素处于最低价,只有还原性。

【例2】(2010上海卷)向盛有KI溶液的试管中加入少许CCl4后滴加氯水,CCl4层变成紫色。如果继续向试管中滴加氯水,振荡,CCl4层会逐渐变浅,最后变成无色。

完成下列填空:

1)写出并配平CCl4层由紫色变成无色的化学反应方程式(如果系数是1,不用填写):

2)整个过程中的还原剂是。

3)把KI换成KBr,则CCl4层变为__色:继续滴加氯水,CCl4层的颜色没有变化。Cl2、HIO3、HBrO3氧化性由强到弱的顺序是。

4)加碘盐中含碘量为20mg~50mg/kg。制取加碘盐(含KIO3的食盐)1000kg,若庄Kl与Cl2反应制KIO3,至少需要消耗Cl2L(标准状况,保留2位小数)。

答案:1)I2+5Cl2+6H2O→2HIO3+10HCl;2)KI、I2;3)红棕、HBrO3Cl2HIO3;4)10.58。

解析:此题考查氧化还原反应的配平、氧化剂和还原剂、氧化性强弱的判断、化学计算知识。分析反应从开始滴加少许氯水时,其将KI中的I元素氧化成碘单质;等CCl4层变紫色后,再滴加氯水时,其将碘单质进一步氧化成碘酸。1)根据氧化还原反应方程式的配平原则,分析反应中的化合价变化,I元素的化合价从0→+5,升高5价,Cl元素的化合价从0→-1,降低1价,综合得失电子守恒和质量守恒,可配平出:I2+5Cl2+6H2O→2HIO3+10HCl;2)分析整个过程中化合价升高的都是I元素,还原剂为:KI和I2;3)KI换成KBr时,得到的是溴单质,则其在CCl4中呈红棕色;继续滴加氯水时,颜色不变,可知氯水不能将溴单质氧化成HBrO3,故其氧化性强弱顺序为:HBrO3Cl2HIO3;4)综合写出反应方程式:KI+3Cl2+3H2O=KIO3+6HCl,根据化学方程式计算,按最小值计算时,1000kg加碘食盐中含碘20g,根据质量守恒,可知:换算成碘酸钾的质量为:33.70g,物质的量为:0.16mol,则需要消耗Cl2的体积为:(20g/127g.mol-1)×3×22.4L/mol=10.58L。

解法点拨:守恒定律是自然界最重要的基本定律,是化学科学的基础。在化学反应中,守恒包括原子守恒、电荷守恒、得失电子守恒等。任何化学反应在反应前后应遵守电荷或原子守恒。电荷守恒即反应前后阴阳离子所带电荷数必须相等;原子守恒(或称质量守恒),也就是反应前后各元素原子个数相等;得失电子守恒是指在氧化还原反应中,失电子数一定等于得电子数,即得失电子数目保持守恒。比如此题中我们就牢牢抓住了守恒,简化了计算过程,顺利解答。

【例3】(2009全国卷Ⅱ13)含有amolFeBr2的溶液中,通入xmolCl2。下列各项为通Cl2过程中,溶液内发生反应的离子方程式,其中不正确的是()

A.x=0.4a,2Fe2++Cl2=2Fe3++2Cl-

B.x=0.6a,2Br-+Cl2=Br2+2Cl-

C.x=a,2Fe2++2Br-+2Cl2=Br2+2Fe3++4Cl-

D.x=1.5a,2Fe2++4Br-+3Cl2=2Br2+2Fe3++6Cl-

答案B

解析由于Fe2+的还原性强于Br-,故根据氧化还原反应的先后顺序知,Cl2先氧化

Fe2+,然后再氧化Br-。2Fe2++Cl22Fe3++2Cl-,2Br-+Cl2Br2+2Cl-,2FeBr2+3Cl22FeCl3+2Br2。当x/a≤0.5时,Cl2仅氧化Fe2+,故A项正确。当x/a≥1.5时,Fe2+和Br-合部被氧化,D项正确;当介于两者之间时,则要分步书写方程式,然后进行叠加得总反应。如B项,当x=0.5a时,Cl2刚好把Fe2+全部氧化,而当x=0.6a,显然Cl2还要氧化Br-,而选项中没有表示,故错。

第2课时卤族元素

卤族元素

1.卤素及化合物的性质比较:

氟氯溴碘

单质物理性质状态气气(易液化)液(易挥发)固(易升华)

熔、沸点熔、沸点逐渐升高

颜色淡黄绿色黄绿色红棕色紫黑色

密度密度逐渐增大

X2与H2化合条件冷暗处光照加热持续加热

程度剧烈爆炸爆炸缓慢化合同时分解

X2与H2O化合反应2F2+2H2O=4HF+O2X2+H2O=HX+HXO

程度剧烈缓慢微弱极弱

水溶性反应生成氢氟酸水溶性依次减小,有机溶剂中溶解性依次增大

化合价只有-1价有-1、+1、+3、+5、+7等

含氧酸化学式无含氧酸有HXO、HXO2、HXO3、HXO4等

强弱程度同一价态的酸性依次减弱

卤化银颜色AgF(白)AgCl(白)AgBr(淡黄)AgI(黄)

水溶性易溶均难溶,且溶解度依次减小

感光性难分解见光均易分解,且感光性逐渐增强

2.卤素元素的有关特性:

(1)F2遇水发生置换反应,生成HF并放出O2。

(2)HF是弱酸、剧毒,但能腐蚀玻璃4HF+SiO2==SiF4↑+2H2O;HF由于形成分子间氢键相互缔合,沸点反常的高。

(3)溴是唯一的液态非金属,易挥发,少量的液溴保存要用水封。

(4)碘易升华,遇淀粉显蓝色;碘的氧化性较弱,它与变价金属反应时生成低价化合物。

(5)AgX中只有AgF溶于水,且不具有感光性;CaF2中只有CaF2难溶。

3.卤素间的置换反应及X-离子的检验:

(1)Cl2+2Br-=Br2+2Cl-

Cl2+2I-=I2+2Cl-

Br2+2I-=I2+2Br-

结论:氧化性:Cl2Br2I2;还原性:I-Br-Cl-

(2)溴和碘在不同溶剂中所生成溶液(由稀到浓)的颜色变化

溶剂

溶质水苯汽油四氯化碳

Br2黄→橙橙→橙红橙→橙红橙→橙红

I2深黄→褐淡紫→紫红淡紫→紫红紫→深紫

密度

比水轻比水轻比水重

(3)X-离子的检验

Cl-白色沉淀

Br-+AgNO3+HNO3浅黄色沉淀

I-黄色沉淀

【例1】(2010四川理综卷)(16分)

碘被称为“智力元素”,科学合理地补充碘可防止碘缺乏病。

碘酸钾(KIO3)是国家规定的食盐加碘剂,它的晶体为白色,可溶

于水。碘酸钾在酸性介质中与过氧化氢或碘化物作用均生成单质

碘。以碘为原料,通过电解制备碘酸钾的实验装置如右图所示。

请回答下列问题:

(1)碘是(填颜色)固体物质,实验室常用

方法来分离提纯含有少量杂质的固体碘。

(2)电解前,先将一定量的精制碘溶于过量氢氧化钾溶液,溶解时发生反应:

3I2+6KOH=5KI+KIO3+3H2O,将该溶液加入阳极区。另将氢氧化钾溶液加入阴极区,电解槽用水冷却。

电解时,阳极上发生反应的电极反应式为;阴极上观察到的实验现象是。

(3)电解过程中,为确定电解是否完成,需检验电解液中是否有I—。请设计一个检验电解液中是否有I—的实验方案,并按要求填写下表。

要求:所需药品只能从下列试剂中选择,实验仪器及相关用品自选。

试剂:淀粉溶液、碘化钾淀粉试纸、过氧化氢溶液、稀硫酸。

实验方法实验现象及结论

(4)电解完毕,从电解液中得到碘酸钾晶体的实验过程如下:

步骤②的操作名称是,步骤⑤的操作名称是。步骤④洗涤晶体的目的是

答案:(1)紫黑色升华

(2)

有气泡产生

(3)

实验方法实验现象及结论

取少量阳极区电解液于试管中,加稀硫酸酸化后加入几滴淀粉试液,观察是否变蓝。如果不变蓝,说明无。(如果

变蓝,说明有。)

(4)冷却结晶干燥洗去吸附在碘酸钾晶体上的氢氧化钾等杂质

解析:(1)考查物质的物理性质,较容易。(2)阳极发生氧化反应失电子。阴极区加入氢氧化钾溶液,电解氢氧化钾实质是电解水。(3)考查I-的检验此题借助与碘单质遇淀粉变蓝色这一特性,要设法将碘离子转化为碘单质。(4)考查实验的基本操作。要求考生对整个流程分析透彻。

【例2】(2009天津卷,3)下列实验设计和结论相符的是()

A.将碘水倒入分液漏斗,加适量乙醇,振荡后静置,可将碘萃取到乙醇中

B.某气体能使湿润的红色石蕊试纸变蓝,该气体水溶液一定显碱性

C.某无色溶液中加Ba(NO3)2溶液,再加入稀盐酸,沉淀不溶解,则原溶液中一定有SO42-

D.在含FeCl2杂质的FeCl3溶液中通足量Cl2后,充分加热,除去过量的Cl2,即可得到较纯净的FeCl3溶液

答案B

解析A项,乙醇不可以作为萃取剂,错;

B项,石蕊变蓝,则肯定为碱性,正确。

C项,若原溶液中含有SO32-,生成BaSO3,再加入HCl,则与溶液的NO3-结合,相当于HNO3,则可以氧化BaSO3至BaSO4,沉淀不溶解,故错;

D项,加热时,FeCl3会水解,错。

【例3】(2009江苏卷14)I2在KI溶液中存在下列平衡:

某I2、、KI混合溶液中,的物质的量浓度c()与温度T的关系如图所示(曲线上任何一点都表示平衡状态)。下列说法正确的是()

A.反应的△H0

B.若温度为,反应的平衡常数分别为

C.若反应进行到状态D时,一定有

D.状态A与状态B相比,状态A的c(I2)大

答案BC

解析随着温度的不断升高,的浓度逐渐的减小,说明反应向逆方向移动,也就意味着该反应是放热反应,所以,所以A项错;

因为,,所以当温度升高时,反应向逆方向移动,即;C项,从图中可以看出D点并没有达到平衡状态,所以它要向A点移动,这时的浓度在增加,所以,C项正确;

D项,从状态A到状态B,的浓度在减小,那么的浓度就在增加。

卤素单元测试

一、选择题(只有一个合理答案)

1.市售“家用消毒液发生器”是以精盐和自来水为原料,通电时,发生器内的电极板上产生大量的气泡(同时使产生的气体充分与电解液接触),所制得的混合液具有强烈的杀菌能力,且不对人体造成伤害。该发生器配制消毒液所涉及到的化学反应有()

①2NaCl+2H2O==2NaOH+Cl2↑+H2↑②Cl2+2NaOH=NaCl+NaClO+H2O

③H2+Cl2=2HCl④Cl2+H2O=HCl+HClO⑤2HClO=2HCl+O2↑

A.①④⑤B.①②C.③④⑤D.②③④

2.将一盛满Cl2的试管倒立在水槽中,当日光照射一段时间后,试管中最后剩余气体的体积约占试管容积的()

A.1/4B.1/2C.1/3D.2/3

3.下列物质加入溴水,经振荡,不因发生化学反应而使溴水褪色的是()

A.Na2SB.NaOHC.甲苯D.裂化汽油

4.有关卤素的说法正确的是()

 A.卤素是典型的非金属元素其单质只具有氧化性而无还原性.

 B.卤素单质的熔点随相对分子质量的增大而升高.

 C.卤化银都不溶于水,也不溶于稀硝酸.

 D.卤化氢的水溶液都是强酸

5.F2是氧化性最强的非金属单质,物质的量相等的F2跟烧碱完全反应,生成NaF、H2O和另一种气体,该气体是下列中的()

A.H2B.HFC.OF2D.O2

二、选择题(有1~2个合理答案)

6.下列离子方程式正确的是()

A.氯气与水反应:Cl2+H2O=2H++Cl-+ClO-

B.氯气与氢氧化钠溶液反应:Cl2+2OH-=Cl-+ClO-+H2O

C.向留有残氯(Cl2)的水中加一定量的FeSO4,以除去水中的Cl2:Fe2++Cl2=2Cl-+Fe3+

D.漂白粉溶液中通入少量二氧化碳气体:Ca2++2ClO-+H2O+CO2=CaCO3↓+2HClO

7.已知Cl2与Br-、I-可发生反应:Cl2+2I-=I2+2Cl-、Cl2+2Br-=Br2+2Cl-,且Br-、I-的还原性强弱顺序为:

I-Br-。某溶液中Cl-、Br-、I-的物质的量依次为0.2mol、0.4mol、0.6mol,欲使其Cl-、Br-、I-的物质的量比为1︰1︰1,需通入Cl2,那么通入Cl2的物质的量是原溶液中I-物质的量的()

A.1/2B.1/3C.2/3D.1/6

8.液氯和氨的反应同氯气与水的反应类似,则氯气通入液氨中,产物可能有()

A.B.C.D.

9.下列反应属于氧化还原反应的是()

 A.漂白粉吸收空气中的二氧化碳B.用萤石和浓硫酸制取氟化氢

 C.氯水使有色布条褪色 D.黑白照片的底片在相机里曝光时的反应

10.常用氯气给自来水消毒。某学生用自来水配制下列物质的溶液,不会产生明显药品变质的是()

A.石蕊试剂B.硝酸银C.氢氧化钠D.氯化铝

11.氯水不稳定,因为氯水中存在如下平衡:Cl2+H2OHCl+HClO,下列措施会降低氯水的稳定性的是()

A.通入少量H2S气体B.加入少量小苏打C.通入少量HCl气体D.增大氯水浓度

12.某无色气体可能含HCl、HBr、SO2、CO2中的一种或几种。将该气体通入到适量氯水中,恰好完全反应,不再剩余气体。将所得到的无色溶液冷媒装在两支试管中,分别加入酸化的AgNO3溶液、酸化的BaCl2溶液,均产生白色沉淀。则下列判断正确的是

A.原气体中一定有SO2,一定没有HBrB.原气体中可能有SO2

C.原气体中一定有HClD.不能确定有无HCl,但一定没有CO2

13.砹(At)是原子序数最大的卤族元素,推测砹或砹的化合物不可能具有的性质是()

A.HAt很稳定B.AgAt不溶于水C.砹是有色固体D.HAt溶液为强酸

三、实验题

14.用滴管将新制的饱和氯水慢慢滴入含酚酞的NaOH稀溶液中,当滴到最后一滴时红色突然褪去。试回答下列问题:

(1)产生上述现象的原因可能有两种:①是由于;

②是由于。

(2)简述怎样用实验证明红色褪去原因是①或者②:_____________________________。

15.由于用氯气对饮用水消毒,会使水中的有机物发生氯化,生成有机含氯化合物于人体有害,世界环保联盟即将全面禁止这种消毒方法。建议采用广谱性具有强氧化性的高效消毒剂二氧化氯(ClO2)。ClO2极易爆炸,生产和使用时尽量用惰性气体稀释,避免光照、震动或加热。

(1)在ClO2中,所有原子是否都满足8电子结构?______________(填“是”或“否”)。

(2)欧洲一些国家用NaClO3氧化浓盐酸来制取ClO2,同时有Cl2生成,且Cl2的体积为ClO2的一半。这一反应的化学方程式是___________________________________。

(3)浓盐酸在上述反应中显示出来的性质是_______________(填写编号)。

A.只有还原性B.还原性和酸性C.只有氧化性D.氧化性和酸性

(4)若上述反应产生0.1molCl2,转移电子的物质的量为_______________mol。

(5)ClO2为高效低毒的消毒剂,其消毒的效率(以单位质量得到电子数表示)是Cl2的_____________倍。

(6)我国广泛采用将经干燥空气稀释的氯气通入填有固体亚氯酸钠(NaClO2)的柱内制得ClO2,表示这一反应的化学方程式是_______________________________。和欧洲的方法相比,我国这一方法的主要优点是_______________________________。

16.图是一个制取氯气并以氯气为原料进行特定反应的装置:

(1)A是氯气发生装置,其中的化学反应方程为

(2)实验开始时,先点燃A处的酒精灯,打开旋塞K,让Cl2充满整个装置,再点燃D处酒精灯,连接上E装置。Cl2通过C瓶后再进入D。D装置的硬质玻璃管内盛有炭粉,发生氧化还原反应,其产物为CO2和HCl。试写出D中反应的化学方程式:。装置C的作用是。

(3)在E处,紫色石蕊试液的颜色由紫色变为红色,再变为无色,其原因是。

(4)若将E处烧杯中溶液改为澄清石灰水,反应过程现象为。

(选填标号)(A)有白色沉淀生成(B)无现象(C)先生成白色沉淀,而后白色沉淀消失

(5)D处反应完毕后,关闭旋塞K,移去酒精灯,但由于余热的作用,A处仍有Cl2产生,此时B中的现象是,B的作用是。

四、无机题

17.下图表示的是有关物质A~Y的转化关系,其中反应③除生成A之外,还生成一种相对分子质量为174的物质。回答下列问题:

(1)写出反应②的离子方程式,并标出电子转移的方向和数目:_____________________

(2)写出反应③的化学方程式:_________________________

(3)取液体F3mL盛在试管中,向该试管中加入6mL苯,用力振荡试管后静置,可观察到的现象是_______________

(4)将沉淀Y放在日光下晒,可观察到的现象是:______________________________

18.多原子分子、、的性质与卤素单质相似,故称它们为类卤人物化合物,它们可以生成酸和盐,见下表:(表中X代表F、Cl、Br、I)

卤素氰硫氰⑴

“单质”X2

酸HX

盐KX

⑴在表中⑴、⑵、⑶处分别填写相应的化学式:、、。

⑵完成下列化学方程式①

②与水反应的化学方程式为:。

③与硫酸氢钠共热的化学方程式为:。

19.工业上从海水中提出取溴常采用如下方法:

(1)向海水中通入Cl2,将海水中的溴化物氧化,这一过程所发生的反应属于非金属间的___________反应;

(2)向上述混合溶液中吹入热空气,将生成的溴吹出,用纯碱液吸收,生成NaBr、NaBrO3,这一过程可用离子方程式表示为:________________________________;

(3)将(2)所得混合液用H2SO4酸化,使NaBr和NaBrO3中的溴转化为单质溴。这一过程可用化学方程式表示为____________________________________________;

(4)这样得到的液溴中还混有少量Cl2,除去Cl2的方法是___________________。

参考答案

一.1B、2B、3C、4B、5C

二.6BD、7D、8CD、9CD、10D、11C、12AD、13A

三.

14.(1)①氯水与NaOH发生反应生成两种盐和水,溶液碱性减弱,红色褪去;②氯水中的HClO氧化漂白作用而褪色。(2)向褪色后的溶液中再滴加NaOH溶液,若不再出现红色,应为原因②,若重新出现红色,应为原因①。

15.(1)否(3分)

(2)2NaClO3+4HCl=2ClO2+Cl2+2NaCl+2H2O(3分)

(3)B(3分)(4)0.2(3分)(5)2.63(3分)

(6)2NaClO2+Cl2=2NaCl+2ClO2;

对环境的污染较小(生成的ClO2中不含Cl2杂质)(3分)

16.(1)4HCl+MnO2MnCl2+2H2O+Cl2↑(2)2Cl2+2H2O(气)+C4HCl↑+CO2↑吸收Cl2中的HCl气体,提供D处所需水蒸气。(3)生成的HCl气体使紫色石蕊溶液变红,因未反应完的Cl2与H2O作用产生的HClO的漂白作用使红色消失。(4)B(5)瓶中液面下降,长颈漏斗内液面上升,贮存少量Cl2。

四.

17.

(1)

2Br-+Cl2=Br2+2Cl-或2Br-+Cl2=Br2+2Cl-

(2)2KCl+H2SO4==2HCl↑+K2SO4

(3)试管内液体分为上、下两层,上层呈橙红色,下层呈很淡的黄色。

(4)淡黄色固体逐渐变为黑色固体,同时从固体上冒出了红棕色气体。

18.(1)①氧氰;②HSCN;③KOCN。

(2)①4H++2SCN-+MnO2==(SCN)2↑+Mn2++2H2O

②(CN)2+H2O=HCN+HOCN

KSCN+KHSO4==K2SO4+HSCN↑

相关知识

高三物理一轮复习学案:磁场


20xx届高三物理一轮复习学案:磁场
教学目标
1.了解磁场的产生和基本特性,加深对场的客观性、物质性的理解。
2.通过磁场与电场的联系,进一步使学生了解和探究看不见、摸不着的场的作用的方法.掌握描述磁场的各种物理量。
3.掌握安培力的计算方法和左手定则的使用方法和应用。
4.使学生掌握带电粒子在匀强磁场中做匀速圆周运动的规律。
5.培养学生应用平面几何知识解决物理问题的能力。
6.进行理论联系实际的思想教育。
教学重点、难点分析
1.对磁感强度、磁通量的物理意义的理解及它们在各种典型磁场中的分布情况。
2.对安培力和电磁力矩的大小、方向的分析。
3.如何确定圆运动的圆心和轨迹。
4.如何运用数学工具解决物理问题。
教学过程设计
一、基本概念
1.磁场的产生
(1)磁极周围有磁场。
(2)电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(不等于说所有磁场都是由运动电荷产生的。)
(3)变化的电场在周围空间产生磁场(麦克斯韦)。
磁场是一种特殊的物质,我们看不到,但可以通过它的作用效果感知它的存在,并对它进行研究和描述。它的基本特征是对处于其中的通电导线、运动电荷或磁体的磁极能施加力的作用。磁现象的电本质是指所有磁现象都可归纳为:运动电荷之间通过磁场而发生的相互作用。
2.磁场的基本性质
磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。这一点应该跟电场的基本性质相比较。
3.磁感应强度
电场和磁场都是无法直接看到的物质。我们在描述电场时引入电场强度E这个物理量,描述磁场则是用磁感应强度B。研究这两个物理量采用试探法,即在场中引入试探电荷或试探电流元,研究电磁场对它们的作用情况,从而判定场的分布情况。试探法是一种很好的研究方法,它能帮助我们研究一些因无法直接观察或接近而感知的物质,如电磁场。
磁感强度的定义式为:B=F/IL(条件是匀强磁场中,或ΔL很小,并且L⊥B)
其中电流元(IL)受的磁场力的大小与电流方向相关。因此采用电流与磁场方向垂直时受的最大力F来定义B。
研究电场、磁场的基本方法是类似的。但磁场对电流的作用更复杂一些,涉及到方向问题。我们分析此类问题时要多加注意。
磁感应强度B的单位是特斯拉,符号为T,1T=1N/(Am)=1kg/(As2)
磁感强度矢量性:磁感强度是描述磁场的物理量。因此它的大小表征了磁场的强弱,而它的方向,也就是磁场中某点小磁针静止时N极的指向,则代表该处磁场的方向。同时,它也满足矢量叠加的原理:若某点的磁场几个场源共同形成,则该点的磁感强度为几个场源在该点单独产生的磁感强度的矢量和。
4.磁感线
(1)用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。
特点:磁体外方向N极指向S极(内部反之)。
(2)磁感线是封闭曲线(和静电场的电场线不同)。
(3)要熟记常见的几种磁场的磁感线:
(4)安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
【例题1】如图所示,两根垂直纸面平行放置的直导线A、C由通有等大电流,在纸面上距A、C等远处有一点P。若P点磁感强度及方向水平向左,则导线A、C中的电流方向是如下哪种说法?
A.A中向纸里,C中向纸外
B.A中向纸外,C中向纸里
C.A、C中均向纸外
D.A、C中均向纸里
5.磁通量
如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用U表示。U是标量,但是有方向(进该面或出该面)。单位为韦伯,符号为Wb。1Wb=1Tm2=1Vs=1kgm2/(As2)。
穿过磁场中某一面积的磁感线条数称为穿过这一面积的磁通量。定义式为:U=BS⊥(S⊥为垂直于B的面积)。磁感强度是描述磁场某点的性质,而磁通量是描述某一面积内磁场的性质。由B=U/S⊥可知磁感强度又可称为磁通量密度。在匀强磁场中,当B与S的夹角为α时,有U=BSsinα。
【例题2】如图所示,在水平虚线上方有磁感强度为2B,方向水平向右的匀强磁场,水平虚线下方有磁感强度为B,方向水平向左的匀强磁场。边长为L的正方形线圈放置在两个磁场中,线圈平面与水平面成α角,线圈处于两磁场中的部分面积相等,则穿过线圈平面的磁通量大小为多少?
分析:注意到B与S不垂直,应把S投影到与B垂直的方向上;水平虚线上下两部分磁场大小与方向的不同。应求两部分磁通量按标量叠加,求代数和。
解:(以向右为正)U=U1+U2=[(2BL2/2)-(BL2/2)]sinα=BL2sinα/2
二、安培力(磁场对电流的作用力)
讨论如下几种情况安培力的大小计算,并用左手定则对其方向进行判断。
安培力大小:F=B⊥IL.B⊥为磁感强度与电流方向垂直分量。
方向:左手定则(内容略)。注意安培力总是与磁场方向和电流方向决定的平面垂直(除了二者平行,安培力为0的情况)。
1.安培力方向的判定
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
【例题3】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?
解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。分析的关键是画出相关的磁感线。
【例题4】条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会(增大、减小还是不变?)。水平面对磁铁的摩擦力大小为。
解:本题有多种分析方法。(1)画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。(2)画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。(3)把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
【例题5】如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?
解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。)
【例题6】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
2.安培力大小的计算
F=BLIsinα(α为B、L间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
【例题7】如图所示,光滑导轨与水平面成α角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:(1)B至少多大?这时B的方向如何?(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B也最小。根据左手定则,这时B应垂直于导轨平面向上,大小满足:BI1L=mgsinα,B=mgsinα/I1L。
当B的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI2Lcosα=mgsinα,I2=I1/cosα。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
【例题8】如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后落在水平面上,水平位移为s。求闭合电键后通过铜棒的电荷量Q。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量FΔt=mv0而被平抛出去,其中F=BIL,而瞬时电流和时间的乘积等于电荷量Q=IΔt,由平抛规律可算铜棒离开导线框时的初速度,最终可得。
三、洛伦兹力
1.洛伦兹力
运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
公式的推导:如图所示,整个导线受到的磁场力(安培力)为F安=BIL;其中I=nesv;设导线中共有N个自由电子N=nsL;每个电子受的磁场力为F,则F安=NF。由以上四式可得F=qvB。条件是v与B垂直。当v与B成θ角时,F=qvBsinθ。
2.洛伦兹力方向的判定
在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
【例题9】磁流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?
解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv。当外电路断开时,这也就是电动势E。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv,但路端电压将小于Bdv。
在定性分析时特别需要注意的是:
(1)正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
(2)外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv,但电动势不变(和所有电源一样,电动势是电源本身的性质。)
(3)注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。
【例题10】半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p型和n型两种。p型半导体中空穴为多数载流子;n型半导体中自由电子为多数载流子。用以下实验可以判定一块半导体材料是p型还是n型:将材料放在匀强磁场中,通以图示方向的电流I,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p型半导体;若下极板电势高,就是n型半导体。试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p型半导体中空穴多,上极板的电势高;n型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力大小的计算
带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:,。
【例题11】如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?
解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r,由图还看出经历时间相差2T/3。答案为射出点相距,时间差为。关键是找圆心、找半径和用对称。
【例题12】一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
解:由射入、射出点的半径可找到圆心O/,并得出半径为,;射出点坐标为(0,)。
四、带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动规律
初速度力的特点运动规律
v=0f洛=0静止
v//Bf洛=0匀速直线运动
v⊥Bf洛=Bqv匀速圆周运动,半径,周期

v与B成θ角f洛=Bqv⊥(0<θ<90°)较复杂的曲线运动,高中阶段不要求
2.带电粒子在匀强磁场中的偏转
(1)穿过矩形磁场区。一定要先画好辅助线(半径、速度及延长线)。偏转角由sinθ=L/R求出。侧移由R2=L2-(R-y)2解出。经历时间由得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!
(2)穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏角可由求出。经历时间由得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
3.解题思路及方法
电荷在洛仑兹力的作用下做匀速圆周运动,圆运动的圆心的确定方法:
(1)利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心。
(2)利用圆上弦的中垂线必过圆心的特点找圆心。
【例题13】氘核、氚核、氦核都垂直磁场方向射入同一匀强磁场,求以下几种情况下,它们轨道半径之比及周期之比各是多少?(1)以相同速率射入磁场;(2)以相同动量射入磁场;(3)以相同动能射入磁场。
解:因为带电粒子在同一匀强磁场中做匀速圆周运动,所以圆运动的半径,周期。
(1)因为三粒子速率相同,所以,,有,
(2)因为三粒子动量相同,所以,,有,
(3)因为三粒子初动能相同,所以,,有,
通过例题复习基本规律。由学生完成,注意公式变换。
【例题14】如图所示,abcd为绝缘挡板围成的正方形区域,其边长为L,在这个区域内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场.正、负电子分别从ab挡板中点K,沿垂直挡板ab方向射入场中,其质量为m,电量为e。若从d、P两点都有粒子射出,则正、负电子的入射速度分别为多少?(其中bP=L/4)
做题过程中要特别注意分析圆心是怎样确定的,利用哪个三角形解题。
提问:1.怎样确定圆心?2.利用哪个三角形求解?
学生自己求解。
(1)分析:若为正电子,则初态洛仑兹力方向为竖直向上,该正电子将向上偏转且由d点射出.Kd线段为圆轨迹上的一条弦,其中垂线与洛仑兹力方向延长线交点必为圆心,设该点为O1.其轨迹为小于1/4的圆弧。
解:如图所示,设圆运动半径为R1,则O1K=O1d=R1
由Rt△O1da可知:


(2)解:若为负电子,初态洛仑兹力方向竖直向下,该电子将向下偏转由P点射出,KP为圆轨迹上的一条弦,其中垂线与洛仑兹力方向的交点必为圆心,设该点为O2,其轨迹为大于1/4圆弧。(如图所示)
由Rt△KbP可知:


【例题15】一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。
提问:
1.带电质点的圆运动半径多大?
2.带电质点在磁场中的运动轨迹有什么特点?
3.在xy平面内什么位置加一个圆形磁场可使带电质点按题意运动?其中有什么样特点的圆形磁场为半径最小的磁场?常见错误:
加以aM和bN连线交点为圆心的圆形磁场,其圆形磁场最小半径为R。
分析:带电质点在磁场中做匀速圆周运动,其半径为
因为带电质点在a、b两点速度方向垂直,所以带电质点在磁场中运动轨迹为1/4圆弧,O1为其圆心,如图所示MN圆弧。
在xy平面内加以MN连线为弦,且包含MN圆弧的所有圆形磁场均可使带电质点完成题意运动。其中以MN连线为半径的磁场为最小圆形磁场。
解:设圆形磁场的圆心为O2点,半径为r,则由图知:
因为,所以
小结:这是一个需要逆向思维的问题,同时考查了空间想象能力,即已知粒子运动轨迹,求所加圆形磁场的位置。考虑问题时,要抓住粒子运动特点,即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中,且圆运动起点、终点必须是磁场边界上的点。然后再考虑磁场的最小半径。
【例题16】在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?
问题:
1.第一问由学生自己完成。
2.在图中画出粒子以图示速度方向入射时在磁场中运动的轨迹图,并找出速度的偏转角。
3.讨论粒子速度方向发生变化后,粒子运动轨迹及速度偏转角的比。
分析:(1)圆运动半径可直接代入公式求解。
(2)先在圆中画出任意一速度方偏转角为初速度与未速度的夹角,且偏转角等于粒子运动轨迹所对应的圆心角。向入射时,其偏转角为哪个角?如图所示。由图分析知:弦ac是粒子轨迹上的弦,也是圆形磁场的弦。
因此,弦长的变化一定对应速度偏转角的变化,也一定对应粒子圆运动轨迹的圆心角的变化。所以当弦长为圆形磁场直径时,偏转角最大。
解:(1)设粒子圆运动半径为R,则
(2)由图知:弦长最大值为ab=2r=6×10-2m
设速度偏转角最大值为αm,此时初速度方向与ab连线夹角为θ,则
,故
当粒子以与ab夹角为37°斜向右上方入射时,粒子飞离磁场时有最大偏转角,其最大值为74°。
小结:本题所涉及的问题是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使得粒子运动轨迹的长短和位置均发生变化,要会灵活运用平面几何知识去解决.
计算机演示:(1)随粒子入射速度方向的变化,粒子飞离磁场时速度偏转角的变化。(2)随粒子入射速度方向的变化,粒子做匀速圆周运动的圆心的运动轨迹。其轨迹为以a点为圆心的一段圆弧。
【例题17】如图所示,很长的平行边界面M、N与N、P间距分别为L1、L2,其间分别有磁感应强度为B1与B2的匀强磁场区,磁场方向均垂直纸面向里.已知B1≠B2,一个带正电的粒子电量为q,质量为m,以大小为v0。的速度垂直边界面M与磁场方向射入MN间磁场区,试讨论粒子速度v0应满足什么条件,才能通过两个磁场区,并从边界面P射出?(不计粒子重力)
问题:
1.该粒子在两磁场中运动速率是否相同?
2.什么是粒子运动通过磁场或不通过磁场的临界条件?
3.画出轨迹草图并计算。
分析:带电粒子在两磁场中做半径不同的匀速圆周运动,但因为洛仑兹力永远不做功,所以带电粒子运动速率不变.粒子恰好不能通过两磁场的临界条件是粒子到达边界P时,其速度方向平行于边界面。粒子在磁场中轨迹如图所示。再利用平面几何和圆运动规律即可求解。
解:如图所示,设O1、O2分别为带电粒子在磁场B1和B2中运动轨迹的圆心。则
在磁场B1中运动的半径为
在磁场B2中运动的半径为
设角α、β分别为粒子在磁场B1和B2中运动轨迹所对应圆心角,则由几何关系知
,,且α+β=90°
所以
若粒子能通过两磁场区,则
小结:
1.洛仑兹力永远不做功,因此磁场中带电粒子的动能不变。
2.仔细审题,挖掘隐含条件。
【例题18】在M、N两条长直导线所在的平面内,一带电粒子的运动轨迹,如图所示.已知两条导线M、N只有一条中有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动方向,可能是
A.M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动
B.M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动
C.N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动
D.N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动
让学生讨论得出结果。很多学生会选择所有选项,或对称选择A、D(或B、C)。前者是因为没有考虑直线电流在周围产生非匀强磁场,带电粒子在其中不做匀速圆周运动。后者是在选择过程中有很强的猜测成分。
分析:两根直线电流在周围空间产生的磁场为非匀强磁场,靠近导线处磁场强,远离导线处磁场弱。所以带电粒子在该磁场中不做匀速圆周运动,而是复杂曲线运动。因为带电粒子在运动中始终只受到洛仑兹力作用,所以可以定性使用圆运动半径规律R=mv/Bq。由该规律知,磁场越强处,曲率半径越小,曲线越弯曲;反之,曲线弯曲程度越小。
解:选项A、B正确。
小结:这是一道带电粒子在非匀强磁场中运动的问题,这时粒子做复杂曲线运动,不再是匀速圆周运动。但在定性解决这类问题时可使用前面所分析的半径公式。洛仑兹力永远不做功仍成立。
五、带电粒子在混合场中的运动
1.速度选择器
正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq,。在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例题19】某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。
解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。,故。
【例题20】如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为α,求E∶B
解:分别利用带电粒子的偏角公式。在电场中偏转:
,在磁场中偏转:,由以上两式可得。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。
2.带电微粒在重力、电场力、磁场力共同作用下的运动
(1)带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。
【例题21】一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。
解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由
(2)与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。
【例题22】质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大,求运动过程中小球的最大加速度和最大速度。
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。
若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为;摩擦力等于重力时速度最大,为。

高三物理一轮复习教学案


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,帮助教师提前熟悉所教学的内容。教案的内容具体要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“高三物理一轮复习教学案”,仅供参考,希望能为您提供参考!

高三物理一轮复习教学案
课题:运动学基本概念
班级___________姓名_______________学号______
一、知识梳理
1.机械运动是指物体相对于的位置的改变,选择不同的参照物来观察同一个运动物体,观察的结果往往;
2.质点是一种理想化的模型是指;
3.位移表示,位移是量,路程是指,路程是量,只有当物体做运动时位移的大小才等于路程;
4.时刻指某,在时间轴上表示为某一点,而时间指间隔,在时间轴上表示为两点间线段的长度;
5.速度表示质点运动的,速度是量,它的方向就是物体的方向,也是位移变化的方向,但不一定与位移方向相同;平均速度指,平均速度的方向与位移方向相同,平均速度总是与那一段时间或那一段位移相对应;即时速度指;
6.匀速直线运动是指;
二、例题精讲
例1.下列关于质点的说法正确的是()
A.体积很大的物体不能看成质点B.质点是一种理想化模型实际不存在
C.研究车轮的转动时可把车轮看成质点D.研究列车从徐州到南京的时间时可把车轮看成质点
例2.如图所示,一质点沿半径为R的圆周从A点到B点运动了半周,它在运动过程中位移大小和路程分别是()
A.πR、πRB.2R、2R
C.2R、πRD.πR、R
例3.关于时刻和时间,下列说法正确的是()
A.时刻表示时间较短,时间表示时间较长B.时刻对应位置,时间对应位移
C.作息时间表上的数字均表示时刻D.1min只能分成60个时刻
例4.速度大小是5m/s的甲、乙两列火车,在同一直路上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车飞去,当到达乙车车头时立即返回,并这样连续在两车头间来回飞着,问:
(1)当两车头相遇时,这鸟共飞行了多少时间?
(2)相遇前这只鸟共飞行了多少中程?

三、随堂练习
1.下列说法正确的是()
A.参考系就是绝对不动的物体
B.只有选好参考系以后,物体的运动才能确定
C.同一物体的运动,相对于不同的参考系,观察的结果可能不同
D.我们平常所说的楼房是静止的,是以地球为参考系的
2.某运动员在百米竞赛中,起跑后第3s未的速度是8m/s,第10s末到达终点时的速度是13m/s,他这次跑完全程的平均速度是()
A.11m/sB.10.5m/sC.10m/sD.9.5m/s

四、巩固提高
1.下列情况中的物体,哪几种情况可看作质点()
A.地面上放一只木箱,在上面箱角处用水平力推它,当研究它是先滑动还是先翻转时
B.上述木箱,在外力作用下沿地面作匀速运动时
C.汽车的后轮,在研究牵引力的来源时
D.人造卫星,在研究它绕地球转动时
2.两辆汽车在平直公路上匀速并排行驶,甲车内一个人看见窗外树木向东移动,乙车内一个人发现甲车没有运动,如果以大地为参照物,上述事实说明()
A.甲车向西运动,乙车不动
B.乙车向西运动,甲车不动
C.甲车向西运动,乙车向东运动
D.甲、乙两车以相同的速度同时向西运动
3.在研究物体的运动时,下列物体中可以当作质点处理的是()
A.研究一端固定并可绕该端转动的木杆的运动时
B.研究用20cm长的细线拴着一个直径为10cm的小球摆动时
C.研究一体操运动员在平衡木上动作时
D.研究月球绕地球运转时
4.从甲地到乙地的高速公路全长360km,汽车从甲地出发历时90min,行驶150km,停车10min,然后以v2=120km/h速度继续前进50min,又停了5min,最后又行驶了45min到达乙地,则汽车在第一段时间内的平均速度v=km/h,在最后一段时间内的平均速度v=km/h,在全程的平均速度v=km/h。

5.火车从甲站到乙站的正常行驶速度是60km/h,有一次火车从甲站开出,由于迟开了5分钟,司机把速度提高到72km/h,才刚好正点到达乙站,则甲、乙两站的距离是km,火车从甲站到乙站正常行驶的时间为小时。

6.小球从距地面5m高处落下,被地面反向弹回后,在距地面2m高处被接住,则小球从高处落下到被接住这一过程中通过的路程和位移大小分别为()
A.7m,7mB.5m,2mC.5m,3mD.7m,3m

7.如图是一个初速度为V0沿直线运动物体的速度图象,经过时间t速度为Vt,则在这段时间内物体的平均速度和加速度a的情况是……………………………()
A.B.
C.a是恒定的D.a是随时间t变化的

8一支长150m的队伍沿直线前进,通讯兵从队尾前进300m赶到队伍前传达命令后立即返回。当通讯兵到回队尾时,队伍已前进了200m,则此过程中通讯兵所走的位移是多少?通讯兵所走的路程是多少?

高三地理一轮复习初中地理部分精讲3


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要好好准备好一份教案课件。教案可以保证学生们在上课时能够更好的听课,帮助高中教师缓解教学的压力,提高教学质量。我们要如何写好一份值得称赞的高中教案呢?小编收集并整理了“高三地理一轮复习初中地理部分精讲3”,仅供参考,欢迎大家阅读。

考点精讲

?1.非洲的人口、粮食和环境问题

?首先通过读"非洲气候分布图",明确自然条件:非洲热带沙漠气候、热带雨林气候、热带草原气候面积广,气候恶劣,土壤贫瘠,加上自然灾害频繁,粮食的单位面积产量低,大部分地区生态脆弱。

?其次联系政、史,分析其人文状况:长时间的殖民统治导致非洲经济畸形发展,科学技术、农牧业的生产方式、耕作制度落后,人口素质低,导致粮食单产低;非洲各国独立后,经济得到发展,由于医疗卫生条件的改善,在保持人口高出生率的同时,死亡率却大幅下降,人口自然增长率很高,使人口增长过快,超过粮食及经济增长的速度,导致粮食供给不足;旧的国际经济秩序的存在,使非洲各国在国际贸易中处于不利地位,导致各国贫穷落后,无力购买大量粮食。因此,非洲缺粮严重。

?为了解决生存问题,当地居民只有大量开垦草原,砍伐树木,来扩大耕地面积和获得燃料,最终破坏了环境。因此,要解决当地的环境问题,就必须消除殖民统治造成的影响,控制人口增长速度,使人口的增长与粮食的增长相适应,与资源的开发利用和环境保护相协调。

?2.分析"西亚和北非气候干热的主要原因"时可从"纬度位置"、"地形结构"、"大气环流"三方面进行。

高三物理一轮复习学案:电磁感应


一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师准备好教案是必不可少的一步。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师缓解教学的压力,提高教学质量。关于好的高中教案要怎么样去写呢?为满足您的需求,小编特地编辑了“高三物理一轮复习学案:电磁感应”,欢迎大家阅读,希望对大家有所帮助。

20xx届高三物理一轮复习学案:电磁感应

教学目标

1.知道电磁感应现象,知道产生感应电流的条件。

2.会运用楞次定律和左手定则判断感应电流的方向。

3.会计算感应电动势的大小(切割法、磁通量变化法)。

4.通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。

教学重点、难点分析

1.楞次定律、法拉第电磁感应定律是电磁感应一章的重点。另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。

2.在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。

3.电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。

4.电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系。但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。

5.楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,“物理”的思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点。

教学过程设计

一、电磁感应现象

1.产生感应电流的条件

感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。

2.感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。

3.关于磁通量变化

(1)在匀强磁场中,磁通量φ=BSsinα(α是B与S的夹角),磁通量的变化Δφ=φ2-φ1有多种形式,主要有:

①S、α不变,B改变,这时Δφ=ΔBSsinα

②B、α不变,S改变,这时Δφ=ΔSBsinα

③B、S不变,α改变,这时Δφ=BS(sinα2-sinα1)

当B、S、α中有两个或三个一起变化时,就要分别计算φ1、φ2,再求φ2-φ1了。

(2)在非匀强磁场中,磁通量变化比较复杂。有几种情况需要特别注意:

①如图所示,矩形线圈沿a→b→c在条形磁铁附近移动,试判断穿过线圈的磁通量如何变化?如果线圈M沿条形磁铁轴线向右移动,穿过该线圈的磁通量如何变化?

(穿过上边线圈的磁通量由方向向上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到零,再变为方向向上增大)

②如图所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。当a中的电流增大时,穿过线圈b、c的磁通量各如何变化?在相同时间内哪一个变化更大?

(b、c线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总磁通量向里,a中的电流增大时,总磁通量也向里增大。由于穿过b线圈向外的磁通量比穿过c线圈的少,所以穿过b线圈的磁通量更大,变化也更大。)

③如图所示,虚线圆a内有垂直于纸面向里的匀强磁场,虚线圆a外是无磁场空间。环外有两个同心导线圈b、c,与虚线圆a在同一平面内。当虚线圆a中的磁通量增大时,穿过线圈b、c的磁通量各如何变化?在相同时间内哪一个变化更大?

(与②的情况不同,b、c线圈所围面积内都只有向里的磁通量,且大小相同。因此穿过它们的磁通量和磁通量变化都始终是相同的。)

二、楞次定律

1.楞次定律

感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

楞次定律解决的是感应电流的方向问题。它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。

在应用楞次定律时一定要注意:“阻碍”不等于“反向”,“阻碍”不是“阻止”。

(1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。“阻碍”的不是磁感强度B,也不是磁通量φ,而是阻碍穿过闭合回路的磁通量变化。

(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

(3)从“阻碍自身电流变化”的角度来看,就是自感现象。

自感现象的应用和防止。

应用:日光灯电路图及原理:灯管、镇流器和启动器的作用。

防止:定值电阻的双线绕法。

2.右手定则。

对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。这时,用右手定则更方便一些。

3.楞次定律的应用及其推广

楞次定律强调的是感应电流的方向,感应电流的磁场阻碍原磁通量的变化。我们可将其含义推广为:感应电流对产生的原因(包括外磁场的变化、线圈面积的变化、相对位置的变化、导体中电流的变化等)都有阻碍作用。因此用推广含义考虑问题可以提高运用楞次定律解题的速度和准确性。

楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。

【例题1】如图所示,有两个同心导体圆环。内环中通有顺时针方向的电流,外环中原来无电流。当内环中电流逐渐增大时,外环中有无感应电流?方向如何?

解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外部向外的所有磁感线条数相等,所以外环所围面积内(这里指包括内环圆面积在内的总面积,而不只是环形区域的面积)的总磁通量向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。

【例题2】如图所示,闭合导体环固定。条形磁铁S极向下以初速度v0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?

解:从“阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈M所在的水平面时,磁铁内部向上的磁感线都穿过了线圈,而磁铁外部向下穿过线圈的磁通量最少,所以此时刻穿过线圈M的磁通量最大。因此全过程中原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流先顺时针后逆时针。

从“阻碍相对运动”来看,线圈对应该是先排斥(靠近阶段)后吸引(远离阶段),把条形磁铁等效为螺线管,该螺线管中的电流是从上向下看逆时针方向的,根据“同向电流互相吸引,反向电流互相排斥”,感应电流方向应该是先顺时针后逆时针的,与前一种方法的结论相同。

【例题3】如图所示,O1O2是矩形导线框abcd的对称轴,其左方有垂直于纸面向外的匀强磁场。以下哪些情况下abcd中有感应电流产生?方向如何?

A.将abcd以cd为轴转动60°B.将abcd向右平移

C.将abcd以ab为轴转动60°D.将abcd向纸外平移

解:A、B两种情况下原磁通量向外,减少,感应电流磁场向外,感应电流方向为abcd。C、D两种情况下穿过abcd的磁通量没有发生变化,无感应电流产生。

【例题4】如图所示装置中,cd杆原来静止。当ab杆做如下那些运动时,cd杆将向右移动?

A.向右匀速运动B.向右加速运动

C.向左加速运动D.向左减速运动

解:.ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变化,L2中无感应电流产生,cd保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下,增大,通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确。选B、D

【例题5】如图所示,当磁铁绕O1O2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?

解:本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度来看,导线框一定会跟随条形磁铁同方向转动起来。如果不计一切摩擦阻力,最终导线框将和磁铁转动速度无限接近到可以认为相同;如果考虑摩擦阻力,则导线框的转速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩擦力的阻力矩相等)。如果用“阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。可见这类定性判断的题要灵活运用楞次定律的各种表达方式。

【例题6】如图所示,水平面上有两根平行导轨,上面放两根金属棒a、b。当条形磁铁如图向下移动时(不到达导轨平面),a、b将如何移动?

解:若按常规用“阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进行讨论,比较繁琐。而且在判定a、b所受磁场力时。应该以磁极对它们的磁场力为主,不能以a、b间的磁场力为主(因为它们的移动方向由所受的合磁场的磁场力决定,而磁铁的磁场显然是起主要作用的)。如果注意到:磁铁向下插,通过闭合回路的磁通量增大,由φ=BS可知磁通量有增大的趋势,因此S的相应变化应该是阻碍磁通量的增加,所以a、b将互相靠近。这样判定比较起来就简便得多。

【例题7】如图所示,绝缘水平面上有两个离得很近的导体环a、b。将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动?

解:根据U=BS,磁铁向下移动过程中,B增大,所以穿过每个环中的磁通量都有增大的趋势,由于S不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以a、b将相互远离。

【例题8】如图所示,在条形磁铁从图示位置绕O1O2轴转动90°的过程中,放在导轨右端附近的金属棒ab将如何移动?

解:无论条形磁铁的哪个极为N极,也无论是顺时针转动还是逆时针转动,在转动90°过程中,穿过闭合电路的磁通量总是增大的(条形磁铁内、外的磁感线条数相同但方向相反,在线框所围面积内的总磁通量和磁铁内部的磁感线方向相同且增大。而该位置闭合电路所围面积越大,总磁通量越小,所以为阻碍磁通量增大金属棒ab将向右移动。

【例题9】如图所示,a、b灯分别标有“36V40W”和“36V25W”,闭合电键,调节R,使a、b都正常发光。这时断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?

解:重新闭合瞬间,由于电感线圈对电流增大的阻碍作用,a将慢慢亮起来,而b立即变亮。这时L的作用相当于一个大电阻;稳定后两灯都正常发光,a的额定功率大,所以较亮。这时L的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间,由于电感线圈对电流减小的阻碍作用,通过a的电流将逐渐减小,a渐渐变暗到熄灭,而abRL组成同一个闭合回路,所以b灯也将逐渐变暗到熄灭,而且开始还会闪亮一下(因为原来有IaIb),并且通过b的电流方向与原来的电流方向相反。这时L的作用相当于一个电源。(若将a灯的额定功率小于b灯,则断开电键后b灯不会出现“闪亮”现象。)

【例题10】如图所示,用丝线将一个闭合金属环悬于O点,虚线左边有垂直于纸面向外的匀强磁场,而右边没有磁场。金属环的摆动会很快停下来。试解释这一现象。若整个空间都有垂直于纸面向外的匀强磁场,会有这种现象吗?

解:只有左边有匀强磁场,金属环在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,环内一定有感应电流产生。根据楞次定律,感应电流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。还可以用能量守恒来解释:有电流产生,就一定有机械能向电能转化,摆的机械能将不断减小。若空间都有匀强磁场,穿过金属环的磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来。

【例题11】如图所示,蹄形磁铁的N、S极之间放置一个线圈abcd,磁铁和线圈都可以绕OO′轴转动,若磁铁按图示方向绕OO′轴转动,线圈的运动情况是:]

A.俯视,线圈顺时针转动,转速与磁铁相同

B.俯视,线圈逆时针转动,转速与磁铁相同

C.线圈与磁铁转动方向相同,但开始时转速小于磁铁的转速,以后会与磁铁转速一致

D.线圈与磁铁转动方向相同,但转速总小于磁铁的转速

师:本题目中由于磁铁转动,就使穿过线圈的磁感线数目发生变化(开始图转时,U从零增加),因而会产生感应电流,线圈因通有电流又受磁场的作用力(安培力)而转动。这样分析虽然正确,但较费时间。若应用楞次定律的推广意义来判断就省时多了。大家可以试试。具体地说,就是先要解决两个问题:①引起U变化的原因是什么?②由于“阻碍”这个“原因”,线圈表现出来的运动应是怎样的?(学生思考后回答)

(设置这样的定向思维的提问,目的不是了解学生怎样解题,而是着重让学生体会楞次定律的推广含义的具体应用方法。学生很容易回答上述提问:引起U的变化原因是线圈转动,由于要“阻碍”转动,表现为线圈跟着磁铁同向转动,所以,可以排除选项A)

师:进一步推理,线圈由于阻碍铁相对线圈的转动而跟着转起来后,线圈的转速能与磁铁一致吗?(回答:不会一致,若一致就不是阻碍而阻止了)

师:楞次定律的核心是“阻碍”,让我们做出线圈转速小于磁铁转速的结论,因此可以排除选项B。同时,线圈依靠磁铁对线圈施以安培力而跟着转起来后,始终两者转速都不会一样的。(为什么,这个推理请自己用反证法论证)其实这就是异步感应电动机的工作原理。答案:D

【例题12】如图,水平导轨上放着一根金属导体,外磁场竖直穿过导轨框。当磁感强度B减小时,金属棒将怎样运动?

师:请大家不光会用楞次定律去分析,更要学会用楞次定律的推广含义去判断。

本题中产生感应电流的原因是外磁场B的减少,使穿过回路的U减少。为阻碍U减少,应表现出回路面积增大,所以可动的金属棒ab应向外运动。

指点:本题的分析也可以用逆向思维方法推知感应电流的方向。由于阻碍磁通量U↓,导体棒向右运动,作用在导体棒上的安培力方向一定向右,用左手定则可知导体棒中的感应电流方向一定是从b→a。

【例题13】如图所示,一闭合的铜环从静止开始由高处下落通过条形磁铁后继续下降,空气阻力不计,则在铜环的运动过程中,下列说法正确的是:

A.铜环在磁铁的上方时,环的加速度小于g,在下方时大于g

B.铜环在磁铁的上方时,加速度小于g,在下方时也小于g

C.铜环在磁铁的上方时,加速度小于g,在下方时等于g

D.铜环在磁铁的上方时,加速度大于g,在下方时小于g

师:正确答案是B。本题中引起铜环内产生感应电流的原因是铜环在磁铁的磁场中相对磁铁发生运动,使铜环内φ先增加后减少,铜环内产生感应电流,磁场对通有感应电流的铜环又施以磁场力。要判断磁场力的方向,还依赖于对磁铁周围的磁场空间分布的了解。但是用“阻碍引起感应电流的原因”来判断就简捷的多。由于铜环下落而产生感应电流,使铜环受到磁场力,而磁场力一定对铜环的下落起阻碍作用,使铜环下落速度增加得慢些,即。

【例题14】如图所示,当磁铁竖直向下穿向水平面上的回路中央时(未达到导轨所在平面),架在导轨上的导体棒P、Q将会怎样运动?(设导轨M、N光滑)P、Q对导轨M、N的压力等于P、Q受的重力吗?

师:除了直接用楞次定律判断外,请用阻碍相对运动来分析。(经过上面几题的指导,学生肯定会判断。)

生:由于磁铁靠近回路使回路中φ↑,则为使阻碍φ增加,P、Q一定向回路内侧运动,即回路面积会缩小。另一方面,欲使回路阻碍磁铁向下靠近,回路应向下后退,但因“无路可退”而使回路与支承面,P、Q与导轨之间都压得更紧!因此P、Q对导轨施加的压力大于P、Q受的重力。

【例题15】如图所示,MN是一根固定的通电长直导线,电流方向向上。今将一金属线框abcd放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘,当导线中的电流I突然增大时,线框整体受力情况为:

A.受力向右B.受力向左C.受力向上D.受力为零

分析:首先判断由于电流I增大使穿过回路abcd的磁通量U增大还是减小。由于线框位置偏向导线左边,使跨在导线左边的线圈面积大于右边面积,线圈左边部分内磁感线穿出,右边部分内磁感线穿入,整个线框中的合磁通量是穿出的,并且随电流增大而增大。

再用“阻碍磁通量变化”来考虑线框受磁场力而将要发生运动的方向。显然线框只有向右发生运动,才与阻碍合磁通量增加相符合,因此线框受的合磁场力应向右。正确选项为A。

说明;以上5个例题都可以按楞次定律的应用步骤去分析。而我们特意采用了楞次定律含义的推广:“阻碍使U变化的原因”去判断,意图是让大家缩简思维活动程序,提高做题速度,加深对楞次定律中“阻碍”含义的理解。但同时需注意的是,绝不能用简化方法代替基本方法,基本方法能使我们对电磁感应的发生过程了解得更细致,而简化方法只能快速地看到电磁感应的结果,在答题时显示出简捷性和灵活性。

楞次定律中的“阻碍”作用也导致了电磁感应过程中能量的转化,因而电磁感应过程就是能量转化的过程。因此,运用楞次定律也可判断能量的转化。

【例题16】如图所示,在O点正下方有一个具有理想边界的磁场,将铜环从A点由静止释放,向右摆至最高点B,不计空气阻力,则以下说法正确的是

A.A、B两点等高B.A点高于B点

C.A点低于B点D.铜环将做等幅摆动

师:铜环进入磁场又离开磁场的两个过程,铜环中的磁通量φ都是变化的,故产生感应电流。现进一步分析,铜环在摆动中机械能守恒吗?(学生回答。)

师;此题的思维过程为:由于铜环进入、离开磁场的过程中都有磁通量φ的变比,一定会产生感应电流,一定会使铜环受到安培力作用,而安培力一定阻碍铜环相对磁场的进、出运动。正因铜环需克服安培力做功→使铜环的机械能转化为电能→铜环做减幅振动。因而正确答案为B。

同学们还可思考:若将铜环改为铜片或球,答案不同吗?(答案一样)只要将铜片或铜球看成是许多并联在一起的铜环即可,它们都会产生感应电流(涡流),使自身发热,机械能损失。这种由于电磁感应而使振动的机械能减小的因素叫电磁阻尼。在磁电式仪表中,为防止仪表通电后指针偏转到某处后来回振动,就利用了这种电磁阻尼原理。反之,若不希望振动的机械能由于电磁阻尼而损失,则需采取使钢环不闭合(留有小缺口),将铜片上开许多缺口以使之不产生感应电流,或产生的感应电流很小的措施。

最后还需指出的是楞次定律与右手定则的关系。两者是一般规律与特殊规律的关系。各种产生感应电流的情况下都可用楞次定律判断其方向,而用右手定则只用于判断闭合电路中一部分导体做切割磁感线运动时产生的感应电流方向。

三、法拉第电磁感应定律

“由于磁通量的变化,使闭合回路中产生感应电流”,这只是表现出来的电磁感应现象,而其实质是由于磁通量的变化,使闭合回路中产生了电动势E——感应电动势。感应电动势比感应电流更能反映电磁感应的本质。而法拉第电磁感应定律就解决了感应电动势大小的决定因素和计算方法。

1.法拉第电磁感应定律

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,在国际单位制中可以证明其中的k=1,所以有,该式计算的是△t时间内的平均电动势,但不能理解为E的算术平均值。对于n匝线圈有。

(1)用磁通量变化计算感应电动势常见有三种情况:

①回路面积S不变,仅为B变化:

②B不变,仅为回路面积S变化:

③回路面积S和B均不变,相对位置变化(如转动):

(2)将均匀电阻丝做成的边长为l的正方形线圈abcd从匀强磁场中向右匀速拉而出过程,仅ab边上有感应电动势E=Blv,ab边相当于电源,另3边相当于外电路。ab边两端的电压为3Blv/4,另3边每边两端的电压均为Blv/4。

将均匀电阻丝做成的边长为l的正方形线圈abcd放在匀强磁场中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E=l2(ΔB/Δt),这种情况下,每条边两端的电压U=E/4-Ir=0均为零。

感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。

在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLvsinα(α是B与v之间的夹角)。(瞬时值)

【例题17】如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀速拉出磁场的过程中,(1)拉力的大小F;(2)拉力的功率P;(3)拉力做的功W;(4)线圈中产生的电热Q;(5)通过线圈某一截面的电荷量q。

解:这是一道基本练习题,要注意计算中所用的边长是L1还是L2,还应该思考一下这些物理量与速度v之间有什么关系。

(1)、、、(2)

(3)(4)(5)与v无关

特别要注意电热Q和电荷量q的区别,其中与速度无关!

【例题18】如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。磁感应强度为B的匀强磁场方向垂直于纸面向外。金属棒ab的质量为m,与导轨接触良好,不计摩擦。从静止释放后ab保持水平而下滑。试求ab下滑的最大速度vm

解:释放瞬间ab只受重力,开始向下加速运动。随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。当F增大到F=mg时,加速度变为零,这时ab达到最大速度。

由,可得。

这道题也是一个典型的习题。要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。这时重力的功率等于电功率也等于热功率。

进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如何?(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。

【例题19】如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k0)那么在t为多大时,金属棒开始移动?

解:由=kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BIL∝B=kt∝t,所以安培力将随时间而增大。当安培力增大到等于最大静摩擦力时,ab将开始向左移动。这时有:,

2.转动产生的感应电动势

(1)转动轴与磁感线平行。如图,磁感应强度为B的匀强磁场方向垂直于纸面向外,长L的金属棒oa以o为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v应该指导线上各点的平均速度,在本题中应该是金属棒中点的速度,因此有。

(2)线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分别为L1、L2,所围面积为S,向右的匀强磁场的磁感应强度为B,线圈绕图示的轴以角速度ω匀速转动。线圈的ab、cd两边切割磁感线,产生的感应电动势相加可得E=BSω。如果线圈由n匝导线绕制而成,则E=nBSω。从图示位置开始计时,则感应电动势的瞬时值为e=nBSωcosωt。该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B垂直)。

实际上,这就是交流发电机发出的交流电的瞬时电动势公式。

【例题20】如图所示,xoy坐标系y轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B,一个围成四分之一圆形的导体环oab,其圆心在原点o,半径为R,开始时在第一象限。从t=0起绕o点以角速度ω逆时针匀速转动。试画出环内感应电动势E随时间t而变的函数图象(以顺时针电动势为正)。

解:开始的四分之一周期内,oa、ob中的感应电动势方向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。感应电动势的最大值为Em=BR2ω,周期为T=2π/ω,图象如右。

3.电磁感应中的能量守恒

只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。

【例题21】如图所示,矩形线圈abcd质量为m,宽为d,在竖直平面内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d,线圈ab边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热?

解:ab刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q=2mgd。

【例题22】如图所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为2∶1,长度和导轨的宽均为L,ab的质量为m,电阻为r,开始时ab、cd都垂直于导轨静止,不计摩擦。给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度vm、最大加速度am、产生的电热各是多少?

解:给ab冲量后,ab获得速度向右运动,回路中产生感应电流,cd受安培力作用而加速,ab受安培力而减速;当两者速度相等时,都开始做匀速运动。所以开始时cd的加速度最大,最终cd的速度最大。全过程系统动能的损失都转化为电能,电能又转化为内能。由于ab、cd横截面积之比为2∶1,所以电阻之比为1∶2,根据Q=I2Rt∝R,所以cd上产生的电热应该是回路中产生的全部电热的2/3。又根据已知得ab的初速度为v1=I/m,因此有:、、、,解得。最后的共同速度为vm=2I/3m,系统动能损失为ΔEK=I2/6m,其中cd上产生电热Q=I2/9m。

【例题23】如图所示,水平的平行虚线间距为d=50cm,其间有B=1.0T的匀强磁场。一个正方形线圈边长为l=10cm,线圈质量m=100g,电阻为R=0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h=80cm。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g=10m/s2,求:(1)线圈进入磁场过程中产生的电热Q。(2)线圈下边缘穿越磁场过程中的最小速度v。(3)线圈下边缘穿越磁场过程中加速度的最小值a。

解:(1)由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过程中产生的电热Q就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q=mgd=0.50J

(2)3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有

v02-v2=2g(d-l),得v=2m/s

(3)2到3是减速过程,因此安培力减小,由F-mg=ma知加速度减小,到3位置时加速度最小,a=4.1m/s2。

【例题24】用均匀导线做成的正方形线框每边长为0.2m,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示,当磁场以每秒10T的变化率增强时,线框中点a、b两点电势差Uab是多少?

设问:本题显然是属于磁场变化、线圈面积不变而产生感应电动势的问题。但所求的Uab等于a、b两点间的感应电动势吗?此回路的等效电路应为怎样的?哪一部分相当于电源,哪一部分相当于外电路?

(学生经过以上几个问题的分析,都会画出等效电路图并求解Uab。)

等效电路如图所示。方形线框的左半部分内磁通量变化,产生感应电动势,故左半部分相当于电源,右半部分相当于外电路,且内外电阻相等(图中用r表示)。

再提问:本题的计算中,S应取回路面积还是回路中的磁场面积?(让学生讨论后回答。这是本题的一个知识陷阱)

启发:计算磁场的磁通量φ,应该用什么面积(S)?——回答是用磁场的面积。因而本题中计算磁通量变化△φ=△(BS)=S△B当然同样应为磁场面积,即,L为线框边长。

,路端电压:

用楞次定律判断知感应电流是从左半边线框的b点流出,a点流入,b点相当于电源的正极,故Ub>Ua,所以Uab=-U=-0.1V

说明:在电磁感应与电路计算的习题中,只要把电源部分和外电路区分开,找出等效电路,然后利用法拉第电磁感应定律求电动势。利用闭合电路欧姆定律和串联关系进行求解是解决这类问题应采用的一般方法。

【例题25】如图所示,导线全都是裸导线,半径为r的圆内有垂直圆平面的匀强磁场,磁感强度为B。一根长度大于2r的导线MN以速率v在圆环上无摩擦地自左端匀速滑动到右端,电路中的定值电阻为R,其余电阻不计。求:MN从圆环的左端滑到右端的全过程中电阻R上的电流强度的平均值及通过R的电量q。

设问:此题属磁通量变化类型还是切割类型?

(学生会一看就说是切割类型的。)

再问:你能用E=Blv计算出感应电动势吗?

(让学生经讨论后达到共识:因有效切割长度在不断变化,且为非线性变化,故难以用上式计算出平均感应电动势。)

师:本题难以用特例公式E=Blv计算,可从一般情况看,MN向右运动,使回路中的磁通量不断减少,可以用法拉第电磁感应定律求平均电动势

由于,。

所以

通过的电量:

追问:本题中何时感应电流最大?感应电流最大值为多少?

学生:当MN运动到圆环中央时,有效切割长度最长,等于圆环直径2r,这时感应电动势最大,回路中感应电流最大。最大值为

反思:想一想,感应电流的平均值I为什么不等于最大电流Imax与最小电流Imin=0的算术平均值?(因I是非线性变化的。)

说明:在电磁感应现象中流过电路的电量

此式具有一般意义。用此式计算电量q时,电流强度应该用平均值,而非有效值,更不能用最大值。这是因为此式是根据电流强度的定义式计算的,而用计算的只能是时间内的平均电流强度!

再加一问:为使MN能保持匀速运动,需外加的拉力是恒力还是变力?

生:使MN保持匀速运动,应满足合力为零的平衡条件,而MN运动中产生感应电流,磁场会对MN施加安培力阻碍MN的运动,因此外力应与安培力二力平衡。又因为MN中的感应电流I是变化的,所以安培力F=BIl也是变化的,需要外力也随之变化。

师:若要求计算外力的最大功率,你又应该怎样思考?

生:首先确定何时外力的功率最大。由前面的分析,当MN运动到圆环中央位置时电流最大,则此时安培力也最大,所需外力最大,由P=Fv知,外力的功率最大。由此可以计算最大功率为

问:还有其它算法吗?(提示:若从能量转化角度考虑可以怎样计算?)

生:外力做多少功,就产生多少电能,电路就产生多少焦耳热。因此还可以根据P外力=P电计算:

【例题26】如图所示,竖直向上的匀强磁场的磁感应强度B0=0.5T,并且以的变化率均匀增加。水平放置的导轨不计电阻,不计摩擦阻力,宽度l=0.5m,在导轨上浮放着一金属棒MN,电阻R0=0.1Ω,并用水平细线通过定滑轮悬吊着质量M=2kg的重物。导轨上的定值电阻R=0.4Ω,与P、Q端点相连组成回路。又知PN长d=0.8m,求:从磁感强度为B。开始计时,经过多少时间金属棒MN恰能将重物拉起?

(题目条件较多,要给学生审题时间。)

师:本题属于磁通量变化型。首先请一位学生简述一下物理情景。

物理情景是:由于磁通量φ变化使回路中产生感应电流,方向由M→N,根据左手定则判断,MN棒将受方向向左的安培力作用,当F安≥mg时,重物被拉起。

师:物体刚刚被拉离地面时的临界条件一定为F安-mg=0时,即F安=mg。那么在此之前,MN棒未动,则回路面积S不变,仅仅是磁场B变化。由题意推知,在此过程中,安培力一定是逐渐增大的。那么,究竟是什么原因导致安培力F安增大呢?

由于,式中为定值。

显然只能是因B不断增大而使F安变大的。

师:根据以上推理和题意,磁感强度随时间t变化的函数表达式应写为何种形式?

生:根据题意,B是均匀变化的,应为线性函数,又由以上推理知B是增加的,因此函数式应为

师:对。以下就可根据重物被拉起的临界条件确定该时刻的磁感强度Bt,再由上式确定物体被拉起的时刻t。请同学们自己计算一下。(并让一同学到黑板上写出过程)

物体刚被拉起时:F安=Mg

得,代入数字得B=500T。

再代入B=B0+0.1t得t=495s。

说明:①本题中经过分析判断写出B的函数式,是运用了数学知识表达物理规律的体现,这种能力也是高考说明中要求的。②本题分析的是金属棒MN尚未运动之前的情况,回路中只有外磁场的磁感增强引起的磁通量变化,而无“切割”,即只有“感生”而无“动生”。当MN棒与重物一起运动以后,由于回路面积减小,同时B↑,回路中磁通量变化规律就不好定性分析了。

【例题27】如图所示,匀强磁场中固定的金属框架ABC,导体棒DE在框架上沿图示方向匀速平移,框架和导体棒材料相同、同样粗细,接触良好。则

A.电路中感应电流保持一定

B.电路中磁通量的变化率一定

C.电路中感应电动势一定

D.棒受到的外力一定

分析:本题属于切割型。DE棒相当于电源,电路中的有效切割长度L不断增大,由E=Blv知,感应电动势E随之增大,而非定值。所以选项C错。

又因为本题的回路中磁通量变化就是DE棒做“切割”运动而引起的,所以用公式计算感应电动势与用E=Blv计算,二者应是一致的,所以选项B错。

设问:电路中的感应电流由什么因素确定?

生:根据闭合电路欧姆定律来确定电流强度。

师:对。但是随着DE棒运动,回路中E=Blv随L增大,回路的总电阻R总也随回路总边长增加而增大,你下一步怎样做才能分析感应电流变还是不变?

学生:计算

师:请自己计算一下感应电流的瞬时值,以便能确定它是否随时间变化。

(学生活动:在座位上运算。)

师:请一位同学说一下是怎样算的。

学生:先计算DE棒在任意时刻t在电路中的有效切割长度l=2vttanθ,θ为顶角B的一半。再代入E=Blv求出感应电动势:E=B2vttanθ,而电路的总电阻与电路总周长成正比。设该电路材料单位长度的电阻为R0,则此时电路总电阻为,

回路中的电流强度为

从上面推导的结果看出,I与时间t无关。上式中各量均为定值,因而I也为定值,A项对。

师:分析正确。其实还可以用更简捷的思维方式,即分析E的增量△E与总电阻的增量△R是否成正比,若为正比关系,则说明比值=恒量,反之则为变量。按此思路考虑,当DE运动一段位移后,电路中有效切割长度增加了△l,而电动势增量△E∝△l;另一方面,回路增加的长度2ab+△l也与△l成正比(如图),即回路中切割长度每增加△l时,回路总长度都增加相同的2ab+△l,而回路电阻增量与回路总长度增量成正比,因此,比值=定值,即I=定值。所以A项正确。显然,这种推理方式无需计算,能省时间。这是一种半定量式的分析。由于本题是选择题,要求我们尽快做出判断,因而无需经仔细计算后再得结论,只要找到比例关系即可。一般来说,高考中的选择题不考那种需经复杂计算才能做出判断的题,即无需“小题大做”,充其量有半定量分析和简单的计算。

最后,关于棒受的外力应该根据什么关系确定?

生:根据DE棒匀速运动,应满足受力平衡关系,即外力与棒受到的安培力相等。而安培力F=BIl随L变化,故外力也随之变化。

师:对。根据公式F=BIl计算安培力时,为什么不是将DE棒的总长度代入公式分析而是只考虑回路中的那一部分长度?

生:因DE棒上只有接入回路的那部分才有电流通过,而磁场是对通电导体施以安培力的。

师:完全正确。本题的D选项是错的。如果概念不清楚,会在D选项的判断上出现失误的。我们平时的练习中,一定要重视基本知识,基本规律、基本方法,而不要只会背公式、套公式,那样就学不好物理。

四、电磁感应中的综合问题

(一)力、电、磁综合题分析

【例题28】如图所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间的距离为l,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B,在导轨的A、D端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒ab,其质量为m,从静止开始沿导轨下滑。求:ab棒下滑的最大速度。(要求画出ab棒的受力图,已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计)

教师:(让学生审题,随后请一位学生说题。)题目中表达的是什么物理现象?ab棒将经历什么运动过程?——动态分析。

学生:ab棒沿导轨下滑会切割磁感线,产生感应电动势,进而在闭合电路中产生感应电流。这是电磁感应现象。ab棒在下滑过程中因所受的安培力逐渐增大而使加速度逐渐减小,因此做加速度越来越小的加速下滑。

教师:(肯定学生的答案)你能否按题目要求画出ab棒在运动中的受力图?

学生画图(如图)。

教师指出:本题要求解的是金属棒的最大速度,就要求我们去分析金属棒怎样达到最大速度,最大速度状态下应满足什么物理条件。本质上,仍然是要回答出力学的基本问题:物体受什么力,做什么运动,力与运动建立什么关系式?在电磁现象中,除了分析重力、弹力、摩擦力之外,需考虑是否受磁场力(安培力)作用。

提问:金属棒在速度达到最大值时的力学条件是什么?

要点:金属棒沿斜面加速下滑,随v↑→感应电动势E=Blv↑→感应电流↑→安培力F=BIl↑→合力↓→a↓。当合力为零时,a=0,v达最大vm,以后一直以vm匀速下滑。

(让学生写出v达最大的平衡方程并解出vm。)

板书:当v最大时,沿斜面方向的平衡方程为

解出

师:通过上述分析,你能说出何时金属棒的加速度最大?最大加速度为多少?

生:金属棒做a减小的加速下滑,故最初刚开始下滑时,加速度a最大。由牛顿第二定律有:mgsinθ-μmgcosθ=mam

得am=g(sinθ-μcosθ)

师设问:如果要求金属棒ab两端的电压Uab最终为多大,应该运用什么知识去思考?

引导:求电路两端的电压应从金属棒所在电路的组成去分析,为此应先画出等效电路模型图。

(学生画图。)

板书:(将学生画出的正确电路图画在黑板上,见图)

师:根据电路图可知Uab指什么电压?(路端电压)

(让学生自己推出Uab表达式及Uab的最大值。)

板书:Uab=E-Ir=Blv-Ir

由于金属棒电阻不计,则r=0,故Uab=Blv随金属棒速度v↑→E↑→Uab↑,最终

提醒:若金属棒的电阻不能忽略,其电阻为r,则Uab结果又怎样?

(有的学生会想当然,认为将上式中的R改为(R+r)即可。)

师指出:仍然应用基本方法去分析,而不能简单从事,“一改了之”。应该用本题的方法考虑一遍:用力学方法确定最大速度,

用电路分析方法确定路端电压

题后语:由例1可知,解答电磁感应与力、电综合题,对于运动与力的分析用力学题的分析方法,只需增加对安培力的分析;而电路的电流、电压分析与电学分析方法一样,只是需要先明确电路的组成模型,画出等效电路图。这是力、电、磁综合题的典型解题方法。分析这类题要抓住“速度变化引起磁场力变化”的相互关联关系,从分析物体的受力情况与运动情况入手是解题的关键和解题的钥匙。

【例题29】如图所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C的电容器,框架上有一质量为m、长为l的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B的匀强磁场与框架平面垂直。开始时,电容器不带电。将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)

本题要抓几个要点:①电路中有无电流?②金属棒受不受安培力作用?若有电流,受安培力作用,它们怎样计算?③为了求出金属棒的速度,需要用力学的哪种解题途径:用牛顿运动定律?动量观点?能量观点?

师:本题与例1的区别是,在分析金属棒受什么力时首先思维受阻:除了重力外,还受安培力吗?即电路中有电流吗?有的学生认为,虽然金属棒由于“切割”而产生感应电动势E;但电容器使电路不闭合故而无电流,金属棒只受重力做自由落体运动,落地时速度即为。为了判断有无电流,本题应先进行电路的组成分析,画出等效电路图。(学生画图,见图)

问:电路中有电流吗?

(这一问题对大多数学生来说,根据画的电路图都能意识到有电容器充电电流,方向为逆时针。)

再问:这一充电电流强度I应怎样计算?(运用什么物理概念或规律?)

有的学生会照常写出,但很快会必现“整个电路的电阻不计””这一条件,因而思维又发生障碍。

追问:这个电路是纯电阻电路吗?能否应用欧姆定律求电流强度?——让学生认清用欧姆定律根本就是“张冠李戴”的。

引导:既然是给电容器充电形成电流,那么电流强度与给电容器极板上充上的电量Q有什么关系?

有的学生经引导又会想到用定义式

师:让学生判断,分析确定金属棒受的合外力怎样变化时,要考虑安培力的变化情况,所需确定的是瞬时电流,还是平均电流?(瞬时电流)是瞬时电流吗?

学生思维被引导到应考虑很短一段时间△t内电容极板上增加的电量△Q时,电路中瞬时电流为

师:电容器极板上增加的电量与极板间的电压有何关系?

因为Q=CUc,所以△Q=C△Uc

师:而电容两极板间的电压又根据电路怎样确定?

生:因电路无电阻,故电源路端电压U==Blv,而U=Uc,所以△Uc=BL△v。

式中为杆的加速度a。

指出:本题中电流强度的确定是关键,是本题的难点,突破了这一难点,以后的问题即可迎刃而解。

问题:下面面临的问题是金属棒在重力、安培力共同作用下运动了位移为h时的速度怎样求。用动量观点、能量观点,还是用牛顿第二定律?

(学生经过分析已知条件,并进行比较,都会选择用牛顿第二定律。)

指点:用牛顿第二定律求解加速度a,以便能进一步弄清金属棒的运动性质。

mg-BIl=ma②

由①②式得③

师:由同学们推出的结果,可知金属棒做什么性质的运动?

生:从③式知a=恒量,所以金属棒做匀加速运动。

师:让学生写出落地瞬时速度表达式。

生:

师:进一步分析金属棒下落中的能量转化,金属棒下落,重力势能减少,转化为什么能力?机械能守恒吗?

学生:克服安培力做功,使金属棒的机械能减少,轻化为电能,储存在电容器里,故金属棒的机械能不守恒。金属棒下落中减少的重力势能一部分转化的电能,还有一部分转化为动能。

师:对。只要电容器不被击穿,这种充电、储能过程就持续进行,电路中就有持续的恒定充电电流

小结:

以上两例都是力、电、磁综合问题。例1是从分析物体受什么力、做什么运动的力学分析为突破口,进而确定最大速度的。例2则以分析电路中的电流、电压等电路状态为突破口,特别是它不符合欧姆定律这一点应引起重视。两题的突破点虽不同,但都离不开力学、电学、电磁感应、安培力等基本概念、基本规律、基本方法的运用。同学们平时在自己独立做题中,仍应在“知(基本知识)、法(基本方法)、路(基本思路)、审(认真审题)”四个字上下功夫,努力提高自己的分析能力、推理能力。

衔接:力电综合题中除了上述的一个物体运动之外,还有所谓的“两体”问题。见例30。

【例题30】如图所示,质量为m1的金属棒P在离地h高处从静止开始沿弧形金属平行导轨MM′、NN′下滑。水平轨道所在的空间有竖直向上的匀强磁场,磁感强度为B。水平导轨上原来放有质量为m2的金属杆Q。已知两杆质量之比为3∶4,导轨足够长,不计摩擦,m1为已知。求:

(1)两金属杆的最大速度分别为多少?

(2)在两杆运动过程中释放出的最大电能是多少?

师:第(1)问的思维方法与例1一样,先确定两杆分别受什么力,做什么运动,进而可知何时速度最大,最大速度怎样求。

(让学生审题后互相讨论思考一会儿,然后叫一位学生代表表述分析的结果。)

学生:P金属在弯轨上的滑行阶段,机械能守恒:①

这一阶段Q棒仍静止。当P棒滑入水平轨道上并以v1开始切割磁感线后,产生E,闭合电路中产生感应电流I,方向为逆时针。由左手定则知,P棒受到安培力向左,使P棒减速。而Q棒受安培力向右,使Q棒加速。当两棒速度相等时,感应电流为零,安培力F安=BIl=0,加速度a=0,两棒以后以共同的速度匀速运动。此时的速度v2即为棒的最大速度,而v1则为P棒的最大速度。

学生一边分析,教师一边在黑板上画示意图。见图。

师:分析得很好。进一步确定一下v2。可用什么物理规律求出?

指点:变力作用下,P棒做a减小的减速运动,Q棒做a减小的加速运动而两者同速时,a=0,F安=BIL=0,I=0→E=Blvp-BlvQ=O→vQ=vP=v2。,但v2仍无法像例1那样求出。如果变上述的隔离法分析为整体法分析又怎样?即将两金属棒组成的系统为对象,分析它们所受的外力有什么特点吗?

(学生思考后,可以告诉学生,在此过程中,两杆所受的安培力的冲量是等值反向的,因此两棒动量变化是等值反向的,则系统总动量守恒——这种讲法比直接说安培力合力为零,系统P守恒学生更易于接受。)

板书:P、Q两金属棒总动量守恒,则有②

得即为Q棒最大速度。

提高要求:你能定性画出P、Q两棒在水平轨道上运动的v-t图像吗?试一试。

(学生考虑后,让一位学生画在黑板上。见图。)

师:转过第二问。第二问涉及能量问题,需要用能量观点考虑。

问题1:全过程释放出的电能,能否用W=UIt计算出来?或用W=I2Rt计算?

生:不知道时间t,而且U、I均为变化的,R也不知,故条件

不足,无法计算。

师:无法直接计算电能就转换思维,间接用能量转化守恒关系计图算。考虑一下全过程中什么能减小,什么能增加?(学生不可能都准确地说出来,要引导。)

答:系统的机械能减少,电能增加。

师:当两金属棒都以v2匀速运动后,系统的机械能不再减少,也就不再释放电能。故系统全过程中损失的全部机械能=释放的最大电能。列式为:

类比:本题中的两棒运动的过程,类似于两同向运动物体的追赶问题:当两棒同速时二者间的距离最近,由导轨、两棒组成的闭合回路的面积最小,磁通量φ最小。而“同速”以后回路面积不再改变、U不变,故E=0,I=0,F安=0,这是从“磁通量变化”角度来看的。

另外,上述过程又类似于完全非弹性碰撞,系统动量守恒,而机械能损失的最多,故释放的电能最多。

师:若题目条件改为不等宽的导轨,如图所示,且已知导轨宽为l1=2l2,金属棒电阻r1=r2=r,则最终两棒的运动关系仍是同速吗?(设宽、窄两部分轨道都足够长)

(有的学生会用例3的结论套用到这里来仍然认为系统动

量守恒,从而得出错误的结论。)

提示:在全过程中,两棒的动量变化仍等值反向吗?

生:安培力为F安=BIl,因两杆不一样长,故两杆所受的安培力不一样大,其冲量不相等,所以动量改变不相等。系统动量不守恒。

师:仍然从基本方法出发,分析两棒各自做什么运动:P棒做a减小的减速运动,Q棒做a减小的加速运动。当vP=vQ时,电路中两个电动势之和为E=EP-EQ=Bl1vP-Bl2vQ≠0,故回路中仍然有逆时针的电流,各棒在安培力作用下继续运动,P棒继续减速,Q棒继续加速,最终当E=Bl1vP-Bl2vQ=0时,I=0,F安=0,两棒才做匀速运动。

因此,本题应满足的物理条件和规律是:

最终匀速运动的条件:E=0

即:Bl1vP-Bl2vQ=0①

得②

运动过程中的动量变化规律为:

P棒:BIl1Δt=m1(v1-vp)③

Q棒:BIl2Δt=m2vQ-0④

③/④得:⑤

由②、⑤式代入数字得:,。

师:请同学们试画出两棒在水平轨道上运动的v-t图像。(定性)

师:从本题的分析可见,遇到物理问题应该养成仔细审清题目给的条件,分析物理过程,正确选用物理规律的习惯,而不要轻率地套用某些题目的某些结论。

(二)用能量观点分析电磁感应问题

【例题31】有一种磁性加热装置,其关键部分由焊接在两个等大的金属圆环上的n根(n较大)间距相等的平行金属条组成,呈“鼠笼”状,如图所示。每根金属条的长度为l、电阻为R,金属环的直径为D,电阻不计。图中的虚线所示的空间范围内存在着磁感强度为B的匀强磁场,磁场的宽度恰好等于“鼠笼”金属条的间距,当金属笼以角速度ω绕通过两圆环的圆心的轴OO′旋转时,始终有一根金属条在垂直切割磁感线。“鼠笼”的转动由一台电动机带动,这套设备的效率为η,求:电动机输出的机械功率。

师:首先要弄懂本题所述装置的用途,满足该用途所利用的物理原理。

本装置是用来加热的,而“热”来源于哪儿?

生:“鼠笼”转动时,总有一根金属条切割磁感线而产生感应电动势、感应电流,感应电流通过整个“鼠笼”的金属条时产生电热。师:对。这是利用电磁感应产生的感应电流的热效应来加热的装置。从能量转化的观点来看,“鼠笼”转动中,是将什么能转化为什么能?

生:机械能转化为电能,电能又进一步转化为内能。

师:“鼠笼”的机械能从何而来?

生:电动机传输给“鼠笼”的。

师:电动机输出的机械能全部传输给“鼠笼”吗?

生:不是全部,而是按效率η传输的。

师:对。以上几个关键问题审清了,即可着手解题。请同学们自己列出基本关系式,进而求解。(并请一位学生到黑板上写出解题过程。)

每一根金属条“切割”产生的感应电动势为①

整个“鼠笼”产生的电热功率为②

每根做“切割”运动的金属条就相当于电源,故内阻r=R,其余n-1根金属条并在两圆环之间相当于并联着的外电阻:,所以③

此装置的传输效率为η=P热/P机④

由①②③④可得电动机的输出功率为。

说明:本题计算电功率p电时用“鼠笼”克服安培力做多少功,就有多少机械能转化为电能考虑,也可得到正确结论。具体解法为:

η=P热/P机④

由①②③④也可得电动机的输出功率为。

前一种解法注重能量转化的结果,后一种解法更注重能量转化的方式——克服安培力做功,不管哪种方法,都是建立在对物理过程的分析基础上。

能量转化守恒定律贯穿在整个物理学中,电磁感应现象也不例外,因此,用能量观点来考虑问题,有时可使求解过程很简捷。

(三)电磁感应中的图像

图像问题是同学们的薄弱环节,因而也是高考中的热点。下面见一例。

【例题32】如图所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无磁场区进入匀强磁场区,然后出来。若取逆时针方向为电流正方向,那么右图中的哪一个图线能正确地表示电路中电流与时间的函数关系?

师:线圈“进入磁场”的过程中,穿过线圈的磁通量φ怎样变化?产生的感应电流i用什么方法判断?是什么方向?

生:磁通量φ增加。用楞次定律(或用右手定则判断“切割”产生的i)可判知感应电流i为逆时针流向,即本题规定的正方向。

师:线圈“离开磁场”的过程中又怎样?

生:φ↓→i为顺时针流向即负向。(分析到此,可排除C图、D图)

师:进一步分析,“进入磁场”、“离开磁场”的过程中,感应电流i的大小随时间怎样变化?

生:这两个过程中均为只有线框的一条边在磁场中做“切割”运动,且为匀速切割,则可知感应电动势E+Blv为恒定值,感应电流I=E/R也是恒定数值的量。可排除A图。肯定是B。

师:大家还可变换条件去分析,若导体线框不是矩形,而是一个三角形的,如图,正确的图又该是哪个?

指点:若为三角形线框,则需考虑按有效切割长度l来确定感应电动势和感应电流(如图所示)

进入磁场过程中,有效切割长度l均匀增大,离开磁场过程中有效切割长度l均匀减小,故i先正向均匀增大,后来i反向,均匀减小,正确选项为A图。

说明:电磁感应问题中的图像问题,回路中的感应电动势e、感应电流i,磁感强度B的方向,在相应的e-t图、i-t图、B-t图中是用正、负值来反映的。而分析回路中的感应电动势e、感应电流i的大小及其变化规律,仍然要根据法拉第电磁感应定律、闭合电路欧姆定律来分析。

文章来源://m.jab88.com/j/98170.html

更多

猜你喜欢

更多

最新更新

更多