第4章锐角三角函数
4.1正弦和余弦
第1课时正弦及30°角的正弦值
1.通过具体实例,分析、比较后,知道“当直角三角形的锐角固定时,它的对边与斜边的比值也固定”的事实.
2.了解正弦的概念,知道特殊角30°的正弦值,并能根据正弦的相关概念进行计算.(重点)
阅读教材P109~111,完成下列内容:
(一)知识探究
1.在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个________,与直角三角形的大小________.
2.在直角三角形中,锐角α的对边与斜边的比叫作角α的正弦,记作sinα,即sinα=________.
3.sin30°=________.
(二)自学反馈
1.如图,在△ABC中,∠C=90°,AB=10,BC=6,则sinA的值是()
A.35B.45
C.53D.54
2.在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=________.
活动1小组讨论
例如图,在Rt△ABC中,∠C=90°,BC=3,AB=5.
(1)求sinA的值;
(2)求sinB的值.
解:(1)∠A的对边BC=3,斜边AB=5,于是sinA=BCAB=35.
(2)∠B的对边AC,根据勾股定理,得AC2=AB2-BC2=52-32=16.于是AC=4.
因此sinB=ACAB=45.
在直角三角形中,求一个角的正弦值只需要用该角所对的直角边比斜边,如果所对直角边或斜边长未知时,可首先通过勾股定理求解出长度.
易错提示:求一个角的正弦值必须在直角三角形中求解.
活动2跟踪训练
1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值()
A.扩大为原来的2倍B.缩小为原来的12倍
C.扩大为原来的4倍D.不变
2.在△ABC中,∠C=90°,BC∶CA=3∶4,那么sinA等于()
A.34B.43C.35D.45
3.如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=________.
4.在Rt△ABC中,若∠C=90°,BC=4,sinB=35,则AB=________.
5.在Rt△ABC中,∠C=90°,AC=35AB,求sinB的值.
活动3课堂小结
学生试述:今天学到了什么?
【预习导学】
知识探究
1.常数无关2.角α的对边斜边3.12
自学反馈
1.A2.2
【合作探究】
活动2跟踪训练
1.D2.C3.454.55.∵Rt△ABC中,∠C=90°,AC=35AB,∴sinB=ACAB=35.
28.1.2余弦、正切函数学案
一、新课导入
1.课题导入
问题:在Rt△ABC中,当锐角A确定时,∠A的对边与斜边的比随之确定.∠A的邻边与斜边的比呢?∠A的对边与邻边的比呢?这节课我们学习余弦和正切.(板书课题)
2.学习目标
(1)了解锐角三角函数的概念,理解余弦、正切的概念.
(2)能依据正弦、余弦、正切的定义进行相关的计算.
3.学习重、难点
重点:余弦、正切的概念.
难点:余弦、正切的求值.
二、分层学习
第一层次学习
1.自学指导
(1)自学内容:教材P64探究.
(2)自学时间:8分钟.
(3)自学方法:完成探究提纲.
(4)探究提纲:
①∠A是任一个确定的锐角时,是一个固定值,与三角形的大小无关,那么也是一个固定值吗?呢?
②在Rt△ABC中,∠C=90°,叫做∠A的余弦,记作cosA,即cosA=.
③在Rt△ABC中,∠C=90°,叫做∠A的正切,记作tanA,即tanA=.
④锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
2.自学:学生可结合自学指导进行自学.
3.助学
(1)师助生:
①明了学情:明了学生是否能弄清正弦、余弦、正切分别表示直角三角形中哪两条边的比.
②差异指导:结合图形理解三个三角函数的意义.
(2)生助生:小组相互交流、研讨.
4.强化:余弦、正切的求值.
第二层次学习
1.自学指导
(1)自学内容:教材P65例2.
(2)自学时间:5分钟.
(3)自学方法:完成自学参考提纲.
④在Rt△ABC中,∠C=90°,如果各边长都扩大到原来的2倍,那么∠A的正弦、余弦和正切值有变化吗?说明理由
∠A的正弦、余弦和正切值没有变化.理由:锐角三角函数值与三角形大小无关.
2.自学:学生可结合自学指导进行自学.
3.助学
(1)师助生:
①明了学情:明了学生是否能弄清正弦、余弦、正切分别表示直角三角形中哪两条边的比.
②差异指导:根据学情分类指导.
(2)生助生:小组内相互交流、研讨.
4.强化:
(1)已知直角三角形任意两边长,求其锐角的三角函数值问题:可先由勾股定理求出第三条边长,再按三角函数定义求值.
(2)点3名学生板演自学参考提纲第②、③题,点1名学生口答自学参考提纲第④题,并点评.
三、评价
1.学生自我评价:这节课你学到了哪些知识?还有什么问题未解决?
2.教师对学生的评价:
(1)表现性评价:从学生学习、交流协作以及回答问题等方面进行评价.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思).
本节课的引入采用探究的形式.首先引导学生认知特殊角的余弦、正切,进而引出锐角三角函数的定义.通过作图、猜想论证,配合由浅入深的练习,使学生不但知道对任意给定锐角,它的余弦、正切值是固定值,而且加以论证并会运用.在教学过程中逐步培养学生观察、比较、分析、概括的思维能力,提高学生对几何图形美的认识,感受三角函数的实际应用价值
作业评价
一、基础巩固(70分)
1.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则下列等式中不正确的是(D)
A.a=c×sinA
B.b=a×tanB
C.b=c×sinB
D.c=
2.(10分)如图,将∠AOB放置在5×5的正方形网格中,则cos∠AOB的值是(C)(C)
3.(30分)分别求出下列各图中的∠A、∠B的余弦和正切值.
4.(10分)在Rt△ABC中,∠C=90°,BC=5,cosA=,求sinA,tanB的值.
解:sinA=,tanB=.
5.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,sinB=.求cosD,tanD的值.
二、综合应用(20分)
6.(10分)如图,在等腰△ABC中,AB=AC=5,BC=6.求sinB,cosB,tanB的值.
解:作AD⊥BC于D.∵AB=AC=5,∴BD=DC=BC=3.
∴在Rt△ABD中,AD==4,∴sinB=,cosB=,tanB=.
7.(10分)如图,点P在∠α的边OA上,且P点坐标为(,5).求sinα,cosα和tanα的值.
解:sinα=,cosα=,tanα=.
三、拓展延伸(10分)
8.(10分)在Rt△ABC中,∠C=90°,请利用锐角三角函数的定义及勾股定理探索∠A的正弦、余弦之间的关系.
一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“九年级数学下册7.2正弦、余弦教案学案(共5套苏科版)”,相信能对大家有所帮助。
7.2正弦、余弦
备课组成员主备审核
教学目标1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、能用函数的观点理解正弦、余弦和正切。
重难点1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、在直角三角形中求出某个锐角的正弦和余弦值。
学习过程旁注与纠错
教学过程:
一、情景创设
1、问题1:如图,小明沿着某斜坡向上行
走了13m后,他的相对位置升高了5m,如果
他沿着该斜坡行走了20m,那么他的相对位
置升高了多少?行走了am呢?
2、问题2:在上述问题中,他在水平方向又分别前进了多远?
二、探索活动
1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________;它的邻边与斜边的比值___________。
(根据是______________________________。)
2、正弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的对边a与斜边c的比
叫做∠A的______,记作________,即:sinA=________=________.
3、余弦的定义
如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与
斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。
(你能写出∠B的正弦、余弦的表达式吗?)试试看____________________.
4、牛刀小试
根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。
5、思考与探索
怎样计算任意一个锐角的正弦值和余弦值呢?
(1)如书P42图7—8,当小明沿着15°的斜坡行走了1个单位长度到P点时,他的位置在竖直方向升高了约0.26个单位长度,在水平方向前进了约0.97个单位长度。
根据正弦、余弦的定义,可以知道:sin15°=0.26,cos15°=0.97
(2)你能根据图形求出sin30°、cos30°吗?sin75°、cos75°呢?
sin30°=_____,cos30°=_____.sin75°=_____,cos75°=_____.
(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。
(4)观察与思考:
从sin15°,sin30°,sin75°的值,你们得到什么结论?
从cos15°,cos30°,cos75°的值,你们得到什么结论?
当锐角α越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?
6、锐角A的正弦、余弦和正切都是∠A的__________。
三、随堂练习
1、如图,在Rt△ABC中,∠C=90°,
AC=12,BC=5,则sinA=_____,
cosA=_____,sinB=_____,cosB=_____。
2、在Rt△ABC中,∠C=90°,AC=1,BC=,
则sinA=_____,cosB=_______,cosA=________,sinB=_______.
3、如图,在Rt△ABC中,∠C=90°,
BC=9a,AC=12a,AB=15a,tanB=________,
cosB=______,sinB=_______
四、请你谈谈本节课有哪些收获?
五、作业书本P431、2
六、拓宽和提高
已知在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且a:b:c=5:12:13,试求最小角的三角函数值。
文章来源:http://m.jab88.com/j/90149.html
更多