88教案网

高考物理电磁感应与电路的分析冲刺专题复习

一名优秀的教师就要对每一课堂负责,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师能够井然有序的进行教学。高中教案的内容要写些什么更好呢?下面是小编为大家整理的“高考物理电磁感应与电路的分析冲刺专题复习”,欢迎您阅读和收藏,并分享给身边的朋友!

20xx届高考黄冈中学物理冲刺讲解、练习题、预测题09:第5专题电磁感应与电路的分析(1)
知识网络
考点预测
本专题包含以“电路”为核心的三大主要内容:一是以闭合电路欧姆定律为核心的直流电路的相关知识,在高考中有时以选择题的形式出现,如2009年全国理综卷Ⅱ第17题、天津理综卷第3题、江苏物理卷第5题,2007年上海物理卷第3(A)题、宁夏理综卷第19题、重庆理综卷第15题等;二是以交变电流的产生特点以及以变压器为核心的交变电流的知识,在高考中常以选择题的形式出现,如2009年四川理综卷第17题、广东物理卷第9题,2008年北京理综卷第18题、四川理综卷第16题、宁夏理综卷第19题等;三是以楞次定律及法拉第电磁感应定律为核心的电磁感应的相关知识,本部分知识是高考中的重要考点,既有可能以选择题的形式出现,如2009年重庆理综卷第20题、天津理综卷第4题,2008年全国理综卷Ⅰ第20题、全国理综卷Ⅱ第21题、江苏物理卷第8题等,也有可能以计算题的形式出现,如2009年全国理综卷Ⅱ第24题、四川理综卷第24题、北京理综卷第23题,2008年全国理综卷Ⅱ第24题、北京理综卷第22题、江苏物理卷第15题等.
在20xx年高考中依然会出现上述相关知识的各种题型,特别是电磁感应与动力学、功能问题的综合应成为复习的重点.
要点归纳
一、电路分析与计算
1.部分电路总电阻的变化规律
(1)无论是串联电路还是并联电路,其总电阻都会随其中任一电阻的增大(减小)而增大(减小).
(2)分压电路的电阻.如图5-1所示,在由R1和R2组成的分压电路中,当R1串联部分的阻值RAP增大时,总电阻RAB增大;当RAP减小时,总电阻RAB减小.
图5-1
(3)双臂环路的阻值.如图5-2所示,在由R1、R2和R组成的双臂环路中,当AR1P支路的阻值和AR2P支路的阻值相等时,RAB最大;当P滑到某端,使两支路的阻值相差最大时,RAB最小.
图5-2
2.复杂电路的简化
对复杂电路进行简化,画出其等效电路图是正确识别电路、分析电路的重要手段.常用的方法主要有以下两种.
(1)分流法(电流追踪法):根据假设的电流方向,分析电路的分支、汇合情况,从而确定元件是串联还是并联.
(2)等势法:从电源的正极出发,凡是用一根无电阻的导线把两点(或几点)连接在一起的,这两点(或几点)的电势就相等,在画等效电路图时可以将这些点画成一点(或画在一起).等电势的另一种情况是,电路中的某一段电路虽然有电阻(且非无限大),但无电流通过,则与该段电路相连接的各点的电势也相等.
若电路中有且只有一处接地线,则它只影响电路中各点的电势值,不影响电路的结构;若电路中有两处或两处以上接地线,则它除了影响电路中各点的电势外,还会改变电路的结构,各接地点可认为是接在同一点上.另外,在一般情况下,接电流表处可视为短路,接电压表、电容器处可视为断路.
3.欧姆定律
(1)部分电路欧姆定律:公式I=UR.
注意:电路的电阻R并不由U、I决定.
(2)闭合电路欧姆定律:公式I=ER+r或E=U+Ir,其中U=IR为路端电压.
路端电压U和外电阻R、干路电流I之间的关系:R增大,U增大,当R=∞时(断路),I=0,U=E;R减小,U减小,当R=0时(短路),I=Imax=Er,U=0.
(3)在闭合电路中,任一电阻Ri的阻值增大(电路中其余电阻不变),必将引起通过该电阻的电流Ii的减小以及该电阻两端的电压Ui的增大,反之亦然;任一电阻Ri的阻值增大,必将引起与之并联的支路中电流I并的增大,与之串联的各电阻两端电压U串的减小,反之亦然.
4.几类常见的功率问题
(1)与电源有关的功率和电源的效率
①电源的功率P:电源将其他形式的能转化为电能的功率,也称为电源的总功率.计算式为P=EI(普遍适用)或P=E2R+r=I2(R+r)(只适用于外电路为纯电阻的电路).
②电源内阻消耗的功率P内:电源内阻的热功率,也称为电源的损耗功率.计算式为P内=I2r.
③电源的输出功率P出:是指外电路上消耗的功率.计算式为P出=U外I(普遍适用)或P出=I2R=E2R(R+r)2(只适用于外电路为纯电阻的电路).电源的输出功率曲线如图5-3所示.当R→0时,输出功率P→0;当R→∞时,输出功率P→0;当R=r时,Pmax=E24r;当R<r时,R增大,输出功率增大;当R>r时,R增大,输出功率反而减小.
图5-3
对于E、r一定的电源,外电阻R一定时,输出功率只有唯一的值;输出功率P一定时,一般情况下外电阻有两个值R1、R2与之对应,即R1<r、R2>r,可以推导出R1、R2的关系为R1R2=r.
④功率分配关系:P=P出+P内,即EI=UI+I2r.
闭合电路中的功率分配关系反映了闭合电路中能量的转化和守恒关系,即电源提供的电能一部分消耗在内阻上,另一部分输出给外电路,并在外电路上转化为其他形式的能.能量守恒的表达式为EIt=UIt+I2rt(普遍适用)或EIt=I2Rt+I2rt(只适用于外电路为纯电阻的电路).
⑤电源的效率:η=UIEI×100%=UE×100%
对纯电阻电路有:
η=I2RI2(R+r)×100%=RR+r×100%=11+rR×100%
因此当R增大时,效率η提高.
(2)用电器的额定功率和实际功率
用电器在额定电压下消耗的电功率叫额定功率,即P额=U额I额.用电器在实际电压下消耗的电功率叫实际功率,即P实=U实I实.实际功率不一定等于额定功率.
(3)用电器的功率与电流的发热功率
用电器的电功率P=UI,电流的发热功率P热=I2R.对于纯电阻电路,两者相等;对于非纯电阻电路,电功率大于热功率.
(4)输电线路上的损耗功率和输电功率
输电功率P输=U输I,损耗功率P线=I2R线=ΔUI.
5.交变电流的四值、变压器的工作原理及远距离输电
(1)交变电流的四值
交变电流的四值即最大值、有效值、平均值和瞬时值.交变电流在一个周期内能达到的最大数值称为最大值或峰值,在研究电容器是否被击穿时,要用到最大值;有效值是根据电流的热效应来定义的,在计算电路中的能量转换如电热、电功、电功率或确定交流电压表、交流电流表的读数和保险丝的熔断电流时,要用有效值;在计算电荷量时,要用平均值;交变电流在某一时刻的数值称为瞬时值,不同时刻,瞬时值的大小和方向一般不同,计算电路中与某一时刻有关的问题时要用交变电流的瞬时值.
(2)变压器电路的分析与计算
①正确理解理想变压器原、副线圈的等效电路,尤其是副线圈的电路,它是解决变压器电路的关键.
②正确理解电压变比、电流变比公式,尤其是电流变比公式.电流变比对于多个副线圈不能使用,这时求电流关系只能根据能量守恒来求,即P输入=P输出.
③正确理解变压器中的因果关系:理想变压器的输入电压决定了输出电压;输出功率决定了输入功率,即只有有功率输出,才会有功率输入;输出电流决定了输入电流.
④理想变压器只能改变交流的电流和电压,却无法改变其功率和频率.
⑤解决远距离输电问题时,要注意所用公式中各量的物理意义,画好输电线路的示意图,找出相应的物理量.
二、电磁感应的规律
1.感应电流的产生条件及方向的判断
(1)产生感应电流的条件(两种说法)
①闭合回路中的一部分导体做切割磁感线运动.
②穿过闭合回路的磁通量发生变化.
(2)感应电流方向的判断
①右手定则:当导体做切割磁感线运动时,用右手定则判断导体中电流的方向比较方便.
注意右手定则与左手定则的区别,抓住“因果关系”:“因动而电”,用右手定则;“因电而动”,用左手定则.还可以用“左因右果”或“左力右电”来记忆,即电流是原因、受力运动是结果的用左手定则;反之,运动是原因、产生电流是结果的用右手定则.
②楞次定律(两种表述方式)
表述一:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化.
表述二:感应电流的作用效果总是要反抗引起感应电流的原因.
楞次定律是判断感应电流方向的一般规律.当磁通量的变化引起感应电流时,可用“楞次定律表述一”来判断其方向.
应用楞次定律的关键是正确区分涉及的两个磁场:一是引起感应电流的磁场;二是感应电流产生的磁场.理解两个磁场的阻碍关系——“阻碍”的是原磁场磁通量的变化.从能量转化的角度看,发生电磁感应现象的过程就是其他形式的能转化为电能的过程,而这一过程总要伴随外力克服安培力做功.
“阻碍”的含义可推广为三种表达方式:阻碍原磁通量的变化(增反减同);阻碍导体的相对运动(来拒去留);阻碍原电流的变化(自感现象).
2.正确理解法拉第电磁感应定律
(1)法拉第电磁感应定律
①电路中感应电动势的大小跟穿过这一回路的磁通量的变化率成正比,即E=nΔΦΔt.此公式计算的是Δt时间内的平均感应电动势.
②当导体做切割磁感线运动时,其感应电动势的计算式为:E=BLvsinθ,式中的θ为B与v正方向的夹角.若v是瞬时速度,则算出的是瞬时感应电动势;若v为平均速度,则算出的是平均感应电动势.
(2)磁通量、磁通量的变化量、磁通量的变化率的区别
磁通量磁通量的变化量磁通量的变化率
物理意义某时刻穿过某个面的磁感线的条数某段时间内穿过某个面的磁通量变化穿过某个面的磁通量变化的快慢

小Φ=BSn,其中Sn是与B垂直的面的面积ΔΦ=Φ2-Φ1
ΔΦ=BΔS
ΔΦ=SΔBΔΦΔt=BΔSΔt
或ΔΦΔt=SΔBΔt


意若穿过某个面有方向相反的磁场,则不能直接用Φ=BS求解,应考虑相反方向的磁通量抵消后所剩余的磁通量开始时和转过180°时平面都与磁场垂直,穿过平面的磁通量是一正一负,ΔΦ=2BS,而不是零既不表示磁通量的大小,也不表示变化的多少.实际上,它就是单匝线圈上产生的电动势,即E=ΔΦΔt


注对在匀强磁场中绕处于线圈平面内且垂直于磁场方向的轴匀速转动的线圈:
①线圈平面与磁感线平行时,Φ=0,但ΔΦΔt最大
②线圈平面与磁感线垂直时,Φ最大,但ΔΦΔt=0
Φ大或ΔΦ大,都不能保证ΔΦΔt就大;反过来,ΔΦΔt大时,Φ和ΔΦ也不一定大.这类似于运动学中的v、Δv及ΔvΔt三者之间的关系Jab88.COM

(3)另外两种常见的感应电动势
①长为L的导体棒沿垂直于磁场的方向放在磁感应强度为B的匀强磁场中,且以ω匀速转动,导体棒产生的感应电动势为:
当以中点为转轴时,E=0(以中点平分的两段导体产生的感应电动势的代数和为零);
当以端点为转轴时,E=12BωL2(平均速度取中点位置的线速度,即12ωL);
当以任意点为转轴时,E=12Bω(L12-L22)(不同的两段导体产生的感应电动势的代数和).
②面积为S的矩形线圈在磁感应强度为B的匀强磁场中以角速度ω绕线圈平面内的垂直于磁场方向的轴匀速转动,矩形线圈产生的感应电动势为:
线圈平面与磁感线平行时,E=BSω;
线圈平面与磁感线垂直时,E=0;
线圈平面与磁感线的夹角为θ时,E=BSωcosθ.
(3)理解法拉第电磁感应定律的本质
法拉第电磁感应定律是能的转化和守恒定律在电磁学中的一个具体应用,它遵循能量守恒定律.闭合电路中电能的产生必须以消耗一定量的其他形式的能量为代价,譬如:线圈在磁场中转动产生电磁感应现象,实质上是机械能转化为电能的过程;变压器是利用电磁感应现象实现了电能的转移.运用能量的观点来解题是解决物理问题的重要方法,也是解决电磁感应问题的有效途径.
三、电磁感应与电路的综合应用
电磁感应中由于导体切割磁感线产生了感应电动势,因此导体相当于电源.整个回路便形成了闭合电路,由电学知识可求出各部分的电学量,而导体因有电流而受到安培力的作用,从而可以与运动学、牛顿运动定律、动量定理、能量守恒等知识相联系.电磁感应与电路的综合应用是高考中非常重要的考点.
热点、重点、难点
一、电路问题
1.电路的动态分析
这类问题是根据欧姆定律及串联和并联电路的性质,分析电路中因某一电阻变化而引起的整个电路中各部分电学量的变化情况,它涉及欧姆定律、串联和并联电路的特点等重要的电学知识,还可考查学生是否掌握科学分析问题的方法——动态电路局部的变化可以引起整体的变化,而整体的变化决定了局部的变化,因此它是高考的重点与热点之一.常用的解决方法如下.
(1)程序法:基本思路是“部分→整体→部分”.先从电路中阻值变化的部分入手,由串联和并联规律判断出R总的变化情况;再由欧姆定律判断I总和U端的变化情况;最后再由部分电路欧姆定律判定各部分电学量的变化情况.即:
R局增大减小→R总增大减小→I总减小增大→U端增大减小I分U分
(2)直观法:直接应用部分电路中R、I、U的关系中的两个结论.
①任一电阻R的阻值增大,必引起该电阻中电流I的减小和该电阻两端电压U的增大,即:
R↑→I↓U↑
②任一电阻R的阻值增大,必将引起与之并联的支路中电流I并的增大和与之串联的各电阻两端的电压U串的减小,即:R↑→I并↑U串↓
(3)极端法:对于因滑动变阻器的滑片移动引起电路变化的问题,可将变阻器的滑片分别滑至两边顶端讨论.
(4)特殊值法:对于某些双臂环路问题,可以代入特殊值去判定,从而找出结论.
●例1在如图5-4所示的电路中,当变阻器R3的滑片P向b端移动时()
图5-4
A.电压表的示数增大,电流表的示数减小
B.电压表的示数减小,电流表的示数增大
C.电压表和电流表的示数都增大
D.电压表和电流表的示数都减小
【解析】方法一(程序法)当滑片P向b端移动时,R3接入电路的阻值减小,总电阻R将减小,干路电流增大,路端电压减小,电压表的示数减小,R1和内阻两端的电压增大,R2、R3并联部分两端的电压减小,通过R2的电流减小,但干路电流增大,因此通过R3的电流增大,电流表的示数增大,故选项B正确.
方法二(极端法)当滑片P移到b端时R3被短路,此时电流表的示数最大,总电阻最小,路端电压最小,故选项B正确.
方法三(直观法)当滑片P向b移动时,R3接入电路的电阻减小,由部分电路中R、I、U关系中的两个结论可知,该电阻中的电流增大,电流表的示数增大,总电阻减小,路端电压减小,故选项B正确.
[答案]B
【点评】在进行电路的动态分析时,要灵活运用几种常用的解决此类问题的方法.
2.电路中几种功率与电源效率问题
(1)电源的总功率:P总=EI.
(2)电源的输出功率:P出=UI.
(3)电源内部的发热功率:P内=I2r.
(4)电源的效率:η=UE=RR+r.
(5)电源的最大功率:Pmax=E2r,此时η→0,严重短路.
(6)当R=r时,输出功率最大,P出max=E24r,此时η=50%.
●例2如图5-5所示,E=8V,r=2Ω,R1=8Ω,R2为变阻器接入电路中的有效阻值,问:
图5-5
(1)要使变阻器获得的电功率最大,则R2的取值应是多大?这时R2的功率是多大?
(2)要使R1得到的电功率最大,则R2的取值应是多大?R1的最大功率是多大?这时电源的效率是多大?
(3)调节R2的阻值,能否使电源以最大的功率E24r输出?为什么?
【解析】(1)将R1和电源(E,r)等效为一新电源,则:
新电源的电动势E′=E=8V
内阻r′=r+R1=10Ω,且为定值
利用电源的输出功率随外电阻变化的结论知,当R2=r′=10Ω时,R2有最大功率,即:
P2max=E′24r′=824×10W=1.6W.
(2)因R1是定值电阻,所以流过R1的电流越大,R1的功率就越大.当R2=0时,电路中有最大电流,即:
Imax=ER1+r=0.8A
R1有最大功率P1max=Imax2R1=5.12W
这时电源的效率η=R1R1+r×100%=80%.
(3)不可能.因为即使R2=0,外电阻R1也大于r,不可能有E24r的最大输出功率.本题中,当R2=0时,外电路得到的功率最大.
[答案](1)10Ω1.6W(2)05.12W80%
(3)不可能,理由略
【点评】本题主要考查学生对电源的输出功率随外电阻变化的规律的理解和运用.注意:求R1的最大功率时,不能把R2等效为电源的内阻,R1的最大功率不等于E24(R2+r),因为R1为定值电阻.故求解最大功率时要注意固定电阻与可变电阻的区别.另外,也要区分电动势E和内阻r均不变与r变化时的差异.
3.含容电路的分析与计算方法
在直流电路中,当电容器充放电时,电路里有充放电电流,一旦电路达到稳定状态,电容器在电路中就相当于一个阻值无限大的储能元件.对于直流电,电容器相当于断路,简化电路时可去掉它,简化后求电容器所带的电荷量时,可将其接在相应的位置上;而对于交变电流,电容器相当于通路.在分析和计算含有电容器的直流电路时,需注意以下几点:
(1)电路稳定后,由于电容器所在支路无电流通过,所以此支路中的电阻上无电压降,因此电容器两极间的电压就等于该支路两端的电压;
(2)当电容器和电阻并联后接入电路时,电容器两端的电压和与其并联的电阻两端的电压相等;
(3)电路的电流、电压变化时,将会引起电容器的充放电.
●例3在如图5-6所示的电路中,电容器C1=4.0μF,C2=3.0μF,电阻R1=8.0Ω,R2=6.0Ω.闭合开关S1,给电容器C1、C2充电,电路达到稳定后,再闭合开关S2,电容器C1的极板上所带电荷量的减少量与电容器C2的极板上所带电荷量的减少量之比是16∶15.开关S2闭合时,电流表的示数为1.0A.求电源的电动势和内阻.
图5-6
【解析】只闭合开关S1时,电容器C1的电荷量Q1=C1E,C2的电荷量Q2=C2E,式中E为电源的电动势
再闭合开关S2后,电流表的示数为I,则C1的电荷量Q1′=C1IR1,C2的电荷量Q2′=C2IR2
根据题意有:Q1-Q1′Q2-Q2′=C1(E-IR1)C2(E-IR2)=1615
由闭合电路的欧姆定律,有:E=I(R1+R2+r)
联立解得:E=16V,r=2.0Ω.
[答案]16V2.0Ω
【点评】本题是一个典型的含电容器的直流电路问题,考查了学生对等效电路和电容器的充电、放电电路的理解及综合分析能力.
4.交变电流与交变电路问题
纵观近几年的高考试题,本部分内容出现在选择题部分的概率较高,集中考查含变压器电路、交变电流的产生及变化规律、最大值与有效值.如2009年高考四川理综卷第17题、山东理综卷第17题、福建理综卷第16题等.
●例4一气体放电管两电极间的电压超过5003V时就会因放电而发光.若在它发光的情况下逐渐降低电压,则要降到5002V时才会熄灭.放电管的两电极不分正负.现有一正弦交流电源,其输出电压的峰值为1000V,频率为50Hz.若用它给上述放电管供电,则在一小时内放电管实际发光的时间为()
A.10minB.25min
C.30minD.35min
【解析】由题意知,该交变电流的u-t图象如图所示
电压的表达式为:u=1000sin100πtV
综合图象可知:
在0~T2内,T6~3T8时间段放电管能通电发光,通电时间为:Δti=(3T8-T6)=1240s
故一小时内放电管实际发光的时间为:
t=Δti×tT2=1500s=25min.
[答案]B
【点评】①交变电流的热效应(如熔断、加热等)取决于有效值,而对电容、空气导电的击穿则取决于瞬时值.
②分析正弦交变电流的特性时需要熟练地运用数学函数与图象,仔细周密地分析正弦函数中角度与变量时间的关系.
★同类拓展1如图5-7甲所示,理想变压器原、副线圈的匝数比为10∶1,R1=20Ω,R2=30Ω,C为电容器.已知通过R1的正弦交变电流如图5-7乙所示,则[2009年高考四川理综卷]()

甲乙
图5-7
A.交变电流的频率为0.02Hz
B.原线圈输入电压的最大值为2002V
C.电阻R2的电功率约为6.67W
D.通过R3的电流始终为零
【解析】根据变压器原理可知,原、副线圈中电流的周期、频率相同,T=0.020s,f=50Hz,A错误.
由乙图可知,通过R1的电流最大值Im=1A,根据欧姆定律可知,其最大电压Um=20V,再根据原、副线圈的电压之比等于匝数之比可知,原线圈的输入电压的最大值为200V,B错误.
因为电容器有通交流、隔直流的作用,故有电流通过R3和电容器,D错误.
根据正弦交变电流的峰值与有效值的关系以及并联电路的特点可知I2=ImR12R2,U2=Um2,R2上的电功率P2=U2I2=203W,C正确.
[答案]C
●例5某种发电机的内部结构平面图如图5-8甲所示,永磁体的内侧为圆柱面形,磁极之间上下各有圆心角θ=30°的扇形无磁场区域,其他区域两极与圆柱形铁芯之间的窄缝间形成B=0.5T的磁场.在窄缝里有一个如图5-8乙所示的U形导线框abcd.已知线框ab和cd边的长度均为L1=0.3m,bc边的长度L2=0.4m,线框以ω=500π3rad/s的角速度顺时针匀速转动.
图5-8甲
图5-8乙
(1)从bc边转到图甲所示的H侧磁场边缘时开始计时,求t=2×10-3s时刻线框中感应电动势的大小;画出a、d两点的电势差Uad随时间t变化的关系图象.(感应电动势的结果保留两位有效数字,Uad的正值表示Ua>Ud)
(2)求感应电动势的有效值.
【解析】(1)由题意知线框中产生感应电动势的周期T=2πω=1.2×10-2s
t=2×10-3s时刻bc边还在磁场中,故感应电动势为:
ε=BL2L1ω=31.4V
根据bc边在磁场区与非磁场区运动的时间可画出Uad-t图象如图5-8丙所示.
图5-8丙
(2)设感应电动势的有效值为E,当bc边外接纯电阻R时,考虑T2内的热效应得:
Q=ε2R×512T=E2R×T2
解得:E=28.7V.
[答案](1)31.4V如图5-8丙所示(2)28.7V
二、电磁感应规律的综合应用
电磁感应规律的综合应用问题不仅涉及法拉第电磁感应定律,还涉及力学、热学、静电场、直流电路、磁场等许多知识.
电磁感应的综合题有两种基本类型:一是电磁感应与电路、电场的综合;二是发生电磁感应的导体的受力和运动以及功能问题的综合.也有这两种基本类型的复合题,题中电磁现象与力现象相互联系、相互影响、相互制约,其基本形式如下:
注意:
(1)求解一段时间内流过电路某一截面的电荷量要用电流的平均值;
(2)求解一段时间内的热量要用电流的有效值;
(3)求解瞬时功率要用瞬时值,求解平均功率要用有效值.
1.电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路相当于电源.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法如下:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
(2)画等效电路图,注意区别内外电路,区别路端电压、电动势;
(3)运用闭合电路欧姆定律,串、并联电路性质以及电功率等公式联立求解.
2.感应电路中电动势、电压、电功率的计算
●例6如图5-9甲所示,水平放置的U形金属框架中接有电源,电源的电动势为E,内阻为r.现在框架上放置一质量为m、电阻为R的金属杆,它可以在框架上无摩擦地滑动,框架两边相距L,匀强磁场的磁感应强度为B,方向竖直向上.ab杆受到水平向右的恒力F后由静止开始向右滑动,求:
图5-9甲
(1)ab杆由静止启动时的加速度.
(2)ab杆可以达到的最大速度vm.
(3)当ab杆达到最大速度vm时,电路中每秒放出的热量Q.
【解析】(1)ab滑动前通过的电流:I=Er+R
受到的安培力F安=BELr+R,方向水平向左
所以ab刚运动时的瞬时加速度为:
a1=F-F安m=Fm-BEL(r+R)m.
(2)ab运动后产生的感应电流与原电路电流相同,到达最大速度时,感应电路如图5-9乙所示.此时电流Im=E+BLvmR+r.
图5-9乙
由平衡条件得:
F=BImL=BL(BLvm+E)R+r
故可得:vm=F(R+r)-BLEB2L2.
(3)方法一由以上可知,Im=BLvm+ER+r=FBL
由焦耳定律得:Q=Im2(R+r)=F2(R+r)B2L2.
方法二由能量守恒定律知,电路每秒释放的热量等于电源的总功率加上恒力F所做的功率,即:
Q=EIm+Fvm
=EFBL+F2(R+r)-BLEFB2L2
=F2(R+r)B2L2.
[答案](1)Fm-BEL(r+R)m(2)F(R+r)-BLEB2L2
(3)F2(R+r)B2L2
【点评】①本例全面考查了感应电路的特点,特别是对于电功率的解析,通过对两种求解方法的对比能很好地加深对功能关系的理解.
②ab棒运动的v-t图象如图5-9丙所示.
图5-9丙
3.电磁感应中的图象问题
电磁感应中的图象大致可分为以下两类.
(1)由给定的电磁感应过程确定相关物理量的函数图象.一类常见的情形是在某导体受恒力作用做切割磁感线运动而产生的电磁感应中,该导体由于安培力的作用往往做加速度越来越小的变加速运动,图象趋向于一渐近线.
(2)由给定的图象分析电磁感应过程,确定相关的物理量.
无论何种类型问题,都需要综合运用法拉第电磁感应定律、楞次定律、右手定则、安培定则等规律来分析相关物理量之间的函数关系,确定其大小和方向及在坐标系中的范围,同时应注意斜率的物理意义.
●例7青藏铁路上安装的一种电磁装置可以向控制中心传输信号,以确定火车的位置和运动状态,其原理是将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图5-8甲所示(俯视图).当它经过安放在两铁轨间的线圈时,线圈便产生一个电信号传输给控制中心.线圈边长分别为l1和l2,匝数为n,线圈和传输线的电阻忽略不计.若火车通过线圈时,控制中心接收到线圈两端的电压信号u与时间t的关系如图5-10乙所示(ab、cd为直线),t1、t2、t3、t4是运动过程的四个时刻,则下列说法正确的是()
图5-10
A.火车在t1~t2时间内做匀加速直线运动
B.火车在t3~t4时间内做匀减速直线运动
C.火车在t1~t2时间内的加速度大小为U2-U1nBl1(t2-t1)
D.火车在t3~t4时间内的平均速度的大小为U3+U4nBl1
【解析】信号电压u=ε=nBl1v,由u-t图象可知,火车在t1~t2和t3~t4时间内都做匀加速直线运动.在t1~t2时间内,a1=v2-v1t2-t1=U2-U1nBl1(t2-t1),在t3~t4时间内的平均速度v=v3+v42=U3+U42nBl1,故B、D错误.
[答案]AC
【点评】从题图可以看出,在t3~t4时间内的u-t图线关于t轴的对称线与t1~t2时间内的u-t图线在同一直线上,由此可判断,火车在0~t4时间内一直做匀加速直线运动的可能性很大.
●例6如图5-11甲所示,两个垂直于纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a.一正三角形(高为a)导线框ACD从图示位置沿图示方向匀速穿过两磁场区域.以逆时针方向为电流的正方向,则图5-11乙中能正确表示感应电流i与线框移动的距离x之间的关系的图象是()
图5-11甲
图5-11乙
【解析】如图5-11丙所示,当x<a时,线框切割磁感线的有效长度等于线框内磁场边界的长度
图5-11丙
故有E1=2Bvxtan30°
当a<x<2a时,线框在左右两磁场中切割磁感线产生的电动势方向相同,且都与x<a时相反
故E2=4Bv(x-a)tan30°
当2a<x<3a时,感应电动势的方向与x<a时相同
故E3=2Bv(x-2a)tan30°.
[答案]C
★同类拓展2如图5-12甲所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s.一质量为m、电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大.(已知:l=1m,m=1kg,R=0.3Ω,r=0.2Ω,s=1m)
图5-12甲
(1)分析并说明该金属棒在磁场中做何种运动.
(2)求磁感应强度B的大小.
(3)若撤去外力后棒的速度v随位移x的变化规律满足v=v0-B2l2m(R+r)x,且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?
(4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.
[2009年高考上海物理卷]
【解析】(1)金属棒做匀加速运动,R两端的电压U∝I∝E∝v,U随时间均匀增大,即v随时间均匀增大,故加速度为恒量.
(2)F-B2l2R+rv=ma,将F=0.5v+0.4代入
得:0.5-B2l2R+rv+0.4=ma
因为加速度为恒量,与v无关,m=1kg
所以0.5-B2l2R+r=0,a=0.4m/s2
代入数据得:B=0.5T.
(3)x1=12at2
v0=B2l2m(R+r)x2=at
x1+x2=s
故12at2+m(R+r)B2l2at=s
代入数据得:0.2t2+0.8t-1=0
解方程得:t=1s.
(4)速度随位移变化的可能图象如图5-10乙所示.
图5-12乙
[答案](1)略(2)0.5T(3)1s
(4)如图5-12乙所示
4.电磁感应中的动力学、功能问题
电磁感应中,通有感应电流的导体在磁场中将受到安培力的作用,因此电磁感应问题往往和力学、运动学等问题联系在一起.电磁感应中的动力学问题的解题思路如下:
●例7如图5-13所示,光滑斜面的倾角为θ,在斜面上放置一矩形线框abcd,ab边的边长为l1,bc边的长为l2,线框的质量为m、电阻为R,线框通过细线与重物相连,重物的质量为M,斜面上ef线(ef平行底边)的右方有垂直斜面向上的匀强磁场(磁场宽度大于l2),磁感应强度为B.如果线框从静止开始运动,且进入磁场的最初一段时间是做匀速运动,则()
图5-13
A.线框abcd进入磁场前运动的加速度为Mg-mgsinθm
B.线框在进入磁场过程中的运动速度v=(Mg-mgsinθ)RB2l12
C.线框做匀速运动的时间为B2l12l2(Mg-mgsinθ)R
D.该过程产生的焦耳热Q=(Mg-mgsinθ)l1
【解析】设线框进入磁场前运动的加速度为a,细线的张力为FT,有:
Mg-FT=Ma
FT-mgsinθ=ma
解得:a=Mg-mgsinθM+m
设线框进入磁场的过程中的速度为v,由平衡条件得:
Mg=mgsinθ+B2l12vR
解得:v=(Mg-mgsinθ)RB2l12
故线框做匀速运动的时间t1=B2l12l2(Mg-mgsinθ)R
这一过程产生的焦耳热等于电磁感应转化的电能,等于克服安培力做的功,等于系统机械能的减小量,即:
Q=Mgl2-mgl2sinθ=(Mg-mgsinθ)l2.
[答案]BC
【点评】①求线框受恒定拉力作用下进入匀强磁场后达到的最大速度在高中物理试题中较为常见.
②这类问题求转化的电能往往有三种方法:一是ε2R总t;二是,克服安培力做的功;三是,根据能量的转化与守恒定律.
●例8如图5-14所示,虚线右侧为一有界的匀强磁场区域,现有一匝数为n、总电阻为R的边长分别为L和2L的闭合矩形线框abcd,其线框平面与磁场垂直,cd边刚好在磁场外(与虚线几乎重合).在t=0时刻磁场开始均匀减小,磁感应强度B随时间t的变化关系为B=B0-kt.
图5-14
(1)试求处于静止状态的线框在t=0时刻其ad边受到的安培力的大小和方向.
(2)假设在t1=B02k时刻,线框在如图所示的位置且具有向左的速度v,此时回路中产生的感应电动势为多大?
(3)在第(2)问的情况下,回路中的电功率是多大?
【解析】(1)根据法拉第电磁感应定律可得,t=0时刻线框中的感应电动势为:
E0=nΔΦΔt=n2L2ΔBΔt=2nkL2
根据闭合电路的欧姆定律可得,t=0时刻线框中感应电流的大小为:
I0=E0R=2nkL2R
根据安培力公式可得,线框的ad边受到的安培力大小为:
F=2nB0I0L=4n2B0kL3R
根据楞次定律可知,感应电流的方向沿顺时针方向,再根据左手定则可知,ad边受到的安培力的方向为竖直(或垂直于ad边)向上.
(2)在t1=B02k时刻,磁感应强度B1=B02
线框中由于线框的运动而产生的动生电动势的大小为:
E1=nB1Lv=nB0Lv2,方向沿顺时针方向
线框中由于磁场变化而产生的感应电动势的大小为:
E2=nSΔBΔt=2nL2ΔBΔt=2nkL2,方向沿顺时针方向
故此时回路的感应电动势为:
E=E1+E2=nB0Lv2+2nkL2.
(3)由(2)知线框中的总感应电动势大小为:
E=nB0Lv2+2nkL2
此时回路中的电功率为:
P=E2R=(nB0Lv+4nkL2)24R.
[答案](1)4n2B0kL3R,方向竖直(或垂直于ad边)向上
(2)nB0Lv2+2nkL2(3)(nB0Lv+4nkL2)24R
【点评】感生电动势可表示为E1=nSΔBΔt,动生电动势可表示为E2=nBΔSΔt,要注意这两式都是E=nΔΦΔt的推导式[或写成E=nΔΦΔt=n(SΔBΔt+BΔSΔt)].
●例9磁流体动力发电机的原理图如图5-15所示.一个水平放置的上下、前后均封闭的横截面为矩形的塑料管的宽度为l,高度为h,管内充满电阻率为ρ的某种导电流体(如电解质).矩形塑料管的两端接有涡轮机,由涡轮机提供动力使流体通过管道时具有恒定的水平向右的流速v0.管道的前后两个侧面上各有长为d的相互平行且正对的铜板M和N.实际流体的运动非常复杂,为简化起见作如下假设:①在垂直于流动方向的横截面上各处流体的速度相同;②流体不可压缩.
图5-15
(1)若在两个铜板M、N之间的区域内加有方向竖直向上、磁感应强度为B的匀强磁场,则当流体以稳定的速度v0流过时,两铜板M、N之间将产生电势差.求此电势差的大小,并判断M、N两板中哪个板的电势较高.
(2)用电阻不计的导线将铜板M、N外侧相连接,由于此时磁场对流体有阻力的作用,使流体的稳定速度变为v(v<v0),求磁场对流体的作用力.
(3)为使流体的流速增大到原来的值v0,则涡轮机提供动力的功率必须增大.假设流体在流动过程中所受到的来自磁场以外的阻力与它的流速成正比,试导出涡轮机新增大的功率的表达式.
【解析】(1)由法拉第电磁感应定律得:
两铜板间的电势差E=Blv0
由右手定则可判断出M板的电势高.
(2)用电阻不计的导线将铜板M、N外侧相连接,即使两铜板的外侧短路,M、N两板间的电动势E=Blv
短路电流I=ER内
又R内=ρlhd
磁场对流体的作用力F=BIl
解得:F=vB2hldρ,方向与v的方向相反(或水平向左).
(3)解法一设流体在流动过程中所受到的其他阻力与流速成正比的比例系数为k,在外电路未短路时流体以稳定速度v0流过,此时流体所受到的阻力(即涡轮机所提供的动力)为:
F0=kv0
涡轮机提供的功率P0=F0v0=kv02
外电路短路后,流体仍以稳定速度v0流过,设此时磁场对流体的作用力为F安,根据第(2)问的结果可知:
F安=v0B2hldρ
此时,涡轮机提供的动力Ft=F0+F安=kv0+v0B2hldρ
涡轮机提供的功率Pt=Ftv0=kv02+v02B2hldρ
所以涡轮机新增大的功率ΔP=Pt-P0=v02B2hldρ.
解法二由能量的转化和守恒定律可知,涡轮机新增大的功率等于电磁感应产生的电功率,即ΔP=E2R内=v02B2hldρ.
[答案](1)Blv0M板的电势高
(2)vB2hldρ,方向与v的方向相反(或水平向左)
(3)v02B2hldρ
【点评】①磁流体发电机的原理可以当做导体连续切割磁感线来分析,此时有E=BLv;也可用外电路开路时,洛伦兹力与电场力平衡,此时有qvB=qU0L,得E=U0=BLv.
②磁流体发电机附加压强做功等于克服安培力做功,等于转化的总电能.

相关知识

解决电磁感应与力学


解决电磁感应与力学综合问题的思维方法
我们知道电磁感应的物理过程中产生了电动势,从而可以把问题转化为电路问题.而如果在置于磁场的电路中,又有一部分可移动的通电导体,则导体可能在磁场力的作用下而运动,因此在运动图景中构成电磁感应与力学的自然结合问题.力电综合问题是对综合能力和分析问题解决问题的能力要求非常高的一类问题,我们在研究时可以牢牢地把握以下宗旨,以不变应万变.
解决电磁感应与力学综合的问题的一般思路是先电后力.即①、源的分析——分离出电路中由电磁感应所产生的电源,求出电源参数ε、r;②、路的分析——分析电路结构,弄清串并联结构,求出相关部分的电流强度,以便安培力的求解;③、力的分析——分析力学研究对象(金属杆、导体线圈等)的受力情况,尤其注意其所受的电场与磁场力;④、运动分析——根据力和运动的关系,抽象出运动模型要素,建立运动模型;⑤、能量分析——寻找电磁感应过程和力学对象的运动过程中其能量转化和守恒的关系.

例1:两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面、与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度,如图所示,在这过程中().
A、作用在金属棒上的各个力的合力所作的功等于零
B、作用在金属棒上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和
C、恒力F与安培力的合力所作的功等于零
D、恒力F与重力的合力所作的功等于电阻R上发出的焦耳热

例2:如图所示,长为L、电阻r=0.3Ω,质量m=0.1kg,金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5Ω的电阻,量程为0~3.0A的电流表串接在一条导轨上,量程为0~1.0V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移.当金属棒以v=2m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:
(1)、此满偏的电表是什么表?说明理由.(2)、拉动金属棒的外力F多大?
(3)、此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撒去外力到金属棒停止运动的过程中通过电阻R的电量.

例3:如图所示,MN、PQ为两平行金属导轨,M、P中有一阻值为R的电阻,导轨处于匀强磁场中,磁感应强度为B,磁场方向为与导轨所示平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v,与导轨接触良好,圆环的直径d与两导轨间的距离相等.设金属环与导轨的电阻均可忽略.当金属环向右匀速运动时().
A、有感应电流通过电阻R,大小为
B、有感应电流通过电阻R,大小为
C、有感应电流通过电阻R,大小为
D、没有感应电流通过电阻R

例4:把总电阻为2R的均匀电阻丝焊成一半径为a的圆环,水平固定在竖直向下的磁感强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的电接触.当金属棒以恒定速度v向右移动,经过环心O时,求
(1)、棒上电流的大小和方向,及棒两端的电压UMN.
(2)、在圆环和金属棒上消耗的总功率

例5:如图,电阻为2R的金属环,沿直径装有一根长为L,电阻为R的金属杆.现让金属环的一半处在磁感强度为B、垂直环面的匀强磁场中,让金属环在外力驱动下,绕中心轴O以角速度ω匀速转动,求外力驱动金属环转动的功率(轴的摩擦不计)

例6:如图所示,平行导轨间距为L,左端接阻值为R的电阻,右端接电容为C的电容器,并处于磁感强度为B、方向垂直导轨平面的匀强磁场中.长为2L的导体Oa,以角速度ω绕O转过90°.求全过程中,通过电阻R的电量是多少?

高考物理考前回扣教材-电路与电磁感应


电路与电磁感应
考点要求重温
考点45欧姆定律(Ⅱ)
考点46电阻定律(Ⅰ)
考点47电阻的串联、并联(Ⅰ)
考点48电源的电动势和内阻(Ⅱ)
考点49闭合电路的欧姆定律(Ⅱ)
考点50电功率、焦耳定律(Ⅰ)
考点51电磁感应现象(Ⅰ)
考点52磁通量(Ⅰ)
考点53楞次定律(Ⅱ)
考点54法拉第电磁感应定律(Ⅱ)
考点55自感、涡流(Ⅰ)
考点56交变电流、交变电流的图象(Ⅰ)
考点57正弦交变电流的函数表达式、峰值和有效值(Ⅰ)
考点58理想变压器(Ⅱ)
考点59远距离输电(Ⅰ)
要点方法回顾
1.如果电路中电流为I,用电器的电阻为R,用电器两端电压为U.请你根据能量守恒定律就纯电阻和非纯电阻电路讨论U与IR的关系,由此总结I=UR的适用条件.
答案纯电阻电路中,电能只转化为电热,则有
UIt=I2Rt,故I=UR
非纯电阻电路中,电能转化为电热和其他形式的能,则
UIt=I2Rt+E其他,故U>IR
由此可见,I=UR只适用于把电能全部转化为电热的电器,即只适用于纯电阻电路.
2.描述电源的功率有三个,它们分别是电源的总功率、电源内部消耗的功率和电源的输出功率,如何求解三个功率,它们之间的关系如何?
答案(1)电源的总功率P总=EI.
(2)电源内部消耗的功率P内=I2r.
(3)电源的输出功率P出=P总-P内=UI.
3.在如图1所示的U-I图象中,图线a、b表示的含义有什么不同?
图1
答案(1)对电源有:U=E-Ir,如题图中a线.
(2)对定值电阻有:U=IR,如题图中b线.
(3)说明:①图中a线常用来分析测量电源电动势和内阻的实验数据.
②图中矩形OABD、OCPD和ABPC的“面积”分别表示电源的总功率、输出功率和内阻消耗的功率.
4.比较下面的典型电路,并在表格空白处填上合适的文字或字母.
电路名称电路结构欧姆定律表达式能量转化情况
纯电阻电路
非纯电阻电路
含电容器电路
交流纯电电路

答案欧姆定律表达式自上而下为:
I=ER+r;E=U内+U外或E=Ir+U外;
电流稳定后I=ER+r;
i=eR+r,I=ER+r,Im=EmR+r.
能量转化情况自上而下依次为:
电能→内能;电能→内能+其他能;
电能→内能+电场能;电能→内能.
5.对电路中的特殊元件如何进行等效处理是简化电路的关键之一,请根据你的体会和所学的知识,完成下面的表格.
元件处理方法
①电路中并联的理想电压表
②电路中充电完毕的电容器
③反接的理想二极管
④电流变化时的理想电感器
⑤电路中串联的理想电流表
⑥高频交流电通过大容值电容器
⑦电流稳定后的理想电感器
⑧正接的理想二极管
⑨电路中并联的非理想电压表
⑩电路中串联的非理想电流表

答案①②③④所在支路视作断路;
⑤⑥⑦⑧所在支路视作短路;
⑨视作理想电压表与其内阻并联;
⑩视作理想电流表与其内阻串联.
6.你能叙述分析直流电路动态问题的程序法吗?电路动态分析的技巧有哪些?
答案程序法:基本思路是“部分—整体—部分”,即R局(增大或减小)→R总(增大或减小)→I总(减小或增大)→U外(增大或减小)→I部分、U部分的变化.
技巧:(1)任一电阻R阻值增大,与之串联(或并联)的电路的总电阻增大.(2)任一电阻R阻值增大,必将引起与之并联的支路中电流I并、电压U并的增大,与之串联的各电路电流I串、电压U串的减小.
7.请你总结故障电路的特点与分析方法.
答案用电器不能正常工作,断路的表现为电流为零,短路的表现为电流不为零而两点之间电压为零.用电压表测量电路两点间的电压,若电压表有读数,说明这两点与电源之间的连线是通路,断路故障点就在这两点之间;若电压表无读数,说明这两点与电源之间的连线是断路,断路故障就在这两点与电源的连线上.
8.产生感应电流的条件是什么?感应电流的方向有哪几种判定方法?感应电流的大小如何表示?
答案(1)产生感应电流的条件是穿过闭合电路的磁通量发生变化.
(2)感应电流的方向判断
①从“阻碍磁通量变化”的角度来看,表现出“增反减同”,即若磁通量增加时,感应电流的磁场方向与原磁场方向相反;若磁通量减少时,感应电流的磁场方向与原磁场方向相同.
②从“阻碍相对运动”的角度来看,表现出“来拒去留”,即“阻碍”相对运动.
③从“阻碍自身电流变化”角度来看,就是自感现象.
在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”.
④右手定则:对部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的.这时,用右手定则更方便一些.
(3)感应电流的大小
由法拉第电磁感应定律可得I=nΔΦRΔt或I=nBlvRsinθ.
9.法拉第电磁感应定律的内容是什么?公式E=nΔΦΔt在具体应用中有两种不同的表现形式,各在什么情况下应用?你还知道哪些计算感应电动势的方法?
答案(1)内容:闭合回路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比.公式E=nΔΦΔt.
(2)两种形式:①回路与磁场垂直的面积S不变,磁感应强度发生变化,则ΔΦ=ΔBS.由此对应的E=nΔBΔtS,此式中的ΔBΔt叫磁感应强度的变化率,等于B-t图象切线的斜率.若ΔBΔt是恒定的,即磁场是均匀变化的,那么产生的感应电动势就是恒定的.
②磁感应强度B不变,回路与磁场垂直的面积发生变化,则ΔΦ=BΔS.此时对应的E=nBΔSΔt,ΔS的变化是由部分导体切割磁感线所致.比如线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属于这种情况.
(3)计算感应电动势的其他方法
①当回路中的一部分导体做切割磁感线运动时,E=Blvsinθ.
②当长为l的导体棒绕一个端点以角速度ω旋转切割磁感线时,E=12Bl2ω.
10.导体棒切割磁感线产生感应电流的过程是能的转化和守恒的过程,这一过程中通过什么力做功?将什么形式的能转化为电能?功和产生的电能有什么关系?
答案外力对导体棒做功转化为棒的机械能,同时,棒又克服安培力做功,将棒的机械能又转化为电能,克服安培力做的功等于电能的增加.

11.请比较安培定则、左手定则、右手定则及楞次定律,并填写下表.

基本现象应用的定
则或定律
运动电荷、电流产生磁场安培定则
磁场对运动电荷、电流的作用力左手定则
电磁感应部分导体切割磁感线运动右手定则
闭合回路磁通量的变化楞次定律

12.电磁感应过程中的动态分析问题是力学和电学知识的结合,此类问题分析的基本方法和关键是什么?
答案(1)基本方法
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.
②求回路中的电流强度.
③分析、研究导体受力情况(注意安培力用左手定则判定其方向).
④列动力学方程或平衡方程求解.
(2)动态问题分析要抓好受力情况、运动情况的动态进行分析.
13.如何求解电磁感应中感应电荷的电荷量?感应电荷量与哪些因素有关?
答案设在时间Δt内通过导线截面的电荷量为q,则根据电流定义式及法拉第电磁感应定律得:
q=IΔt=ERΔt=nΔΦRΔtΔt=nΔΦR
可见,在电磁感应现象中,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流,在时间Δt内通过导线截面的电荷量q仅由线圈的匝数n、磁通量的变化量ΔΦ和闭合电路的电阻R决定,与磁通量发生变化的时间无关.
14.中性面的含义是什么?线圈通过中性面时有何性质和特点?
答案(1)中性面:当线圈平面转动至垂直于磁感线位置时,各边都不切割磁感线,感应电动势为零,即线圈中没有感应电流,这个特定位置叫做中性面.
(2)性质和特点
①线圈通过中性面时,磁感线垂直于该时刻的线圈平面,所以磁通量最大,磁通量的变化率为零;
②线圈平面每次转过中性面时,线圈中感应电流方向改变一次,线圈转动一周通过中性面两次,故一个周期内线圈中电流方向改变两次;
③线圈平面处于跟中性面垂直的位置时,线圈平面平行于磁感线,磁通量为零,磁通量的变化率最大,感应电动势、感应电流均最大,电流方向不变.
15.下面的表格是关于交变电流“四值”的比较,请完成填空.
物理量物理含义重要关系式使用情况及说明
瞬时值交变电流某一时刻的值e=________
i=________计算线圈某一时刻受力情况
最大值最大的瞬时值Em=______
Im=EmR+r
电容器的击穿电压
有效值跟交变电流的______等效的恒定电流值对于正(余)弦交流电有:
Em=____E
Um=____U
Im=____I(1)计算与电流热效应有关的量
(2)电气设备铭牌上所标的值
(3)保险丝的熔断电流
(4)交流电表的示数
平均值交变电流图象中的图线与时间轴所围的____与____的比值E=Blv
I=ER+r
计算通过电路截面的电荷量

答案NBSωsinωtNBSωsinωtR+rNBSω热效应222面积时间
16.理想变压器动态变化问题的分析思路是什么?
答案
I2――――――――→P1=P2I1U1=I2U2决定I1―――→P1=I1U1决定P1

高考物理电磁感应备考复习教案


§X4《电磁感应》章末测试题
一、选择题每题至少有一个选项正确
1.闭合电路中感应电动势的大小跟:
(A)穿过这一电路的磁通量成正比(B)穿过这一电路的磁通量的变化量成正比
(C)穿过这一电路的磁通量变化率成正比
(D)穿过这一电路的磁通量的变化快慢有关,跟磁通量的变化量无关。
4将一磁铁缓慢插入或者迅速的插入到闭合线圈中的同一位置,不发生变化的物理量是:
(G)通过线圈的磁通量(B)通过线圈的磁通量的变化率
(C)感应电流的大小(D)通过导体某一横截面的电荷量

3、如图1所示,用铝板制成“U”形框,将一质量为m的带电小球用绝缘细线悬挂在框的上方,让整个装置在水平方向的磁场中向左以速度V匀速运动,若悬线拉力为F则:
(A)悬线竖直,F=mg
(B)悬线竖直,F<mg
(C)适当选择V的大小可使F=0,
(D)因条件不足,F与mg的大小关系无法确定

4.如图2所示,n=50匝的圆形线圈M,它的两端点a、b与内阻很大的电压表相连,线圈中磁通量的变化规律如图所示,则ab两点的电势高低与电压表的读数为:
(A)>,20V

(B)>,100V
(C)<,20V(D)<,100V
5.一个面积S=4×10m、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直平面,磁感应强度的大小随时间变化规律如图3所示,由图可知:
(A)在开始2秒内穿过线圈的磁通量的变化率等于0.08Wb/s
(H)在开始2秒内穿过线圈的磁通量的变化量等于零
(I)在开始2秒内线圈中产生的感应电动势等于8V
(J)在第3秒末感应电动势为零

6.如图4所示,两水平放置的平行金属板M、N放在匀强磁场中,导线ab帖着M、N边缘以速度V向右匀速滑动,当一带电粒子以水平速度V射入两板间后,能保持匀速直线运动,该带电粒子可能:
(A)带正电、速度方向向左
(B)带负电速度方向向左
(C)带正电速度方向向右
(D)
D)带负电速度方向向右
7.如图5所示,匀强磁场方向垂直纸面向里,导体棒AB在金属框上向右运动;以下说法正确的是:
(A)AB中无电流
(B)AB中有电流,方向由A向B
(C)AB中有电流,方向由B向A
(D)AB中有电流,方向时而由A向B,时而由B向A

8、在磁感应强度为0.5T的匀强磁场中,让长为0.2m的导线垂直于磁场方向,导线做切割磁感线运动,产生的感应电动势为0.5V,则导线切割磁感线的速度为:
(A)0.5m/s(B)5m/s(C)0.05m/s(D)2.5m/s
二、填空题请把正确答案填到划线处

9、如图6所示,一有限范围内的磁场,宽度为d,将一个边长为L的正方形导线框以速度V匀速的通过磁场区域。若dL,则在线框中不产生感应电流的时间应等于。
10、在匀强磁场中有一线圈,磁感应强度与线圈平面的夹角为α,已知穿过这个线圈的磁通量为Φ,线圈的面积为S,这个磁场的磁感应强度为。

11、匀强磁场的磁感应强度为0.2T,垂直切割磁感线的导体长度为40cm,线框向左匀速运动的速度为10m/s,如图7所示;整个线框的电阻为2Ω,线框中的感应电流大小是。
12、图8中“]”形金属线框的两平行边间距为L米,垂直于线框平面的匀强磁场磁感应强度为B特,线框上连接的电阻阻值为R欧,其它电阻不计,当MN金属棒以垂直于磁感线方向的速度V米/秒匀速运动时,感应电动势的大小
为伏,电阻R消耗的电功率为瓦。

三、计算题请写出必要的文字说明和重要演算步骤,只写出最后答案的不能得分。

13、如图9所示,电阻为R的矩形线圈,长为L,宽为a,在外力的作用下以速度v向右运动,通过宽度为d磁感应强度为B的匀强磁场,在下列两种情况下求外力做的功:
(1)L<d
(2)L>d
14、如图10所示,MN、PQ是两条水平放置的平行光滑导轨,其阻值可以忽略不计,轨道间距L=0.6m。匀强磁场垂直导轨平面向下,磁感应强度B=1.0×10T,金属杆ab垂直于导轨放置与导轨接触良好,ab杆在导轨间部分的电阻r=1.0Ω,在导轨的左侧连接有电阻R、R,阻值分别为R=3.0Ω,R=6.0Ω,ab杆在外力作用下以v=5.0m/s的速度向右匀速运动。
(1)ab杆哪端的电势高?
(2)求通过ab杆的电流I
(3)求电阻R上每分钟产生的热量Q。
15、如图11所示,一个质量为m=0.01kg,边长L=0.1m,电阻R=0.4Ω的正方形导体线框abcd,从高h=0.8m的高处由静止自由下落,下落时线框平面始终在竖直平面内,且保持与水平磁场方向垂直,当线框下边bc刚一进入下方的有界匀强磁场时,恰好做匀速运动(g=10m/s)
(1)磁场的磁感应强度B的大小
(2)如果线圈的下边bc通过磁场所经历的时间为t=0.125s,求bc边刚从磁场下边穿出时线框的加速度大小。

电磁感应参考答案:
§4.1划时代的发现§4.2探究电磁感应的产生条件
自主学习:1.利用磁场产生电感应电流2.法拉第3.感应电动势电源
4.穿过闭合电路的磁通量发生变化5.右手定则楞次定律
针对训练1.(1)电源连接两端点连在一起
(2)振荡(振动)感应电流停在原位置
2.D3.D4.CD
能力训练1.B2.A3.CD4.AB5.ABC6.ABD7.ACD
8.A9.ABD10.AD
§4.3法拉第电磁感应定律
自主学习1.BD2.D3.4.5:15.
针对训练1.A2.B3.ACD4.
5.证明:设导体棒以速度V匀速向右滑动,经过时间,导体棒与导轨所围面积的变化
6.(1)0.8V(2)4A
能力训练1.BCD2.AD3.ABCD4.ACD5.BC6.
7.(1)5V,4.5V(2)2.5W8.9.增大,减小
10.(1)0.4米(2)0.4米/秒0.0392J
§4.4楞次定律
自主学习1.逆时针无有顺时针2.
针对训练1.C2.D3.D4.A5.高高6.阻碍磁通量的变化
阻碍相对运动是其它形式的7.磁通量的变化
能力训练1.A2.D3.BD4.BC5.D6.BC7.D8.
9.B10.(1)0.4Aab(2)
§4.5感生电动势和动生电动势
自主学习1.感生电场感生电动势2.动生电动势
针对训练1.D2.0.10.23.D4.B5.B6.D7.AC
能力训练1.D2.B3.BD4.D5.A6.D7.1:21:2
4:11:18.1m/s0.1W0.04J9.
10.
§4.6互感和自感
自主学习1.由于通过导体本身的电流变化2.相反相同3.变化率
针对训练1.ab断电自感2.A2先亮A1后亮
3.A1A2立即熄灭A1滞后一段时间灭4。AC5.BC6.AD
能力训练1.BD2.BCD3.BCD4.B5.BD6.AD7.B因为不知道线圈电阻与灯的电阻的大小关系,C不能确定D1是否更亮一下再熄灭8.D9.ACD10.abababba
§4.7涡流
自主学习1.涡流2.电磁阻尼3.电磁驱动
针对训练1.C2.C3.AC4.涡流5.涡流6.涡流
7.涡流8。电磁驱动
电磁感应测试
1.CD2.AD3.A4.B5.AC6.CD7.C8.B9.10.11.0.4A12.BLV
13.
14.(1)a
(2)0.01A
(3)
15.(1)1T(2)

高考物理考点重点电磁感应复习


第九章电磁感应

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。
2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。
3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.

第一课时电磁感应现象楞次定律

【教学要求】
1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。
【知识再现】
一、电磁感应现象—感应电流产生的条件
1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.
2、条件:①____________;②____________.
二、感应电流方向——楞次定律
1、感应电流方向的判定:方法一:右手定则;方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、掌握楞次定律,具体从下面四个层次去理解:
①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.
③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.
知识点一磁通量及磁通量的变化
磁通量变化△ф=ф2-ф1,一般存在以下几种情形:
①投影面积不变,磁感强度变化,即△ф=△BS;
②磁感应强度不变,投影面积发生变化,即△ф=B△S。其中投影面积的变化又有两种形式:
A.处在磁场的闭合回路面积发生变化,引起磁通量变化;
B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.
③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B△S。
【应用1】如图所示,平面M的面积为S,垂直于匀强磁场B,求水平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量。
导示:初位置时穿过M的磁通量为:ф1=BS;
当平面M转过60°后,磁感线仍由下向上穿过平面,且θ=60°所以ф2=BScos60°=BS/2。
当平面转过180°时,原平面的“上面”变为“下面”,而“下面”则成了“上面”,所以对平面M来说,磁感线穿进、穿出的顺序刚好颠倒,为了区别起见,我们规定M位于起始位置时其磁通量为正值,则此时其磁通量为负值,即:ф3=-BS
由上述得,平面M转过60°时其磁通量变化为:
△ф1=│ф2-ф1│=BS/2
平面M转过180°时其磁通量变化为:
△ф2=│ф3-ф1│=2BS。
1、必须明确S的物理意义。
2、必须明确初始状态的磁通量及其正负(一定要注意在转动过程中,磁感线相对于面的穿入方向是否发生变化)。
3、注意磁通量与线圈匝数无关。

知识点二安培定则、左手定则、右手定则、楞次定律的比较
(1)应用现象
(2)应用区别:关键是抓住因果关系
①因电而生磁(I→B)→安培定则
②因动而生电(v、B→I安)→右手定则
③因电而受力(I、B→F安)→左手定则
【应用2】如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()
A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势
C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点
导示:选择BD。在图中ab棒和右线圈相当于电源。当导体棒向右匀速运动时,根据右手定则,可以判断b点电势高于a点,此时通过右线圈在磁通量没有变化,所以,右线圈中不产生感应电流,c点与d点为等电势。
当金属棒向右加速运动时,b点电势高于a点,此时通过右线圈在磁通量逐渐增大,根据楞次定律可以判定d点电势高于c点。

类型一探究感应电流产生的条件
【例1】如图,在通电直导线A、B周围有一个矩形线圈abcd,要使线圈中产生感应电流,你认为有哪些方法?
导示:当AB中电流大小、方向发生变化、abcd线圈左右、上下平移、或者绕其中某一边转动等都可以使线圈中产生感应电流。

类型二感应电流方向的判定
判定感应电流方向的步骤:
①首先明确引起感应电流的原磁场方向.
②确定原磁场的磁通量是如何变化的.
③根据楞次定律确定感应电流的磁场方向——“增反减同”.
④利用安培定则确定感应电流的方向.
【例2】如图所示,导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线时,线圈中感应电流的方向是()
A.先abcd后dcba,再abcd
B.先abcd,后dcba
C.始终dcba
D.先dcba,后abcd,再dcba
导示:选择D。当线圈由左向右匀速通过直导线时,穿过线圈的磁通量先向外增大,当导线位于线圈中间时磁通量减小为O;然后磁通量先向里增大,最后又减小到O。

类型三楞次定律推论的应用
楞次定律的“阻碍”含义,可以推广为下列三种表达方式:
①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”
②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”
③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。
【例3】如图所示,光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A、P、Q将互相靠拢
B、P、Q将互相远离
C、磁铁的加速度仍为g
D、磁铁的加速度小于g
导示:方法一:设磁铁下端为N极,如图所示,根据楞次定律可判断P、Q中的感应电流方向。根据左手定则可判断P、Q所受安培力的方向。可见P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果。所以,本题应选A、D。
方法二:根据楞次定律知:“感应电流的磁场总要阻碍原磁通量的变化”,为阻碍原磁通量的增加,P、Q只有互相靠拢来缩小回路面积,故A正确,B错。楞次定律可以理解为感应电流的磁场总要阻碍导体间的相对运动,可把PQMN回路等看为一个柱形磁铁,为了阻碍磁铁向下运动,等效磁铁的上面必产生一个同名磁极来阻碍磁铁的下落,故磁铁的加速度必小于g,故C错D正确。

1、如图是某同学设计的用来测量风速的装置。请解释这个装置是怎样工作的。

2、已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成图示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是()
A.甲图中电流表偏转方向向右
B.乙图中磁铁下方的极性是N极
C.丙图中磁铁的运动方向向下
D.丁图中线圈的绕制方向与前面三个相反

3、(赣榆县教研室2008年期末调研)如甲图所示,
光滑的水平桌面上固定着一根绝缘的长直导线,可以自由移动的矩形导线框abcd靠近长直导线放在桌面上。当长直导线中的电流按乙图所示的规律变化时(甲图中电流所示的方向为正方向),则()
A.在t2时刻,线框内没有电流,线框不受力
B.t1到t2时间内,线框内电流的方向为abcda
C.t1到t2时间内,线框向右做匀减速直线运动
D.t1到t2时间内,线框受到磁场力对其做负功

答案:1.略2.ABD3.BD

文章来源:http://m.jab88.com/j/74752.html

更多

最新更新

更多