88教案网

高考物理考点重点电磁感应复习

一名优秀的教师在每次教学前有自己的事先计划,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的消化课堂内容,帮助授课经验少的高中教师教学。怎么才能让高中教案写的更加全面呢?以下是小编为大家收集的“高考物理考点重点电磁感应复习”仅供您在工作和学习中参考。

第九章电磁感应

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。
2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。
3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.

第一课时电磁感应现象楞次定律

【教学要求】
1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。
【知识再现】
一、电磁感应现象—感应电流产生的条件
1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.
2、条件:①____________;②____________.
二、感应电流方向——楞次定律
1、感应电流方向的判定:方法一:右手定则;方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、掌握楞次定律,具体从下面四个层次去理解:
①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.
③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.
知识点一磁通量及磁通量的变化
磁通量变化△ф=ф2-ф1,一般存在以下几种情形:
①投影面积不变,磁感强度变化,即△ф=△BS;
②磁感应强度不变,投影面积发生变化,即△ф=B△S。其中投影面积的变化又有两种形式:
A.处在磁场的闭合回路面积发生变化,引起磁通量变化;
B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.
③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B△S。
【应用1】如图所示,平面M的面积为S,垂直于匀强磁场B,求水平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量。
导示:初位置时穿过M的磁通量为:ф1=BS;
当平面M转过60°后,磁感线仍由下向上穿过平面,且θ=60°所以ф2=BScos60°=BS/2。
当平面转过180°时,原平面的“上面”变为“下面”,而“下面”则成了“上面”,所以对平面M来说,磁感线穿进、穿出的顺序刚好颠倒,为了区别起见,我们规定M位于起始位置时其磁通量为正值,则此时其磁通量为负值,即:ф3=-BS
由上述得,平面M转过60°时其磁通量变化为:
△ф1=│ф2-ф1│=BS/2
平面M转过180°时其磁通量变化为:
△ф2=│ф3-ф1│=2BS。
1、必须明确S的物理意义。
2、必须明确初始状态的磁通量及其正负(一定要注意在转动过程中,磁感线相对于面的穿入方向是否发生变化)。
3、注意磁通量与线圈匝数无关。

知识点二安培定则、左手定则、右手定则、楞次定律的比较
(1)应用现象
(2)应用区别:关键是抓住因果关系
①因电而生磁(I→B)→安培定则
②因动而生电(v、B→I安)→右手定则
③因电而受力(I、B→F安)→左手定则
【应用2】如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()
A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势
C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点
导示:选择BD。在图中ab棒和右线圈相当于电源。当导体棒向右匀速运动时,根据右手定则,可以判断b点电势高于a点,此时通过右线圈在磁通量没有变化,所以,右线圈中不产生感应电流,c点与d点为等电势。
当金属棒向右加速运动时,b点电势高于a点,此时通过右线圈在磁通量逐渐增大,根据楞次定律可以判定d点电势高于c点。

类型一探究感应电流产生的条件
【例1】如图,在通电直导线A、B周围有一个矩形线圈abcd,要使线圈中产生感应电流,你认为有哪些方法?
导示:当AB中电流大小、方向发生变化、abcd线圈左右、上下平移、或者绕其中某一边转动等都可以使线圈中产生感应电流。

类型二感应电流方向的判定
判定感应电流方向的步骤:
①首先明确引起感应电流的原磁场方向.
②确定原磁场的磁通量是如何变化的.
③根据楞次定律确定感应电流的磁场方向——“增反减同”.
④利用安培定则确定感应电流的方向.
【例2】如图所示,导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线时,线圈中感应电流的方向是()
A.先abcd后dcba,再abcd
B.先abcd,后dcba
C.始终dcba
D.先dcba,后abcd,再dcba
导示:选择D。当线圈由左向右匀速通过直导线时,穿过线圈的磁通量先向外增大,当导线位于线圈中间时磁通量减小为O;然后磁通量先向里增大,最后又减小到O。

类型三楞次定律推论的应用
楞次定律的“阻碍”含义,可以推广为下列三种表达方式:
①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”
②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”
③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。
【例3】如图所示,光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A、P、Q将互相靠拢
B、P、Q将互相远离
C、磁铁的加速度仍为g
D、磁铁的加速度小于g
导示:方法一:设磁铁下端为N极,如图所示,根据楞次定律可判断P、Q中的感应电流方向。根据左手定则可判断P、Q所受安培力的方向。可见P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果。所以,本题应选A、D。
方法二:根据楞次定律知:“感应电流的磁场总要阻碍原磁通量的变化”,为阻碍原磁通量的增加,P、Q只有互相靠拢来缩小回路面积,故A正确,B错。楞次定律可以理解为感应电流的磁场总要阻碍导体间的相对运动,可把PQMN回路等看为一个柱形磁铁,为了阻碍磁铁向下运动,等效磁铁的上面必产生一个同名磁极来阻碍磁铁的下落,故磁铁的加速度必小于g,故C错D正确。

1、如图是某同学设计的用来测量风速的装置。请解释这个装置是怎样工作的。

2、已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成图示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是()
A.甲图中电流表偏转方向向右
B.乙图中磁铁下方的极性是N极
C.丙图中磁铁的运动方向向下
D.丁图中线圈的绕制方向与前面三个相反

3、(赣榆县教研室2008年期末调研)如甲图所示,
光滑的水平桌面上固定着一根绝缘的长直导线,可以自由移动的矩形导线框abcd靠近长直导线放在桌面上。当长直导线中的电流按乙图所示的规律变化时(甲图中电流所示的方向为正方向),则()
A.在t2时刻,线框内没有电流,线框不受力
B.t1到t2时间内,线框内电流的方向为abcda
C.t1到t2时间内,线框向右做匀减速直线运动
D.t1到t2时间内,线框受到磁场力对其做负功

答案:1.略2.ABD3.BD

相关推荐

高考物理考点重点法拉第电磁感应定律复习


第二课时法拉第电磁感应定律

【教学要求】
1.理解法拉第电磁感应定律。
2.理解计算感应电动势的两个公式E=BLv和的区别和联系,并应用其进行计算。(对公式E=BLv的计算,只限于L与B、v垂直的情况)。
【知识再现】
一、感应电动势:
在电磁感应现象中产生的电动势.叫感应电动势。产生感应电动势的那一部分导体相当于电源,当电路断开时,无感应电流,但仍有感应电动势。
二、法拉第电磁感应定律:
1、内容:电路中的感应电动势大小,跟穿过这一电路的_______________________成正比。
2、公式:E=n△ф/△t。
3、E=n△ф/△t计算的是感应电动势的平均值,可以理解为E=nB△S/△t,或E=nS△B/△t。
三、导体做切割磁感线时感应电动势大小的计算:
1、公式:E=BLV
2、条件:①匀强磁场,②L⊥B,③V⊥L
3、注意:①L为导体“有效”切割磁感线的等效长度.②V为导体切割磁感线的速度,一般导体各部分切割磁感线的速度相同。③电势高低的判断:电源内部的电流是从低电势点流向高电势点。
4、对有些导体各部分切割磁感线的速度不相同的情况,V指平均速度.如图所示,一长为L的导体杆AC绕A点在纸面内以角速度ω匀速转动,转动的区域内有垂直纸面向里的匀强磁场,磁感强度为B.则AC各部分切割磁感线的速度不相等,vA=0,vc=ωL,而且AC上各点的线速度大小与半径成正比,所以AC切割的速度可以用其平均切割速度,即v=vc/2=ωL/2,故E=BωL2/2。

知识点一磁通量ф、磁通量的变化量△ф及磁通量的变化率△ф/△t的关系
【应用1】矩形形线框abcd绕OO轴在磁感强度为0.2T的匀强磁场中以2r/s的转速匀速转动,已知ab=20cm,bd=40cm,匝数为100匝,当线框从如图示位置开始转过90°,则
(1)线圈中磁通量的变化量ΔΦ等于多少?
(2)磁通量平均变化率为多少?
(3)线圈中产生的平均感应电动势E为多少?
导示:(1)转过90°,△ф=BS-0=1.6×10-2Wb;
(2)△t=T/4=0.125s,△ф/△t=0.128Wb/s;
(3)E=n△ф/△t=12.8V。

知识点二E=n△ф/△t与E=BLV的比较
1.研究对象不同:前者是一个回路(不一定闭合),后者是一段直导线(或等效成直导线).
2.适用范围不同:前者具有普适性,无论什么方式引起ф的变化都适用,计算的是整个回路的感应电动势.后者只适用于一段导线切割磁感线的情况,计算的是切割磁感线的这段导体两端的电动势.
3.条件不同:前者不一定是匀强磁场,可以是ф变化,可以是B变化,可以是S变化,也可以是S和B都变化。后者L,v,B之间应取两两互相垂直的分量,可采用投影的办法.
4.意义不同:前者求的是平均电动势,后者求的是瞬时电动势,当v取平均位时,也可求平均电动势.
5.使用情况不同:(1)求解导体做切割磁感线运动产生感应电动势的问题时,两个公式都可.
(2)求解某一过程(或某一段时间)内的电动势,平均电流,通过导体某一横截面的电荷量等问题,应选用E=n△ф/△t。
(3)求解某一时刻(或某一位置)的电动势,瞬时电流、功率及某段时间内的电功、电热等问题,应选用E=BLv。
【应用2】如图所示,足够长的两光滑导轨水平放置,两条导轨相距为d,左端MN用阻值不计的导线相连,金属棒ab可在导轨上滑动,导轨单位长度的电阻为r0,金属棒ab的电阻不计。整个装置处于竖直向下的均匀磁场中,磁场的磁感应强度随时间均匀增加,B=kt,其中k为常数。金属棒ab在水平外力的作用下,以速度v沿导轨向右做匀速运动,t=0时,金属棒ab与MN相距非常近.求:
(1)当t=to时,水平外力的大小F.
(2)同学们在求t=to时刻闭合回路消耗的功率时,有两种不同的求法:
方法一:t=to时刻闭合回路消耗的功率P=Fv.
方法二:由Bld=F,得:(其中R为回路总电阻)
这两种方法哪一种正确?请你做出判断,并简述理由.
导示:(1)回路中的磁场变化和导体切割磁感线都产生感应电动势,据题意,有
;;
联立求解得
又得
所以,,即
(2)方法一错,方法二对;
方法一认为闭合回路所消耗的能量全部来自于外力所做的功,而实际上磁场的变化也对闭合回路提供能量。
方法二算出的I是电路的总电流,求出的是闭合回路消耗的总功率。

类型一求感应电动势的两种方法
1、E=n△ф/△t,它计算的是感应电动势的平均值,可以理解为E=nB△S/△t,或E=nS△B/△t。
2、E=BLV。
条件:①匀强磁场,②L⊥B,③V⊥L。
【例1】(盐城中学08届高三年级12月份测试题)如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d为0.5m,左端通过导线与阻值为2的电阻R连接,右端通过导线与阻值为4的小灯泡L连接,在CDEF矩形区域内有竖直向上的匀强磁场,CE长为2m,CDEF区域内磁场的磁感应强度B随时间变化如图所示,在t=0时,一阻值为2的金属棒在恒力F作用下由静止开始从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,求:
(1)通过小灯泡的电流强度;
(2)恒力F的大小;
(3)金属棒的质量。
导示:(1)金属棒未进入磁场时,R总=RL+R/2=5,E1=t=SBt=0.5V,IL=E1/R总=0.1A,
(2)因灯泡亮度不变,故4s末金属棒进入磁场时刚好匀速运动。
I=IL+IR=IL+ILRLR=0.3A,
F=FA=BId=0.3N,
(3)E2=I(R+RRLR+RL)=1V,v=E2Bd=1m/s,
a=vt=0.25m/s2,m=Fa=1.2kg。
本题考查了两类电动势的计算方法:即感生电动势和动生电动势。关键是抓住“灯泡的亮度没有变化”。

类型二感应电荷量的计算
回路中发生磁通变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t内迁移的电量(感应电量)为:q=I△t=E△t/R=△ф/R
仅由回路电阻和磁通变化决定,与发生磁通变化的时间无关。因此,当用一根磁棒先后两次从同一处用不同速度插至线圈中同一位置时,线圈里积聚的感应电量相等.但快插与慢插时产生的感应电动势、感应电流不同,外力做的功也不同.
【例2】如图,金属杆MN和PQ间距为L,MP间连有电阻R,竖直放置在垂直纸面的匀强磁场中,磁感应强度为B,有一金属棒AB,长为2L,A端始终与PQ接触,棒紧靠MN滑倒.求此过程中通过R的电量(其他电阻不计).
导示:根据E=△ф/△t,I=E/R,q=It得,
q=△ф/R=BL2/2R。

追问:若在NQ处连接一个电容为C的电容器,已知AB棒角速度为ω,则通过R的电量又是多少?

1、(东海高级中学08届高三第四次月考卷)如图所示,两根相距为L的平行直导轨ab、cd,b、d间连有一固定电阻R,导轨电阻可忽略不计。MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R。整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面(指向图中纸面内)。现对MN施力使它沿导轨方向以速度v(如图)做匀速运动。令U表示MN两端电压的大小,则()
A.U=Blv/2流过固定电阻R的感应电流由b到d
B.U=Blv/2流过固定电阻R的感应电流由d到b
C.U=Blv流过固定电阻R的感应电流由b到d
D.U=Blv流过固定电阻R的感应电流由d到b

2、一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是()
A.将线圈匝数增加一倍
B.将线圈面积增加一倍
C.将线圈半径增加一倍
D.适当改变线圈的取向

3、(启东中学2008届高三第三次月考)某同学在实验室里熟悉各种仪器的使用。他将一条形磁铁放在转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感强度传感器固定在转盘旁边,当转盘(及磁铁)转动时,引起磁感强度测量值周期性地变化,该变化与转盘转动的周期一致。经过操作,该同学在计算机上得到了如图乙所示的图像。
(1)在图像记录的这段时间内,圆盘转动的快慢情况是。
(2)圆盘匀速转动时的周期是s。
(3)该同学猜测磁感强度传感器内有一线圈,当测得磁感强度最大时就是穿过线圈的磁通量最大时。按照这种猜测()
A.在t=0.1s时刻,线圈内产生的感应电流的方向发生了变化
B.在t=0.15s时刻,线圈内产生的感应电流的方向发生了变化
C.在t趋近0.1s时,线圈内产生的感应电流的大小达到了最大值
D.在t趋近0.15s时,线圈内产生的感应电流的大小达到了最大值
答案:1、A2、CD
3、(1)先快慢不变,后越来越慢;
(2)0.2;(3)AC

高考物理电磁感应备考复习教案


§X4《电磁感应》章末测试题
一、选择题每题至少有一个选项正确
1.闭合电路中感应电动势的大小跟:
(A)穿过这一电路的磁通量成正比(B)穿过这一电路的磁通量的变化量成正比
(C)穿过这一电路的磁通量变化率成正比
(D)穿过这一电路的磁通量的变化快慢有关,跟磁通量的变化量无关。
4将一磁铁缓慢插入或者迅速的插入到闭合线圈中的同一位置,不发生变化的物理量是:
(G)通过线圈的磁通量(B)通过线圈的磁通量的变化率
(C)感应电流的大小(D)通过导体某一横截面的电荷量

3、如图1所示,用铝板制成“U”形框,将一质量为m的带电小球用绝缘细线悬挂在框的上方,让整个装置在水平方向的磁场中向左以速度V匀速运动,若悬线拉力为F则:
(A)悬线竖直,F=mg
(B)悬线竖直,F<mg
(C)适当选择V的大小可使F=0,
(D)因条件不足,F与mg的大小关系无法确定

4.如图2所示,n=50匝的圆形线圈M,它的两端点a、b与内阻很大的电压表相连,线圈中磁通量的变化规律如图所示,则ab两点的电势高低与电压表的读数为:
(A)>,20V

(B)>,100V
(C)<,20V(D)<,100V
5.一个面积S=4×10m、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直平面,磁感应强度的大小随时间变化规律如图3所示,由图可知:
(A)在开始2秒内穿过线圈的磁通量的变化率等于0.08Wb/s
(H)在开始2秒内穿过线圈的磁通量的变化量等于零
(I)在开始2秒内线圈中产生的感应电动势等于8V
(J)在第3秒末感应电动势为零

6.如图4所示,两水平放置的平行金属板M、N放在匀强磁场中,导线ab帖着M、N边缘以速度V向右匀速滑动,当一带电粒子以水平速度V射入两板间后,能保持匀速直线运动,该带电粒子可能:
(A)带正电、速度方向向左
(B)带负电速度方向向左
(C)带正电速度方向向右
(D)
D)带负电速度方向向右
7.如图5所示,匀强磁场方向垂直纸面向里,导体棒AB在金属框上向右运动;以下说法正确的是:
(A)AB中无电流
(B)AB中有电流,方向由A向B
(C)AB中有电流,方向由B向A
(D)AB中有电流,方向时而由A向B,时而由B向A

8、在磁感应强度为0.5T的匀强磁场中,让长为0.2m的导线垂直于磁场方向,导线做切割磁感线运动,产生的感应电动势为0.5V,则导线切割磁感线的速度为:
(A)0.5m/s(B)5m/s(C)0.05m/s(D)2.5m/s
二、填空题请把正确答案填到划线处

9、如图6所示,一有限范围内的磁场,宽度为d,将一个边长为L的正方形导线框以速度V匀速的通过磁场区域。若dL,则在线框中不产生感应电流的时间应等于。
10、在匀强磁场中有一线圈,磁感应强度与线圈平面的夹角为α,已知穿过这个线圈的磁通量为Φ,线圈的面积为S,这个磁场的磁感应强度为。

11、匀强磁场的磁感应强度为0.2T,垂直切割磁感线的导体长度为40cm,线框向左匀速运动的速度为10m/s,如图7所示;整个线框的电阻为2Ω,线框中的感应电流大小是。
12、图8中“]”形金属线框的两平行边间距为L米,垂直于线框平面的匀强磁场磁感应强度为B特,线框上连接的电阻阻值为R欧,其它电阻不计,当MN金属棒以垂直于磁感线方向的速度V米/秒匀速运动时,感应电动势的大小
为伏,电阻R消耗的电功率为瓦。

三、计算题请写出必要的文字说明和重要演算步骤,只写出最后答案的不能得分。

13、如图9所示,电阻为R的矩形线圈,长为L,宽为a,在外力的作用下以速度v向右运动,通过宽度为d磁感应强度为B的匀强磁场,在下列两种情况下求外力做的功:
(1)L<d
(2)L>d
14、如图10所示,MN、PQ是两条水平放置的平行光滑导轨,其阻值可以忽略不计,轨道间距L=0.6m。匀强磁场垂直导轨平面向下,磁感应强度B=1.0×10T,金属杆ab垂直于导轨放置与导轨接触良好,ab杆在导轨间部分的电阻r=1.0Ω,在导轨的左侧连接有电阻R、R,阻值分别为R=3.0Ω,R=6.0Ω,ab杆在外力作用下以v=5.0m/s的速度向右匀速运动。
(1)ab杆哪端的电势高?
(2)求通过ab杆的电流I
(3)求电阻R上每分钟产生的热量Q。
15、如图11所示,一个质量为m=0.01kg,边长L=0.1m,电阻R=0.4Ω的正方形导体线框abcd,从高h=0.8m的高处由静止自由下落,下落时线框平面始终在竖直平面内,且保持与水平磁场方向垂直,当线框下边bc刚一进入下方的有界匀强磁场时,恰好做匀速运动(g=10m/s)
(1)磁场的磁感应强度B的大小
(2)如果线圈的下边bc通过磁场所经历的时间为t=0.125s,求bc边刚从磁场下边穿出时线框的加速度大小。

电磁感应参考答案:
§4.1划时代的发现§4.2探究电磁感应的产生条件
自主学习:1.利用磁场产生电感应电流2.法拉第3.感应电动势电源
4.穿过闭合电路的磁通量发生变化5.右手定则楞次定律
针对训练1.(1)电源连接两端点连在一起
(2)振荡(振动)感应电流停在原位置
2.D3.D4.CD
能力训练1.B2.A3.CD4.AB5.ABC6.ABD7.ACD
8.A9.ABD10.AD
§4.3法拉第电磁感应定律
自主学习1.BD2.D3.4.5:15.
针对训练1.A2.B3.ACD4.
5.证明:设导体棒以速度V匀速向右滑动,经过时间,导体棒与导轨所围面积的变化
6.(1)0.8V(2)4A
能力训练1.BCD2.AD3.ABCD4.ACD5.BC6.
7.(1)5V,4.5V(2)2.5W8.9.增大,减小
10.(1)0.4米(2)0.4米/秒0.0392J
§4.4楞次定律
自主学习1.逆时针无有顺时针2.
针对训练1.C2.D3.D4.A5.高高6.阻碍磁通量的变化
阻碍相对运动是其它形式的7.磁通量的变化
能力训练1.A2.D3.BD4.BC5.D6.BC7.D8.
9.B10.(1)0.4Aab(2)
§4.5感生电动势和动生电动势
自主学习1.感生电场感生电动势2.动生电动势
针对训练1.D2.0.10.23.D4.B5.B6.D7.AC
能力训练1.D2.B3.BD4.D5.A6.D7.1:21:2
4:11:18.1m/s0.1W0.04J9.
10.
§4.6互感和自感
自主学习1.由于通过导体本身的电流变化2.相反相同3.变化率
针对训练1.ab断电自感2.A2先亮A1后亮
3.A1A2立即熄灭A1滞后一段时间灭4。AC5.BC6.AD
能力训练1.BD2.BCD3.BCD4.B5.BD6.AD7.B因为不知道线圈电阻与灯的电阻的大小关系,C不能确定D1是否更亮一下再熄灭8.D9.ACD10.abababba
§4.7涡流
自主学习1.涡流2.电磁阻尼3.电磁驱动
针对训练1.C2.C3.AC4.涡流5.涡流6.涡流
7.涡流8。电磁驱动
电磁感应测试
1.CD2.AD3.A4.B5.AC6.CD7.C8.B9.10.11.0.4A12.BLV
13.
14.(1)a
(2)0.01A
(3)
15.(1)1T(2)

高考物理考点重点电磁感应中的图象与能量问题复习


第五课时电磁感应中的图象与能量问题
【教学要求】
1.理解电磁感应的过程实质就是能量转化的过程,学会从能量的角度分析电磁感应问题。
2.学会分析电磁感应中的图象问题
【知识再现】
一、电磁感应中的图象问题
电磁感应中常涉及磁感应强度B、磁通量ф、感应电动势E和感应电流I随时间t变化的图像,即B-t图像,ф-t图像。E-t图像和I-t图像。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像.
这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量.

二、电磁感应中能量转化问题
电磁感应过程总是伴随着能量转化。导体切割磁感线或磁通量发生变化在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能。
因此,中学阶段用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀变速运动).对应的受力特点是合外力为零或者恒定不变,能量转化过程常是机械能转化为电阻内能.
知识点一电磁感应中的能量转化规律
电磁感应现象中出现的电能,一定是由其他形式的能转化而来,具体问题中会涉及多种形式的能之间的转化,机械能和电能的相互转化、内能和电能的相互转化.分析时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能(发电机),做正功将电能转化为其他形式的能(电动机);然后利用能量守恒列出方程求解。
【应用1】光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,一根质量为m的导体棒ab,用长为l的绝缘细线悬挂,悬线竖直时导体棒恰好与导轨良好接触且细线处于张紧状态,如图所示,系统空间有匀强磁场.当闭合开关S时,导体棒被向右摆出,摆到最大高度时,细线与竖直方向成角,则()
A.磁场方向一定竖直向下
B.磁场方向竖直向下时,磁感应强度最小
C.导体棒离开导轨前通过棒的电量为
D.导体棒离开导轨前电源提供的电能大于
mgl(1–cos)
导示:选择:BD。当开关S闭合时,导体棒向右摆起,说明其所受安培力水平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B正确;
设导体棒右摆初动能为Ek,摆动过程中机械能守恒,有Ek=mgl(1–cos),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动能。
此时有W=IEt=qE=Ek,得W=mgl(1–cos),,题设条件有电源内阻不计而没有“其他电阻不计”的相关表述,因此其他电阻不可忽略,那么电流的功就大于mgl(1–cos),通过的电量也就大于,C错D正确.

类型一电磁感应中的图象问题分析
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负。
分析回路中的感应电动势和感应电流的大小及其变化规律,要利用法拉第电磁感应定律来分析.有些图像问题还要画出等效电路来辅助分析,
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断,这样,才抓住了解决图像问题的根本。
【例1】(如东高级中学08届高三第三次阶段测试)如图甲所示,两个垂直纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a,一正三角形(高度为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在图乙中感应电流I与线框移动距离x的关系图象正确的是()
导示:导线框进入左边磁场时,切割磁感应线的有效长度L=2vttan30°,与时间成正比。根据楞次定律可以判定,导线框进入左边磁场和离开右边磁场时,电路中的感应电流方向为逆时针方向。导线框在穿越两个磁场过程中,电路中的感应电流方向为顺时针方向。

类型二电磁感应中的能量问题的分析
解决电磁感应中的能量问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
(2)画出等效电路,求出回路中电阻消耗电功率表达式;
(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
【例2】(上海徐汇区08届高三第一学期期末试卷)(14分)如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距为L=1m,定值电阻R1=4Ω,R2=2Ω,导轨上放一质量为m=1kg的金属杆,导轨和金属杆的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下,现用一拉力F沿水平方向拉杆,使金属杆由静止开始运动。图乙所示为通过R1中的电流平方随时间变化的I12—t图线,求:
(1)5s末金属杆的动能;
(2)5s末安培力的功率;
(3)5s内拉力F做的功。
导示:(1)E=BLv=I1R1,
v=I1R1BL=0.240.81m/s=50.2m/s,
Ek=12mv2=2.5J;
(2)I=3I1=30.2A,
PA=I12R1+I22R2=3I12R1=2.4W
或FA=BIL=2.40.2N,PA=FAv=2.4W;
(3)由PA=3I12R1和图线可知,PAt,所以
WA=12PAmt=6J;
(或根据图线,I12t即为图线与时间轴包围的面积,所以WA=3I12R1t=3×12×5×0.2×4=6J)
又WF-WA=Ek,得WF=WA+Ek=8.5J。

1.(盐城中学08届高三年级12月份测试题)如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。一导线框abcdef位于纸面内,况的邻边都相互垂直,bc边与磁场的边界P重合。导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速横穿两个磁场区域。以a→b→c→d→e→f为线框中的电动势ε的正方向,以下四个ε-t关系示意图中正确的是()

2.(南通海安实验中学08年1月考试卷)如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,用水平恒力F把MN棒从静止起向右拉动的过程中,()
A、恒力F做的功等于电路产生的电能;
B、恒力F和摩擦力的合力做的功等于电路中产生的电能;
C、克服安培力做的功等于电路中产生的电能;
D、恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和

3、(上海徐汇区08届高三第一学期期末试卷)如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿越磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止)()
A、感应电流所做的功为mgd
B、感应电流所做的功为2mgd
C、线圈的最小速度可能为mgRB2L2
D、线圈的最小速度一定为2g(h+L-d)

4、(泰州市08届高三联考热身训练)如图所示,相距为L的两根竖直的足够长的光滑导轨MN、PQ,M、P之间接一阻值为R的定值电阻,金属棒ab质量为m,与导轨接触良好。整个装置处在方向垂直纸面向里水平匀强磁场中,金属棒和导轨电阻不计。现让ab棒由静止释放,经时间t达稳定状态,此时ab棒速度为v;
(1)请证明导体棒运动过程中,克服安培力的功率等于电路中电功率。
(2)若m=0.2kg,L=0.5m,R=lΩ,v=2m/s,棒从开始释放到稳定状态过程中流过棒电量为0.5C,求磁感应强度B大小以及棒从开始到达到稳定状态下落的高度h。(g取10m/s2)
(3)接第(2)问,若棒从开始到达到稳定状态所用时间t=2s,求流过电阻R的电流有效值。(结果可保留根号)

答案:1、C2、CD3、BCD
4、(1)略;(2)0.5m;(3)A

高考物理知识网络复习电磁感应教案


第十二章电磁感应
本章是电磁学的核心内容,研究了电磁感应的一系列现象.这部分内容能使力、电、磁三方面知识充分联系,使力的平衡条件、牛顿定律、动量守恒、动能定理、能量守恒、闭合电路欧姆定律有机结合,安培力则活跃其中.即可单独命题,又能出现灵活多样的综合题.考题很能考查学生能力,备受出题人青睐.近几年高考对本章命题频率比较高,对学生的能力提出了很高的要求.
本章及相关内容知识网络:

专题一电磁感应现象楞次定律
【考点透析】
一、本专题考点:电磁感应现象、感应电流的方向、右手定则、楞次定律是Ⅱ类要求,即能够理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用.
二、理解和掌握的内容
1.磁通量、磁通量的变化的区别:(1)磁通量Ф,表示穿过磁场中某个面积的磁感线的条数.(2)磁通量的变化ΔΦ=Φ2-Φ1,它可由B、S或两者之间的夹角发生变化引起.二者之间没有固定的联系,不能混为一谈.
2.感应电流的产生条件:有两种说法
(1)闭合电路的一部分导体在磁场内做切割磁感线的运动.
(2)穿过闭合回路的磁通量发生变化
上述第二种说法反映了电磁感应的本质,更具一般性,因而感应电流的产生条件可只用第二种说法.如果电路不闭合,只产生感应电动势而不产生感应电流,也发生了电磁感应现象.
3.感应电流方向的判定:
(1)右手定则:①适用范围:闭合电路部分导体切割磁感线时.②定律内容:伸开右手,使大拇指跟其余四指垂直,并且都与手掌在同一平面内,让磁感线垂直穿入手心,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向.
(2)楞次定律:①适用范围:穿过闭合电路的磁通量变化时.②定律内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.③判定步骤:a.明确闭合电路范围内的原磁场的方向;b.分析穿过闭合电路的磁通量变化情况;c.根据楞次定律(增异减同),判定感应电流磁场的方向;d.利用安培定则,判定感应电流的方向.
4.难点释疑正确理解楞次定律中“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”.(1)简单地说是“阻碍”“变化”,而不是阻碍原磁场.具体地说是:当原磁通量增加时,感应电流的磁场方向与原磁场方向相反---以阻碍增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同---以阻碍减少.(2)“阻碍”并不是阻止.如果原来的磁通量增加,感应电流的磁场只能阻碍它增加的速率,而不能阻止它的增加,即原来的磁通量还是要增加.
【例题精析】
例1如图13—1所示,一个矩形线圈在匀强磁场中旋转,转动轴为其一边ab(如图).当转到线圈平面与磁场方向平行时是否产生感应电流?
解析:本题考查感应电流的产生条件
方法1在这时刻附近极短时间里,穿过线圈的磁通量从有→无,再从无→有,发生变化,产生感应电流.
方法2闭合电路的一部分(dc边)切割磁感线产生感应电流.
错解:此时穿过线圈的磁通量为零,不产生感应电流.
小结:产生感应电流的条件是“只要穿过闭合电路的磁通量发生变化.”这句话关键的两个字是“变化”.因此,这类问题的解题关键是判断磁通量是否变化,而不是确定磁通量的数值.
思考拓宽:若从上向下看线圈绕逆时针方向旋转,则在图示位置处线圈中感应电流的方向如何?
解答:dcbad方向.
例2如图13—2所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A.P、Q将互相靠拢B.P、Q将互相远离
C.磁铁的加速度仍为gD.磁铁的加速度小于g
解析:本题考查楞次定律及和相关知识的综合运用
方法1设磁铁下端为N极,如图13—3所示,根据楞次定律可判断出PQ中的感应电流方向,再根据左手定则可判断P、Q所受安培力的方向如图.可见,P、Q将互相靠拢.又由于回路所受安培力的合力向下,由牛顿第三定律知,磁铁将受到向上的反作用力,从而加速度小于g.当磁铁下端为S极时,根据类似的分析可得到相同的结果,本题应选A、D.
方法2根据楞次定律的另一表述---安培力的效果也是阻碍磁通量的变化.本题中为阻碍回路中磁通量的增加,安培力应使P、Q互相靠近,且对磁铁产生向上的力,因此磁铁的加速度要小于g.应选A、D.
小结:
方法1是依赖力---运动的关系,分析求得结果,是分析问题的基本方法.
方法2是应用楞次定律的第二种表述,思路较简单.常见的安培力的效果表现为:
(1)阻碍相对运动,可理解为“来拒去留”;
(2)使线圈面积有增大或缩小的趋势.
利用上述规律分析问题可以独辟蹊径,取得快速准确的效果.凡涉及相对运动引起的电磁感应现象的题目,均可用此方法求解.
【能力提升】
Ⅰ.知识与技能
1.如图13-4所示,关于闭合导线框中产生感应电流的下列说法中正确的是()
A.只要闭合导线框在磁场中作切割磁感线运动,线框中就会产生感应电流
B.只要闭合导线框处于变化的磁场中,线框中就会产生感应电流
C.图13-4中矩形导线框以其任何一条边为轴在磁场中旋转,都可以产生感应电流
D.图13-4中,闭合导线框以其对称轴OOˊ在磁场中匀速转动,当穿过线圈的磁通量最大时,线框内不产生感应电流;当穿过线框内的磁通量为零时,线框中有感应电流产生
2.如图13-5所示,把有孔的金属圆环与轻质弹簧连接起来,穿在一根水平杆上,杆与金属圆环的摩擦可忽略不计.金属圆环静止时位于O点,O点右侧的空间存在一个垂直纸面的匀强磁场,将金属圆环由平衡位置O向右拉至M点后放开,金属圆环的运动情况是(设金属圆环所在平面始终垂直于磁场的方向)()
A.金属圆环将作简谐运动B.金属圆环将作振幅逐渐增大的振动
C.金属圆环将作振幅逐渐减小的振动D.金属圆环将作振动,其振幅时而增大时而减小
3.如图13—6所示,一均匀的条形磁铁的轴线与一圆形线圈在同一平面内,磁铁中心与圆心重合,为了在磁铁开始运动时在线圈中得到逆时针方向的感应电流,磁铁的运动方式应是()
A.N极向纸内,S极向纸外,使磁铁绕O点转动
B.N极向纸外,S极向纸内,使磁铁绕O点转动
C.使磁铁在线圈平面内绕O点顺时针转动
D.使磁铁垂直线圈平面向外平动
4.如图13—7所示,导线框abcd与导线AB在同一平面内,直导线中通有恒定电流I,当线框由左向右匀速通过直导线过程中,线框中感应电流的方向是()
A.先abcda,再dcbad,后abcda.B.先abcda,再dcbad.
C.始终是dcbad.D.先dcbad,再abcda,后dcbad
5.一根沿东西方向的水平导线,在赤道上空自由下落的过程中,导线上各点的电势()
A.东端最高B.西端最高C.中点最高D.各点一样高

Ⅱ.能力与素质
6.如图13—8所示,1982年美国物理学家卡布莱设计了一个寻找磁单极子的实验,他设想,如果一个只有S极的磁单极子从上向下穿过图示的超导线圈,那么从上向下看,超导线圈上将出现()
A.先是逆时针方向,然后是顺时针方向的感应电流
B.先是顺时针方向,然后是逆时针方向的感应电流
C.顺时针方向持续流动的感应电流
D.逆时针方向持续流动的感应电流
7.如图13—9所示,当直导线中的电流不断增强时,A、B两环的运动情况是()
A.A向左,B向右B.A向右,B向左
C.均向左D.均向右
8.如图13—10所示,闭合电路中一定长度的螺线管可自由伸缩,通电时灯泡有一定的亮度,若将一软铁棒从螺线管一端迅速插入螺线管内,则在插入过程中,灯泡的亮度将(填变亮、不变或变暗),螺线管的长度将(填伸长、不变或缩短).
9.在水平面上放置两个完全相同的带中心轴的金属圆盘,两金属圆盘可绕竖直中心轴转动,它们彼此用导线把中心轴和对方圆盘的边缘相连接,组成电路如图13-11所示,一沿竖直方向的匀强磁场穿过两金属圆盘,若不计一切摩擦,当a盘在外力作用下做逆时针转动时,b盘()
A,不转动B.沿顺时针方向转动
C.沿逆时针方向转动D.转动方向不明确,因不知磁场具体方向
10.如图13-12所示,一轻质闭合弹簧线圈用绝缘细线悬挂着,现将一根条形磁铁的一极,垂直于弹簧所围平面,向圆心移近,在磁铁移近的过程中,弹簧将发生什么现象?

【拓展研究】
超导是当今高科技的热点,当一块磁体靠近超导体时,超导体会产生强大的电流,对磁体有排斥作用.这种排斥力可使磁体悬浮空中,磁悬浮列车采用了这种技术.
(1)超导体产生强大的电流,是由于()
A.超导体中磁通量很大B.超导体中磁通量变化率很大
C.超导体电阻极小D.超导体电阻极大
(2)磁体悬浮的原理是()
A.超导体电流的磁场方向与磁体磁场方向相同
B.超导体电流的磁场方向与磁体磁场方向相反
C.超导体使磁体处于失重状态
D.超导体对磁体的磁力大于磁体重力
专题二感应电动势大小的计算
【考点透析】
一、本专题考点:法拉第电磁感应定律是Ⅱ类要求,即能够理解其确切含义及与其他知识的联系,能在实际问题的分析、综合、推理和判断等过程中运用.
二、理解和掌握的内容
1.法拉第电磁感应定律的表达式为ε=nΔΦΔt.
注意:⑴严格区分磁通量φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt.φ是状态量,是磁场在某时刻(或某位置)穿过回路的磁感线的条数;ΔΦ是过程量,是表示回路从某一时刻变化到另一时刻时磁通量的增量,即ΔΦ=φ2-φ1;ΔΦΔt表示磁通量的变化快慢.φ、ΔΦ、ΔΦΔt的大小没有直接关系,如φ很大,ΔΦΔt可能很小;φ很小,ΔΦΔt可能很大.⑵当ΔΦ由磁场变化引起时,ΔΦΔt常用SΔBΔt来计算,若ΔBΔt是恒定的,即磁场是均匀变化的,那么产生的感应电动势是恒定的;当ΔΦ由回路面积变化引起时,ΔΦΔt常用BΔSΔt来计算.⑶法拉第电磁感应定律常用于计算感应电动势的平均值,也可说明电磁感应现象中的电量问题.如在Δt时间内通过某电路一截面的电量q=IΔt=εRΔt=nΔΦΔtΔtR=nΔΦR,说明电量q仅由磁通量变化和回路电阻来决定,与发生磁通量变化的时间无关.
2.导线平动切割磁感线产生的感应电动势为:ε=BLvsinθ
注意:
(1)这是高考考查的热点,在近几年的试卷中总能涉及到,一般情况下考查在匀强磁场中导体上各点速度相同且B、L、v互相垂直的情况,此时上述公式变为ε=BLv.若v取某段时间内速度的平均值,则ε为该段时间内感应电动势的平均值;若v为某时刻的瞬时值,则ε为该时刻感应电动势的瞬时值.
(2)从公式中可以看到,当导体运动方向与磁场平行,即θ=0时,ε=0;当导体运动方向与磁场垂直,即θ=90时,ε有最大值,即εm=BLv.
(3)若导线是弯曲的,则L应取导线的有效切割长度,即取导线两端的连线在垂直速度方向上投影的长度.
【例题精析】
例1有一面积为S=100cm2的金属环,电阻为R=0.1Ω,环中磁场变化规律如图13-13所示,且磁场方向垂直环面向里,在t1到t2时间内,环中感应电流的方向如何?通过金属环的电量为多少?
解析:本题考查楞次定律和灵活运用法拉第电磁感应定律的能力
(1)由楞次定律可以判断出金属环中感应电流方向为逆时针方向.
(2)根据法拉第电磁感应定律,环中感应电动势的大小为ε=ΔΦΔt
通过环中的电量为q=IΔt=εRΔt=ΔΦΔtΔtR=ΔΦR=(B2-B1)SR=(0.2-0.1)100×1040.1=0.01(C)
小结:法拉第电磁感应定律中的ΔΦΔt=SΔBΔt,通过图象可求出ΔB,从而解决ΔΦΔt.这样求得的电动势的平均值,刚好用于电流强度平均值的计算,并最终求出电量.
思考拓宽:
环中的电流是稳定的,还是变化的?(解答:稳定的)
例2(2002年高考题)如图13—14所示,EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆.有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB
A.匀速滑动时,I1=0,I2=0B.匀速滑动时,I1≠0,I2≠0
C.加速滑动时,I1=0,I2=0D.加速滑动时,I1≠0,I2≠0
解析:本题考查公式ε=BLv的应用能力
当横杆AB匀速滑动时,由ε=BLv可知,会产生稳定的电动势,使电阻R中有电流通过,而电容器上被充得电量后,获得恒定的电压,不会再有电流通过.因此选项A、B均不对.当横杆AB加速滑动时,由ε=BLv可知,会产生不断增大的电动势,使电阻R中有越来越强的电流通过,电容器上被充得越来越多的电量,不断有电流通过.因此选项C不对,D正确.
小结:横杆AB相当于电源,使电阻R中不断有电流通过;电容器上只有电压不断增加,被连续充电时,才会不断有电流通过.本题中电阻R和电容器C在电路中表现出了不同的特点.
思考拓宽:如图13—15所示,EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆.有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处通过的电流,为使I1、I2方向与箭头方向一致,则横杆AB应如何运动()
A.加速向右滑动B.加速向左滑动
C.减速向右滑动D.减速向左滑动
解答:C
例3如图13—16所示,匀强磁场竖直向下,将一水平放置的金属棒ab以水平速度v抛出,设棒在下落过程中始终水平,且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小变化情况是()
A.越来越大B.越来越小C.保持不变D.无法判断
解析:本题考查运动的合成和分解在感应电动势中的应用,锻炼学生灵活运用知识的能力
ab棒做平抛运动,可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.
其水平分运动产生的感应电动势为ε=BLvx其竖直分运动,因速度方向平行于磁场不产生感应电动势,故感应电动势应为ε=BLvx,保持不变.选C.
小结:金属棒ab切割磁感线产生感应电动势的问题,应该用公式ε=BLvsinθ去考虑,但因为本题中速度的大小和方向在不断的改变,即v和θ在不断的改变,因此直接应用此公式非常困难,故应用运动的合成和分解将问题简化.

【能力提升】
Ⅰ.知识与技能
1.穿过一个电阻为1Ω的单匝闭合线圈的磁通量始终是每秒均匀地减少2Wb,则()
A.线圈中的感应电动势一定是每秒减少2V
B.线圈中的感应电动势一定是2V
C.线圈中的感应电流一定是每秒减少2A
D.线圈中的感应电流有可能增加
2.如图13—17所示,金属三角形导轨COD上放一根金属棒MN,拉动MN使它以速度v在匀强磁场中向右匀速运动,如果导轨和金属棒都是粗细相同的均匀导体,电阻率都相同,那么MN运动过程中,闭合电路的()
A.感应电动势保持不变B.作用在MN上的外力保持不变
C.感应电动势逐渐增大D.感应电流逐渐增大
3.如图13—18所示,一边长为a,电阻为R的正方形导线框,以恒定的速度v向右进入以MN为边界的匀强磁场,磁场方向垂直于线框平面,磁感应强度为B,MN与线框的边成45°角,则在线框进入磁场过程中产生的感应电流的最大值等于.
4.如图13—19所示,把矩形线框从匀强磁场中匀速拉出,第一次速度为v,第二次速度为2v.若两次拉力所做的功分别为W1和W2,两次拉力做功的功率分别为P1和P2,两次线圈产生的热量分别为Q1和Q2,则W1∶W2=;P1∶P2=;Q1∶Q2=.
5.用绝缘导线绕一圆环,环内有一只同样导线折成的内接正四边形线框,如图13—20所示,把它们放到磁感应强度为B、方向如图的匀强磁场中,当匀强磁场均匀减弱时,两线框中的感应电流()
A.沿顺时针方向B.沿逆时针方向C.大小为1:1D.大小为π:2
6.一闭合导线环垂直于匀强磁场,若磁感应强度随时间变化规律如图13-21所示,则环中的感应电动势变化情况是图13—22中的()
Ⅱ.能力与素质
7.一匀强磁场,磁场方向垂直纸面,规定向里的方向为正.在磁场中有一细金属圆环,线圈平面位于纸面内,如图13—23所示.现令磁感应强度B随时间t变化,先按图中所示的oa图线变化,后来又按图线bc和cd变化,令ε1、ε2、ε3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则()
A.ε1ε2,I1沿逆时针方向,I2沿顺时针方向
B.ε1ε2,I1沿逆时针方向,I2沿顺时针方向
C.ε1ε2,I3沿逆时针方向,I2沿顺时针方向
D.ε1=ε2,I3沿顺时针方向,I2沿顺时针方向
8.如图13—24所示,导线ab沿金属导轨运动,使电容器C充电,设磁场是匀强磁场,且右边回路电阻不变,若使电容器带电量恒定且上板带正电,则ab的运动情况是()
A匀速运动
B.匀加速向左运动
C.匀加速向右运动
D.变加速向左运动
9.如图13—25所示是一种测通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的电表Q串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由Q表测出该电荷电量为q,就可以算出线圈所在处的磁感应强度B.已知测量线圈共有N匝,直径为d,它和Q表串联电路的总电阻为R,则被测处的磁感应强度B=.
10.水平放置的平行光滑轨道足够长,轨道间距为d,轨道一端有一电阻R,轨道所在区域有方向如图13--26所示匀强磁场B,磁场方向与轨道平面成θ角,轨道上金属棒ab的质量为m.在一水平拉力作用下向右加速运动,求当金属棒运动的速度达到多大时,金属棒对轨道恰无压力?(其它电阻不计)
【拓展研究】
研究表明,地球磁场对鸽子辨别方向起到重要作用,鸽子体内的电阻大约是1000Ω,当它在地球磁场中展翅飞行时,会切割磁感线,因而两翅之间产生感应电动势.这样,鸽子体内灵敏的感受器即可根据感应电动势的大小来判别其飞行方向.若磁场大小为0.5×10-4T,当鸽子以20m/s飞翔时,两面翅膀间的感应电动势约为()
A.50mVB.5mVC.0.5mVD.0.5V

专题三法拉第电磁感应定律的应用(一)
——与恒定电流、力学的联系
【考点透析】
一、本专题考点:法拉第电磁感应定律,楞次定律为Ⅱ类要求。
二、理解和掌握的内容
(一)法拉第电磁感应定律与恒定电流的联系要点及分析方法
1.联系要点
(1)是电源与外电路的关系,即能发生电磁感应现象的那部分导体看作是整个电路中的电源,其余电路则是外电路.
(2)当电压表跨接在发生电磁感应现象的导体两端时,所测的不是感应电动势,而是外电路中此两点处的电压.
2.分析方法
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.
(2)画等效电路
(3)运用全电路欧姆定律,串、并联电路性质,电功率等公式联立求解.
(二)法拉第电磁感应定律与力学的联系要点及分析方法
1.联系要点
电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a=0时,速度v达到定值进行分析.
2.分析方法
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向
(2)求回路中电流强度
(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)
(4)根据速度达到稳定数值时导体所处的状态列动力学方程或平衡方程求解.
【例题精析】
例1(1998年高考题)如图13-27所示,一宽40cm的匀强磁场区域,磁场方向垂直纸面向里.一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行.取它刚进入磁场的时刻t=0,在图13-28中,正确反映感应电流强度随时间变化规律的是
解析:本题考查法拉第电磁感应定律和楞次定律
线圈匀速运动20cm用时1s,由法拉第电磁感应定律知产生恒定的感应电动势并产生恒定的电流.随后全部进入磁场区域运动20cm用时1s,因磁通量不变,不产生感应电动势和电流.最后匀速穿出磁场区域用时1s,产生恒定的感应电动势和电流,由楞次定律知电流方向和进入磁场时的方向相反.因此选项C正确.
小结:将线圈的运动过程分为三个阶段,用分段处理法解决本题效果较好.
例2如图13—29所示,MN、PQ是两根足够长的固定平行金属导轨,两导轨间的距离为L,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B.在导轨的M、P端连接一个阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,从静止释放开始沿导轨下滑,求ab棒的最大速度.(要求画出ab棒的受力图,已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)
解析:这是一道高考题,它考查了电磁感应规律与力学规律的综合应用.
ab下滑做切割磁感线运动,产生的感应电流方向及受力如图13—30所示.
在平行斜面方向上,由牛顿第二定律得mgsinθ-F-μN=ma①
在垂直斜面方向上,由平衡条件得N=mgcosθ②
又ε=BLv③
F=BIL④
由以上①②③④式得a=(mgsinθ-B2L2v/R-μmgcosθ)/m
在ab下滑过程中v增大,由上式知a减小,循环过程为:v↑→ε↑→Ι↑→F安↑→F合↓,ab在这个循环过程中,做加速度逐渐减小的加速运动,当a=0时,速度达到最大值,设为vm,则有mgsinθ=μmgcosθ+B2L2vm/R
所以vm=mg(sinθ-μcosθ)R/B2L2
小结(1)此类题的解题思路是由立体图转化为平面图,方法是将作为电源的导体的截面放在纸面上.(2)准确进行受力分析,选择力学规律求解.
思考拓宽:若此题中B的方向改为竖直方向,求解时需注意什么?结果又为何值?
解答:注意:一、磁场方向改为竖直向上后,安培力方向改为水平向左,对摩擦力的大小也产生了影响;二、磁场方向改为竖直向上后,和导体的运动方向不再垂直,感应电动势应改用
ε=BLvcosθ去计算.
结果为mgR(sinθ-μcosθ)B2l2(μsinθ+cosθ)cosθ
【能力提升】
Ⅰ.知识与技能
1.如图13-31所示,粗细均匀的电阻为r的金属圆环,放在图示的匀强磁场中,磁感应强度为B,圆环直径长为L,电阻为r2的金属棒ab放在圆环上,以v0向左运动,当ab棒运动到图示虚线位置时,金属棒两端的电势差为()
A.0B.BLv0C.BLv0/2D.BLv0/3
2.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场.若线圈所围面积里磁通量随时间变化规律如图13-32所示,则()
A.线圈中A时刻感应电动势最大B.线圈中0时刻感应电动势为零
C.线圈中D时刻感应电动势最大D.线圈中0至D时间内平均感应电动势为0.4V

3.如图13-33所示,闭合线圈abcd从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,在ab边刚进入磁场到cd边刚进入磁场的这段时间内,线圈运动的速度图像不可能是图13-34中的哪个()
4.如图13—35所示,用铝钣制成一“”形框,将一质量为m的带电小球用绝缘细线悬挂在框的上方.让整体在垂直于水平方向的匀强磁场中向左以速度v匀速运动,若悬线拉力为T,则()
A.悬线竖直,T=mg
B.悬线竖直,Tmg
C.适当选择v的大小,可使T=0
D.因条件不足,故T与mg的大小关系无法确定
5.如图13-36所示,磁场方向与竖直方向的夹角为α,导体棒ab从导体斜架上滑下,最后
达到稳定时速度的大小与α角的关系是(斜面与水平面夹角为θ)()
A.随α角增大而增大B.随α角增大而减小C.与α角无关
D.在某一范围内随α角增大而增大,在另一范围内随α角增大而减小
6.如图13—37所示,一倾斜的金属框架上放有一根金属棒,由于摩擦力的作用,金属棒在没有磁场时处于静止状态.从t0时刻开始,给框架区域加一个垂直框架平面斜向上的逐渐增强的匀强磁场,到时刻t时,金属棒所受的摩擦力()
A.不断增大B.不断减小C.先减小后增大D.先增大后减小
Ⅱ.能力与素质
7.如图13—38所示,有两根和水平方向成θ角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度vM,则()
A.若B增大,vM将增大B.若θ增大,vM将增大
C.若R减小,vM将增大D.若m变小,vM将增大
8.如图13—39所示,两水平放置的光滑平行导轨相距为d,一端连接阻值为R的电阻,质量为m的导体MN垂直放置在两导轨上,导轨与导体MN的电阻均不计,匀强磁场方向竖直向下,磁感应强度为B,现用水平恒力F向右拉导体MN,则MN可达到的最大速度vm=,速度为vm3时的加速度为a=.
9.如图13—40所示,固定于水平桌面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动,此时adeb构成一个边长为L的正方形.棒的电阻为r,其余部分电阻不计.开始时磁感应强度为B0.
(1)若从t=0时刻起,磁感应强度均匀增加,每秒增量为k,同时保持棒静止.求棒中的感应电流.在图中标出感应电流的方向.
(2)在上述(1)的情况中,始终保持棒静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?
(3)若从t=0时刻起,磁感应强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B与t的关系式)?
10.如图13—41所示,光滑平行金属导轨相距L,电阻不计,ab是电阻为r的金属棒,可沿导轨滑动.与导轨相连的平行金属板相距为d,电阻器的阻值为R.全部装置处于垂直纸面向里的匀强磁场中,磁感应强度为B.当ab以速度v向右匀速运动时,一带电粒子在平行金属板间做半径为r0的匀速圆周运动,试求带电粒子的速率v0=及荷质比q/m.
【拓展研究】
如图所示,光滑水平导轨间距为l,与导轨平面垂直的匀强磁场的磁感强度为B,在导轨左端接有电容为C的电容器,质量为m的金属棒MN在导轨上由静止开始,受水平向右的拉力以加速度a作匀加速运动,问经过时间t,电容器的带电量为多少?此时的拉力多大?

专题四法拉第电磁感应定律的应用(二)
——与能的转化和守恒定律的综合应用自感现象
【考点透析】

一、本专题考点:电磁感应现象为Ⅱ类要求,自感现象为Ⅰ类要求.
二、理解和掌握的内容
1.以电磁感应现象中产生的电能为核心,综合着各种不同形式的能(如机械能、内能等)的转化.
导体切割磁感线或磁通量发生变化而在回路中产生感应电流,机械能或其它形式的能量便转化为电能;感应电流在磁场中受到安培力的作用或通过电阻发热,又可使电能转化为机械能或电阻的内能等.因此,电磁感应的过程总是伴随着能量的转化过程,对于某些电磁感应问题,我们可以从能量转化的观点出发,运用能量转化和守恒定律,运用功能关系分析解决.
2.自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化.当原来电流在增大时,自感电动势与原来电流方向相反;当原来电流在减小时,自感电动势与原来电流方向相同.另外,“阻碍”不是“阻止”,电流还是在变化的.即可简记为:增异减同,阻也阻不住.
3.难点释疑:对自感要搞清楚通电自感和断电自感两个基本问题,学生感觉比较困难的是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题.如图13—42所示,原来电路闭合处于稳定状态,其电流分别为IL和IA,方向都是从左向右,在断开S的瞬间,灯A中原来的电流IA立即消失.但是灯A与线圈、电阻组成一闭合回路,由于L的自感作用,其中的电流IL不会立即消失,而是在回路中逐渐减弱维持短暂的时间,这个时间内灯A中有从右向左的电流通过,这时通过A的电流是从IL开
始减弱.如果原来ILIA,则在灯A熄灭之前要闪亮一下;如果原来IL≤IA,则
灯A是逐渐熄灭不再闪亮一下.
【例题精析】
例1如图13-43所示回路竖直放在匀强磁场中,磁场的方向垂直于回路平面向外,导线AC可以贴着光滑竖直长导轨下滑.设回路的总电阻恒定为R,当导线AC从静止开始下落后,下面有关回路中能量转化的叙述中正确的说法有()
A.导线下落过程中机械能守恒
B.导线加速下落过程中,导线减少的重力势能全部转化为在电阻上产生的热量
C.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路中增加的内能
D.导线达到稳定速度后的下落过程中,导线减少的重力势能全部转化为回路中增加的内能
解析:本题考查能的转化和定恒定律的应用
导线下落过程中,因产生感应电流而受到安培力的作用且安培力对导线做功,故机械能不守恒,A不对.导线加速下落过程中,其重力势能减少,动能增加,且回路中因导线切割磁感线产生了电能,这些电能再转化成内能,因此,根据能的转化和守恒定律,导线减少的重力势能转化为导线增加的动能和回路增加的内能.B不对,C正确.导线匀速下落的过程中,动能不变,导线减少的重力势能将全部转化为回路中增加的内能,D正确.
小结:运用能的转化和守恒定律时,重要的是找全各种不同形式的能,且确定好能的增减情况.
思考拓宽:若开始时导线AC因受瞬时冲量而以极大的初速度下落,试分析能的转化情况.
解答:导线减少的重力势能和减少的动能会转化为回路的内能.
例2如图13—44所示,电动机牵引一根原来静止的、长L为1m,质量m为0.1kg的导体棒MN,其电阻R为1Ω,导体棒放在竖直放置的框架上,整个装置处于磁感应强度B为1T的匀强磁场中.当导体棒上升h为3.8m时获得稳定的速度,导体产生的热量为2J.电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,g取10m/s2,求:(1)棒能达到的稳定速度.(2)棒从静止达到稳定速度所需时间.
解析:本题考查物体的动态分析和能的转化和定恒定律的应用
(1)电动机的输出功率P出=IU-I2r=6W
棒达到稳定时所受的牵引力为F=mg+F磁
而ε=BLvmI=ε/RF磁=BIL
∴F磁=B2L2vm/R
又因电动机的输出功率P出=Fvm=mgvm+B2L2vm2/R
可得vm=2m/s
(2)在棒从开始运动到达稳定速度的过程中,根据能量守恒定律有
P出t=mgh+mvm2/2+Q
解得完成此过程所需的时间t=1s
小结:电磁感应的过程总是伴随着能量的转化,而功是能量转化的量度,因此,要注意用功能关系分析解决此类问题.
【能力提升】
Ⅰ.知识与技能
1.如图13—45所示,挂在弹簧下面的条形磁铁的一端在闭合线圈内上下振动,如果空气阻力不计,则()
①.磁铁的振幅不变②.磁铁做阻尼振动
③.线圈中有逐渐变弱的直流电④.线圈中有逐渐变弱的交流电
A.①B.②④C.②③D.只有②正确
2.如图13—46所示,线圈L的电阻不计,则()
A.S闭合瞬间,A板带正电,B板带负电
B.S保持闭合,A板带正电,B板带负电
C.S断开瞬间,A板带正电,B板带负电
D.由于线圈电阻不计,电容器被短路,上述三种情况下两板都不带电
3.如图13—47所示电路(a)(b)中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡A发光()
A.在电路(a)中,断开S,A将渐渐变暗
B.在电路(a)中,断开S,A将先变得更亮,然后渐渐变暗
C.在电路(b)中,断开S,A将渐渐变暗
D.在电路(b)中,断开S,A立即熄灭
4.如图13—48所示,固定于水平绝缘面上的平行金属导轨不光滑,除R外其它电阻均不计,垂直于导轨平面有一匀强磁场,当质量为m的金属棒cd在水平恒力F作用下由静止向右滑动过程中,下列说法中正确的是()
A.水平恒力F对cd棒做的功等于电路中产生的电能
B.只有在cd棒做匀速运动时,F对cd棒做的功才等于电路中产生的电能
C.无论cd棒做何种运动,它克服磁场力做的功一定不等于电路中产生的电能
D.R两端电压始终等于cd棒中感应电动势的值
5.如图13—49所示,先后以速度v1和v2匀速地把同一线圈从同一位置拉出有界的匀强磁场,若v2=2v1,则在先后两种情况下()
A.线圈中感应电流之比为1:2
B.线圈中产生的热量之比为1:2
C.沿运动方向作用在线圈上的外力之比1:2
D.沿运动方向作用在线圈上的外力的功率之比1:2
Ⅱ.能力与素质
6.如图13—50所示,ef、gh为水平放置的平行光滑导轨,导轨间距为L,导轨一端接一定值电阻R,质量为m的金属棒cd垂直放在导轨上,导轨和金属棒的电阻均忽略不计,整个装置放在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面.现对金属棒施一水平向右的拉力,使棒向右运动,若保持拉力的功率恒为P,经一段时间t,棒的速度为v,求:(1)这时棒的加速度.(2)在时间t内电阻上产生的焦耳热.

7.如图13—51所示,质量为m的金属棒ab垂直架放在间距为L的水平放置的光滑的足够长的导轨PQ和MN上面,处于静止状态.两导轨左端P、M用导线连接,整个导轨处于磁感应强度为B、方向竖直向下的匀强磁场中,现有一水平向右的恒力F作用于金属棒ab上使之向右运动,通过大小为S的路程后,金属棒速度达到最大值.设金属棒的电阻为R,其它电阻不计,则在金属棒通过这段路程的过程中,金属棒上所产生的热量多大?
8.如图13—52所示,位于竖直平面内的金属线框abcd,其水平边ab=1.0m,竖直边bc=0.5m.线框的质量m=0.2kg,电阻R=2Ω,在线框的下方有一上、下边界均为水平方向的匀强磁场,磁场区域宽度HL2,磁感应强度B=1.0T,方向与线框平面垂直,使线框的cd边从距磁场上边界高h=0.7m处由静止开始下落.已知线框的cd边进入磁场后、ab边达到磁场上边界之前其速度已达到这一阶段的最大值.求从线框下落到cd边刚刚到达磁场下边界过程中,磁场作用于线框的安培力所做的总功.(g=10m/s2,空气阻力不计)
9.如图13—53所示,可绕固定轴OO′转动的正方形线框边长L=0.5m,ab边质量m=0.1kg,线框的总电阻R=1Ω,不计摩擦和空气阻力,线框从水平位置由静止释放,到达竖直位置历时0.1s,设线框始终处在方向竖直向下、磁感应强度B=4×10-2T的匀强磁场中.若这个过程中产生的焦耳热Q=0.3J,求线框到达竖直位置时ab边受到的安培力的大小和方向.
10.两个小车A和B置于光滑水平面同一直线上,且相距一段距离.车A上固定有闭合的螺线管,车B上固定有一条形磁铁,且条形磁铁的轴线与螺线管在同一直线上,如图13-54所示,车A的总质量为M1=1.0kg,车B的总质量M2=2.0kg.若车A以v0=6m/s的速度向原来静止的车B运动,求螺线管内因电磁感应产生的热量有多少焦?(一切摩擦阻力均可忽略不计)

【拓展研究】
(卫星悬绳发电实验)据报道,1992年7月,美国“阿特兰蒂斯”号航天飞机进行了一项卫星悬绳发电实验,实验取得了部分成功.航天飞机在地球赤道上空离地面约300km处由东向西飞行,相对地面的速度大约为6.5×103m/s,从航天飞机上向地心方向发射一颗卫星,携带一根长20km、电阻为800Ω的金属悬绳,使这根悬绳与地磁场垂直,做切割磁感线运动,假定这一范围内的地磁场是均匀的,磁感应强度为4×10-5T,且认为悬绳上各点的切割速度和航天飞机的速度相同,根据理论设计,通过电离层(由等离子体组成)的作用,悬绳可产生约3A的感应电流,试求:(1)金属悬绳中产生的感应电动势;(2)悬绳两端的电压;(3)航天飞机绕地球运行一圈悬绳输出的电能(已知地球半径为6400km)

效果验收
1.在电磁感应现象中,下列几种说法中错误的是()
①感应电流的磁场总是阻碍原来磁场的变化
②闭合线框放在变化的磁场中一定能产生感应电流
③闭合线框在匀强磁场中作切割磁感线运动,一定能产生感应电流
④感应电流的磁场总是跟原来磁场的方向相反
A.②③B.①④C.②③④D.①②③
2.如图13—55所示,有一个闭合线圈悬吊在一个通电长螺线管的左侧,如果要使线圈中产生图示方向的感应电流,并且使线圈固定不动,则滑动变阻器的滑片P的移动方向以及固定线圈的作用力的方向是()
A.滑片向左移动,力的方向向左B.滑片向左移动,力的方向向右
C.滑片向右移动,力的方向向左D.滑片向右移动,力的方向向右
3.如图13—56所示,闭合金属环从高h的曲面滚下,沿曲面的另一侧上升,设闭合金属环初速为零,摩擦不计,则()
A.若是匀强磁场,则环上升高度小于h
B.若是匀强磁场,则环上升高度大于h
C.若是非匀强磁场,则环上升高度等于h
D.若是非匀强磁场,则环上升高度小于h
4.如图13—57所示,L为电阻很小的线圈,G1和G2为内阻可不计,零点在表盘中央的电流计.当开关S处于闭合状态时,两表指针皆偏向右方,那么,当开关S断开时,将出现下列哪种现象()
A.G1和G2的指针都立即回到零
B.G1的指针立即回到零点,而G2的指针缓慢地回到零点
C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点
D.G1的指针先立即偏向左方,然后缓慢地回到零点,而G2的指针缓慢地回到零点
5.如图13-58所示,一条形磁铁,从静止开始,穿过采用双线绕成的闭合线圈,条形磁铁在穿过线圈过程中可能做()
A.减速运动B.匀速运动
C.自由落体运动D.非匀变速运动
6.如图13-59(甲)所示的线圈A通有交变电流,(乙)表示线圈A中电流随时间的变化图线,在线圈A左侧固定放置一个闭合金属圆环B,设电流由a端流入、b端流出为正,那么t=0开始计时的第二个半周期内,B环中感应电流I和受到的安培力F的变化情况,正确的是()
A.I大小不变,F先变小后变大
B.I先变大后变小,F先变小后变大
C.I的方向改变,F的方向不变
D.I的方向不变,F的方向不变
7.一矩形线圈垂直于匀强磁场并绕位于线圈平面内的固定轴转动.线圈中的感应电动势ε随时间t的变化如图13—60所示,下面说法中正确的是()
A.t1时刻通过线圈的磁通量为零
B.t2时刻通过线圈的磁通量的绝对值最大
C.t3时刻通过线圈的磁通量变化率的绝对值最大
D.每当ε变换方向时,通过线圈的磁通量绝对值都为最大
8.如图13—61所示,图中M是通电螺线管,通以如图所示的交流电,N为环形铝圈,与螺线管共轴放置,图中表示电流I的箭头所指方向为正,那么下列说法中错误的是()
A.在t1~t2时间内,铝圈受到向右的力B.在t2~t3时间内,铝圈受到向左的力
C.t1时刻,铝圈受力最大D.t2时刻,铝圈受力为零
9.如图13—62所示,一根金属棒MN放在倾角为α的平行金属导轨ABCD上处于静止状态,若在垂直于导轨平面的方向外加一磁感应强度逐渐增强的匀强磁场,金属棒仍处于静止,则在此过程中导轨对金属棒的摩擦力f的大小为()
A.若磁场垂直斜面向下,则f一直减小B.若磁场垂直斜面向下,则f先减小后增大
C.若磁场垂直斜面向上,则f一直增大D.若磁场垂直斜面向上,则f先增大后减小
10.铁路上使用一种电磁装置向控制中心传输信号以确定火车的位置,磁铁能产生匀强磁场,被安装在火车首节车厢下面,如图13--63甲所示(俯视图).当它经过安放在两铁轨间的线圈时,便会产生一电信号,被控制中心接收.当火车以恒定速度通过线圈时,表示线圈两端的电压随时间变化关系的是图乙中的()
11.如图13—64所示,竖直放置的螺线管与平行导轨ab、cd连接,导体棒MN与导轨接触良好,能沿导轨左右运动,运动的v-t图线如图所示,匀强磁场垂直于导轨平面,螺线管正下方水平桌面上有一铜环.欲使铜环对桌面的压力增大,MN运动的v-t图线应是()
二、填空题
12.如图13—65所示,两根平行的光滑导轨,其电阻不计,导线ab、cd跨在导轨上,ab的电阻R大于cd的电阻r,当cd在外力F1的作用下匀速向右滑动时,ab在外力F2的作用下保持静止,则F1F2,UabUcd
13.边长为L的正方形线框的电阻为R,它将以速度v匀速穿过一宽为d的有界磁场,磁场方向与线框平面垂直,磁感应强度为B,经计算线框从开始进入到完全穿出磁场中所产生的焦耳热为Q.若Ld,Q=;若Ld,Q=.
14.两块完全相同的电流表甲和乙连接如图13-66所示.当用手将甲表指针向右拨动时,乙表指针将向摆动.
三、计算题
15.一个共有10匝的闭合导线框,总电阻大小为10Ω,面积大小为0.02m2,且与磁场保持垂直.现若在0.01s内磁感强度B由1.2T均匀减少到零,再反向增加到0.8T,框内感应电流大小为多少?
16.如图13—67所示,一边长为L的正方形金属框,质量为m、电阻为R,用细线把它悬挂于一个有界磁场边缘,金属框上半部处于磁场内,磁场随时间均匀变化,满足B=kt关系,已知细线能承受最大拉力T=2mg,从t=0开始计时,求经过多长时间细线会被拉断.
17.如图13—68所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽度为L=0.50m.一根质量为m=0.50kg的均匀金属导体棒ab横跨在导轨上且接触良好,abMP恰好围成一个正方形.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.ab棒与导轨间的最大静摩擦力和滑动摩擦力均为fm=1.0N,ab棒的电阻为R=0.10Ω,其它各部分电阻均不计.开始时,磁感应强度B0=0.50T
(1)若从某时刻(t=0)开始,调节磁感应强度的大小使其以ΔBΔt=0.20T/s的变化率均匀增加.求经过多长时间ab棒开始滑动?此时通过ab棒的电流大小和方向如何?
(2)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它以a=4.0m/s2的加速度匀加速运动.推导出此拉力T的大小随时间变化的函数表达式.并在图乙所示的坐标纸上作出拉力T随时间t变化的T—t图线.
18.如图13—69所示,有一种磁性加热装置,其关键部分由焊接在两个等大金属环上的n根间距相等的平行金属条组成,成“鼠笼”状,每根金属条的长度为L,电阻为R,金属环的直径为D,电阻不计.图中虚线所示的空间范围内存在着磁感应强度为B的匀强磁场,磁场宽度恰等于金属条间距,当金属环以角速度ω绕过两圆环的圆心的轴OOˊ旋转时,始终有一根金属条在垂直切割磁感线,“鼠笼”的转动由一台电动机带动,这套设备的效率为η,求电动机输出的机械功率.

第十二章电磁感应
专题一1.D2.C3.A4.D5.A6.C7.A8.变暗伸长9.B10.弹簧向左摆动,同时圆面积缩小拓展研究(1)C(2)B
专题二1.B2.C3.Bav/R4.1:21:41:25.A6.A7.B8.C9.2qR/πNd210.2mgR/B2d2sin2θ拓展研究:C
专题三1.D2.D3.B4.A5.D6.C7.B8.FR/B2d22F/3m9.(1)I=kL2/r方向:逆时针方向(2)F=(B0+kt1)kL3/r(3)B=B0L/(L+vt)10.v0=r0gd(r+R)/LRvq/m=gd(r+R)/BLvR拓展研究:Q=BLCatF外=ma+B2L2Ca
专题四:1.B2.A3.A4.D5.ABC6.a=p/mv-B2L2v/mR,Q=Pt-mv2/27.Fs-m(FR/B2L2)2/28.-0.8J9.8×10-4N水平向左10.12J
拓展研究:(1)5.2×103V(2)2.8×103V(3)5.4×107J
效果验收:1.C2.B3.D4.D5.C6.A7.D8.C9.B10.C11.AC12.==13.2B2L3v/R,2B2L2vd/R14.左15.4A16.2mgR/K2L317(1)17.5s,0.5A由b向a(2)T=2.5t+3(N)图略18(n-1)B2L2ω2D2/4nηR

文章来源:http://m.jab88.com/j/71218.html

更多

最新更新

更多