88教案网

高考物理第一轮考点复习教案12

俗话说,居安思危,思则有备,有备无患。准备好一份优秀的教案往往是必不可少的。教案可以保证学生们在上课时能够更好的听课,帮助教师提高自己的教学质量。关于好的教案要怎么样去写呢?急您所急,小编为朋友们了收集和编辑了“高考物理第一轮考点复习教案12”,相信能对大家有所帮助。

静悟导读提纲:(五)电场(选修3-1)

一、【考纲对本模块的要求】

主体

内容

要求静

物质的电结构、电荷守恒

静电现象的解释

点电荷

库仑定律

静电场

电场强度、点电荷的场强

电场线

电势能、电势

电势差

匀强电场中电势差与电场强度的关系。

带电粒子在匀强电场中的运动

示波管

常用的电容器

电容器的电压、电荷量和电容的关系

二、【考试说明解读】

本章知识结构

3.电场强度:电场强度是矢量

习题1:如图,在x轴上的x=-1和x=1两点分别固定电荷量为-4Q和+9Q的点电荷。求:x轴上合场强为零的点的坐标。并求在哪个范围内的场强沿x轴的正方向。

解答:由点电荷的的电场强度公式和叠加原理,得x=-3处的合场强为零,则在-1x-3)和x9范围内电场强度沿x轴的正方向

M

N

P

a

b

习题2:图中a.b是两个点电荷,它们的电量分别为Q1.Q2,MN是ab连线的中垂线,P是中垂线上的一点。下列哪中情况能使P点场强方向指向MN的左侧?

A.Q1.Q2都是正电荷,且Q1Q2

B.Q1是正电荷,Q2是负电荷,且Q1|Q2|

C.Q1是负电荷,Q2是正电荷,且|Q1|Q2

D.Q1.Q2都是负电荷,且|Q1||Q2|

答:ACD

4.电场线

要牢记以下5种常见的电场的电场线,特别注意等量同(异)种连线及其连线中垂线的特点

注意电场线的特点和电场线与等势面间的关系:

①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。②电场线互不相交。

习题:法拉第首先提出用电场线形象生动地描绘电场,

图为点电荷a、b所形成电场的电场线分布图

以下说法为中正确的是()

A.a、b为异种电荷,a带电荷量大于b带电量

B.a、b为异种电荷,a带电荷量小于b带电量

C.a、b为同种电荷,a带电荷量大于b带电量

D.a、b为同种电荷,a带电荷量小于b带电量

答:B

5.电场力做功、电势、电势能、电势差及其关系

这是高考中经常考查的知识点,要重点掌握。填好以下图,理解之间的关系

电势、电势能和电势差分别是怎样定义的?

电场力做功

电势能

电势

电势差

W=ΔEP

习题:(09年山东卷)如图所示,在x轴上关于原点O对称的两点固定放置等量异种点电荷+Q和-Q,x轴上的P点位于的右侧。下列判断正确的是:AC

A.在x轴上还有一点与P点电场强度相同

B.在x轴上还有两点与P点电场强度相同

C.若将一试探电荷+q从P点移至O点,电势能增大

D.若将一试探电荷+q从P点移至O点,电势能减小

6.匀强电场中电场强度和电势差间的关系

7.带电粒子在电场中的运动

(1)直线运动

习题1:一负电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的速度—时间图象如右图所示.则A、B两点所在区域的电场线分布情况可能是下图中的:A

(2)类平抛运动:注意两个推论,速度的偏角和位移偏角的关系

8.示波管

习题:如图所示为示波管的原理图,电子枪中炽热的金属丝可以发射电子,初速度很小,可视为零。电子枪的加速电压为U1,紧挨着是偏转电极YY和XX,偏转电极的电压为零时,电子经加速电压加速后会打在荧光屏的正中间,图示坐标的O点,若要电子打在图示坐标的第三象限,则:D

A.X、Y极板接电源的正极,X,、Y,接电源的负极

B.X、Y,极板接电源的正极,X,、Y接电源的负极

C.X,、Y极板接电源的正极,X、Y,接电源的负极

D.X,、Y,极板接电源的正极,X、Y接电源的负极

相关阅读

高考物理第一轮考点复习教案4


第三章牛顿运动定律
知识网络:
单元切块:
按照考纲的要求,本章内容可以分成三部分,即:牛顿第一定律、惯性、牛顿第三定律;牛顿第二定律;牛顿运动定律的应用。其中重点是对牛顿运动定律的理解、熟练运用牛顿运动定律分析解决动力学问题。难点是力与运动的关系问题。

牛顿第一定律惯性牛顿第三定律

教学目标:
1.理解牛顿第一定律、惯性;理解质量是惯性大小的量度
2.理解牛顿第三定律,能够区别一对作用力和一对平衡力
3.掌握应用牛顿第一定律、第三定律分析问题的基本方法和基本技能
教学重点:理解牛顿第一定律、惯性概念
教学难点:惯性
教学方法:讲练结合,计算机辅助教学
教学过程:
一、牛顿第一定律
1.牛顿第一定律(惯性定律):一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
这个定律有两层含义:
(1)保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要用力来维持。
(2)要使物体的运动状态(即速度包括大小和方向)改变,必须施加力的作用,力是改变物体运动状态的原因。
点评:
①牛顿第一定律导出了力的概念
力是改变物体运动状态的原因。(运动状态指物体的速度)又根据加速度定义:
,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加
速度的原因”。)
②牛顿第一定律导出了惯性的概念
一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变
的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。
③牛顿第一定律描述的是理想化状态
牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在
的。物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成
牛顿第二定律在F=0时的特例。
2.惯性:物体保持原来匀速直线运动状态或静止状态的性质。对于惯性理解应注意以下三点:
(1)惯性是物体本身固有的属性,跟物体的运动状态无关,跟物体的受力无关,跟
物体所处的地理位置无关。
(2)质量是物体惯性大小的量度,质量大则惯性大,其运动状态难以改变。
(3)外力作用于物体上能使物体的运动状态改变,但不能认为克服了物体的惯性。
【例1】下列关于惯性的说法中正确的是
A.物体只有静止或做匀速直线运动时才有惯性
B.物体只有受外力作用时才有惯性
C.物体的运动速度大时惯性大
D.物体在任何情况下都有惯性
解析:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动状态及受力情况无关,故只有D项正确。
点评:处理有关惯性问题,必须深刻理解惯性的物理意义,抛开表面现象,抓住问题本质。
【例2】关于牛顿第一定律的下列说法中,正确的是
A.牛顿第一定律是实验定律
B.牛顿第一定律说明力是改变物体运动状态的原因
C.惯性定律与惯性的实质是相同的
D.物体的运动不需要力来维持
解析:牛顿第一定律是物体在理想条件下的运动规律,反映的是物体在不受力的情况下所遵循的运动规律,而自然界中不受力的物体是不存在的.故A是错误的.惯性是物体保持原有运动状态不变的一种性质,惯性定律(即牛顿第一定律)则反映物体在一定条件下的运动规律,显然C不正确.由牛顿第一定律可知,物体的运动不需要力来维持,但要改变物体的运动状态则必须有力的作用,答案为B、D
【例3】在一艘匀速向北行驶的轮船甲板上,一运动员做立定跳远,若向各个方向都用相同的力,则()
A.向北跳最远
B.向南跳最远
C.向东向西跳一样远,但没有向南跳远
D.无论向哪个方向都一样远
解析:运动员起跳后,因惯性其水平方向还具有与船等值的速度,所以无论向何方跳都一样。因此应选答案D。
点评:此题主要考查对惯性及惯性定律的理解,解答此题的关键是理解运动员起跳过程中,水平方向若不受外力作用将保持原有匀速运动的惯性,从而选出正确答案
【例4】某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见()
A.力是使物体产生运动的原因
B.力是维持物体运动速度的原因
C.力是使物体速度发生改变的原因
D.力是使物体惯性改变的原因
解析:由牛顿第一定律的内容可知,一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,说明一旦物体具有某一速度,只要没有加速或减速的原因,这个速度将保持不变,根据这种观点看来,力不是维持物体的运动即维持物体速度的原因,而是改变物体运动状态即改变物体速度的原因,故选项C正确。
【例5】如图中的甲图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是()
A.在线的A端慢慢增加拉力,结果CD线拉断
B.在线的A端慢慢增加拉力,结果AB线拉断
C.在线的A端突然猛力一拉,结果AB线拉断
D.在线的A端突然猛力一拉,结果CD线拉断
解析:如图乙,在线的A端慢慢增加拉力,使得重球有足够的时间发生向下的微小位移,以至拉力T2逐渐增大,这个过程进行得如此缓慢可以认为重球始终处于受力平衡状态,即T2=T1+mg,随着T1增大,T2也增大,且总是上端绳先达到极限程度,故CD绳被拉断,A正确。若在A端突然猛力一拉,因为重球质量很大,力的作用时间又极短,故重球向下的位移极小,以至于上端绳未来得及发生相应的伸长,T1已先达到极限强度,故AB绳先断,选项C也正确。
二、牛顿第三定律
1.对牛顿第三定律理解应注意:
(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条上
(2)作用力与反作用力总是成对出现.同时产生,同时变化,同时消失
(3)作用力和反作用力在两个不同的物体上,各产生其效果,永远不会抵消
(4)作用力和反作用力是同一性质的力
(5)物体间的相互作用力既可以是接触力,也可以是“场”力
定律内容可归纳为:同时、同性、异物、等值、反向、共线
2.区分一对作用力反作用力和一对平衡力
一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。

一对作用力和反作用力一对平衡力
作用对象两个物体同一个物体
作用时间同时产生,同时消失不一定同时产生或消失
力的性质一定是同性质的力不一定是同性质的力
力的大小关系大小相等大小相等
力的方向关系方向相反且共线方向相反且共线

3.一对作用力和反作用力的冲量和功
一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。
【例6】汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知()
A.汽车拉拖车的力大于拖车拉汽车的力
B.汽车拉拖车的力等于拖车拉汽车的力
C.汽车拉拖车的力大于拖车受到的阻力
D.汽车拉拖车的力等于拖车受到的阻力
解析:汽车拉拖车的力与拖车拉汽车的力是一对作用力和反作用力,根据牛顿第三定律得知,汽车拉拖车的力与拖车拉汽车的力必定是大小相等方向相反的,因而B正确,A错误。由于题干中说明汽车拉拖车在水平道路上沿直线加速行驶,故沿水平方向拖车只受到两个外力作用:汽车对它的拉力和地面对它的阻力。因而由牛顿第二定律得知,汽车对它的拉力必大于地面对它的阻力。所以C对,D错。
【例7】甲、乙二人拔河,甲拉动乙向左运动,下面说法中正确的是
A.做匀速运动时,甲、乙二人对绳的拉力大小一定相等
B.不论做何种运动,根据牛顿第三定律,甲、乙二人对绳的拉力大小一定相等
C.绳的质量可以忽略不计时,甲乙二人对绳的拉力大小一定相等
D.绳的质量不能忽略不计时,甲对绳的拉力一定大于乙对绳的拉力
解析:甲、乙两人对绳的拉力都作用在绳上,即不是作用力和反作用力.故B项错误.
做匀速运动时,绳子受力平衡,即甲、乙两人对绳的拉力大小一定相等,故A项正确.?绳的质量可以忽略不计时,绳子所受合力为零.故甲、乙二人对绳的拉力大小一定相等.故C项正确.
绳的质量不能忽略不计时,如果有加速度,当加速度向右时,乙对绳的拉力大于甲对绳的拉力.故D项不正确.
故正确选项为AC。
【例8】物体静止在斜面上,以下几种分析中正确的是
A.物体受到的静摩擦力的反作用力是重力沿斜面的分力
B.物体所受重力沿垂直于斜面的分力就是物体对斜面的压力
C.物体所受重力的反作用力就是斜面对它的静摩擦力和支持力这两个力的合力
D.物体受到的支持力的反作用力,就是物体对斜面的压力
解析:物体受到的静摩擦力的反作用力是物体对斜面的静摩擦力.故A错误.
物体对斜面的压力在数值上等于物体所受重力沿垂直于斜面的分力.故B错误.
物体所受的重力的反作用力是物体对地球的吸引力.故C错误.
故正确选项为D。
【例9】人走路时,人和地球间的作用力和反作用力的对数有
A.一对B.二对C.三对D.四对
解析:人走路时受到三个力的作用即重力、地面的支持力和地面对人的摩擦力,力的作用总是相互的,这三个力的反作用力分别是人对地球的吸引作用,人对地面的压力和人对地面的摩擦力,所以人走路时与地球间有三对作用力和反作用力,选C.
【例10】物体静止于水平桌面上,则
A.桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力
B.物体所受的重力和桌面对它的支持力是一对作用力与反作用力
C.物体对桌面的压力就是物体的重力,这两个力是同一种性质的力
D.物体对桌面的压力和桌面对物体的支持力是一对平衡的力
解析:物体和桌面受力情况如图所示.
对A选项,因物体处于平衡状态,且FN与G作用于同一物体,因此FN和G是一对平衡力,故A正确.
对B选项,因作用力和反作用力分别作用在两个物体上,故B错.
对C选项,因压力是弹力,而弹力与重力是性质不同的两种力,故C错.
对D选项,由于支持力和压力是物体与桌面相互作用(挤压)而产生的,因此FN与FN′.是一对作用力和反作用力,故D错.
答案:A
点评:
(1)一对作用力和反作用力与一对平衡力的最直观的区别就是:看作用点,二力平衡时此两力作用点一定是同一物体;作用力和反作用力的作用点一定是分别在两个物体上.
(2)两个力是否是“作用力和反作用力”的最直观区别是:看它们是否是因相互作用而产生的.如B选项中的重力和支持力,由于重力不是因支持才产生的,因此,这一对力不是作用力和反作用力.
三、针对训练
1.火车在长直水平轨道上匀速行驶,坐在门窗密闭的车厢内的一人将手中的钥匙相对车竖直上抛,当钥匙(相对车)落下来时()
A.落在手的后方B.落在在手的前方
C.落在手中D.无法确定
2.根据牛顿第一定律,我们可以得到如下的推论()
A.静止的物体一定不受其它外力作用
B.惯性就是质量,惯性是一种保持匀速运动或静止状态的特性
C.物体的运动状态发生了改变,必定受到外力的作用
D.力停止作用后,物体就慢慢停下来
3.关于物体的惯性,下列说法中正确的是()
A.只有处于静止或匀速运动状态的物体才具有惯性
B.只有运动的物体才能表现出它的惯性
C.物体做变速运动时,其惯性不断变化
D.以上结论不正确
4.伽利略的理想实验证明了()
A.要物体运动必须有力作用,没有力作用物体将静止
B.要物体静止必须有力作用,没有力作用物体就运动
C.物体不受外力作用时,一定处于静止状态
D.物体不受外力作用时,总保持原来的匀速直线运动或静止状态
5.关于惯性,下述哪些说法是正确的()
A.惯性除了跟物体质量有关外,还跟物体速度有关
B.物体只有在不受外力作用的情况下才能表现出惯性
C.乒乓球可快速抽杀,是因为乒乓球的惯性小的缘故
D.战斗机投人战斗时,必须丢掉副油箱,减小惯性以保证其运动的灵活性
6.如图所示,一个劈形物体M放在固定的粗糙的斜面上,上面成水平.在水平面上放一光滑小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是()
A.沿斜面向下的直线
B.竖直向下的直线
C.无规则曲线
D.抛物线
7.关于作用力与反作用力以及相互平衡的两个力的下列说法中,正确的是()
A.作用力与反作用力一定是同一性质的力
B.作用力与反作用力大小相等,方向相反,因而可以互相抵消
C.相互平衡的两个力的性质,可以相同,也可以不同
D.相互平衡的两个力大小相等,方向相反,同时出现,同时消失
8.质量为M的木块静止在倾角为α的斜面上,设物体与斜面间的动摩擦因数为μ,则下列说法正确的是()
A.木块受重力,斜面对它的支持力和摩擦力的作用
B.木块对斜面的压力与斜面对木块的支持力大小相等,方向相反
C.斜面对木块的摩擦力与重力沿科面向下的分力Mgsinα大小相等,方向相反
D.斜面对木块的摩擦力大小可以写成μMgcosα
9.下面关于惯性的说法中,正确的是
A.运动速度大的物体比速度小的物体难以停下来,所以运动速度大的物体具有较大的惯性
B.物体受的力越大,要它停下来就越困难,所以物体受的推力越大,则惯性越大
C.物体的体积越大,惯性越大
D.物体含的物质越多,惯性越大
10.关于作用力与反作用力,下列说法中正确的有
A.物体相互作用时,先有作用力,后有反作用力
B.作用力与反作用力大小相等,方向相反,作用在同一直线上,因而这二力平衡
C.作用力与反作用力可以是不同性质的力,例如,作用力是弹力,其反作用力可能是摩擦力
D.作用力和反作用力总是同时分别作用在相互作用的两个物体上
11.(2002年春上海大综试题)根据牛顿运动定律,以下选项中正确的是
A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置
B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方
C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方
D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方
12.关于物体的惯性,下列说法正确的是
A.只有处于静止或匀速直线运动的物体才具有惯性
B.只有运动的物体才能表现出它的惯性
C.物体做变速运动时,其惯性不断变化
D.以上说法均不正确
13.下列现象中能直接由牛顿第一定律解释的是
A.竖直上升的气球上掉下的物体,仍能继续上升一定高度后才竖直下落
B.水平匀速飞行的飞机上释放的物体,从飞机上看是做自由落体运动
C.水平公路上运动的卡车,速度逐渐减小直至停止
D.用力将完好的鸡蛋敲碎
14.火车在平直轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为
A.人跳起时,车厢内的空气给他以向前的力,带着他随同火车一起向前运动
B.人跳起瞬间,车厢地板给他一个向前的力,推动他随同火车一起向前运动
C.人跳起后,车在继续向前运动,所以人落下必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已
D.人跳起后直到落地,在水平方向上保持与车相同的速度
15.大人拉小孩,下列说法正确的是
A.当小孩被大人拉走时,大人拉力大于小孩拉力
B.当小孩赖着不动时,大人拉力大于小孩的拉力
C.不管什么情况下,大人拉力总大于小孩的拉力,因为大人的力气总比小孩大
D.不管什么情况下,大人拉力与小孩拉力大小相等
参考答案:
1.C2.C3.D4.D5.CD
6.B7.AC8.ABC9.D10.D
11.C12.D13.AB14.D15.D
教学反馈
动力学是力与运动学的结合,经过前两章的复习以及学生在高一所学的基础上,从课堂气氛可以反映出学生已经进入高三复习状态,从学生反映看,学生对牛顿运动定律很熟悉,区分
作用力反作用力与一对平衡力部分学生还掌握不是很好,但是这些主要靠记忆,相信学生通过复习应该能加深印象。
牛顿第二定律

教学目标:
1.理解牛顿第二定律,能够运用牛顿第二定律解决力学问题
2.理解力与运动的关系,会进行相关的判断
3.掌握应用牛顿第二定律分析问题的基本方法和基本技能
教学重点:理解牛顿第二定律
教学难点:力与运动的关系
教学方法:讲练结合,计算机辅助教学
教学过程:
一、牛顿第二定律
1.定律的表述
物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma(其中的F和m、a必须相对应)
点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。
若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
2.对定律的理解:
(1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零。
(2)矢量性:牛顿第二定律公式是矢量式。公式只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致.
(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。即F与a均是对同一个研究对象而言。
(4)相对性:牛顿第二定律只适用于惯性参照系。
(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子。
3.牛顿第二定律确立了力和运动的关系
牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
4.应用牛顿第二定律解题的步骤
(1)明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:
F合=m1a1+m2a2+m3a3+……+mnan
对这个结论可以这样理解:
先分别以质点组中的每个物体为研究对象用牛顿第二定律:
∑F1=m1a1,∑F2=m2a2,……∑Fn=mnan,
将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。
(2)对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。
二、应用举例
1.力与运动关系的定性分析
【例1】如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是
A.小球刚接触弹簧瞬间速度最大
B.从小球接触弹簧起加速度变为竖直向上
C.从小球接触弹簧到到达最低点,小球的速度先增大后减小
D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大
解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。
【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则
A.物体从A到O先加速后减速
B.物体从A到O加速运动,从O到B减速运动
C.物体运动到O点时所受合力为零
D.物体从A到O的过程加速度逐渐减小
解析:物体从A到O的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.
当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.
此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.
正确选项为A、C.
点评:
(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.
(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.
2.牛顿第二定律的瞬时性
【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的某种解法:
解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。mg,,解得=mgtanθ,剪断线的瞬间,T2突然消失,物体却在T2反方向获得加速度,因为mgtanθ=ma所以加速度a=gtanθ,方向在T2反方向。你认为这个结果正确吗?说明理由。
(2)若将图(1)中的细线L1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由。
解析:(1)这个结果是错误的。当L2被剪断的瞬间,因T2突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L1斜向下方,为a=gsinθ。
(2)这个结果是正确的。当L2被剪断时,T2突然消失,而弹簧还来不及形变(变化要有一个过程,不能突变),因而弹簧的弹力T1不变,它与重力的合力与T2是一对平衡力,等值反向,所以L2剪断时的瞬时加速度为a=gtanθ,方向在T2的反方向上。
点评:牛顿第二定律F合=ma反映了物体的加速度a跟它所受合外力的瞬时对应关系.物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失.
3.正交分解法
【例4】如图所示,质量为4kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10m/s2)
解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F沿两坐标轴方向分解,则两坐标轴上的合力分别为
物体沿水平方向加速运动,设加速度为a,则x轴方向上的加速度ax=a,y轴方向上物体没有运动,故ay=0,由牛顿第二定律得
所以
又有滑动摩擦力
以上三式代入数据可解得物体的加速度a=0.58m/s2
点评:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.
4.合成法与分解法
【例5】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)求车厢运动的加速度并说明车厢的运动情况.
(2)求悬线对球的拉力.
解析:
(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg和线的拉力FT,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为
F合=mgtan37°
由牛顿第二定律F合=ma可求得球的加速度为
7.5m/s2
加速度方向水平向右.
车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.
(2)由图可得,线对球的拉力大小为
N=12.5N
点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.
【例6】如图所示,m=4kg的小球挂在小车后壁上,细线与竖直方向成37°角。求:
(1)小车以a=g向右加速;
(2)小车以a=g向右减速时,细线对小球的拉力F1和后壁对小球的压力F2各多大?
解析:
(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,因此G和F1的合力一定水平向左,所以F1的大小可以用平行四边形定则求出:F1=50N,可见向右加速时F1的大小与a无关;F2可在水平方向上用牛顿第二定律列方程:F2-0.75G=ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。)
(2)必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F1的方向会改变。所以必须先求出这个临界值。当时G和F1的合力刚好等于ma,所以a的临界值为。当a=g时小球必将离开后壁。不难看出,这时F1=mg=56N,F2=0
【例7】如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。求:(1)箱以加速度a匀加速上升,(2)箱以加速度a向左匀加速运动时,线对木块的拉力F1和斜面对箱的压力F2各多大?
解:(1)a向上时,由于箱受的合外力竖直向上,重力竖直向下,所以F1、F2的合力F必然竖直向上。可先求F,再由F1=Fsinα和F2=Fcosα求解,得到:F1=m(g+a)sinα,F2=m(g+a)cosα
显然这种方法比正交分解法简单。
(2)a向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解a),然后分别沿x、y轴列方程求F1、F2:
F1=m(gsinα-acosα),F2=m(gcosα+asinα)
经比较可知,这样正交分解比按照水平、竖直方向正交分解列方程和解方程都简单。
点评:还应该注意到F1的表达式F1=m(gsinα-acosα)显示其有可能得负值,这意味着绳对木块的力是推力,这是不可能的。这里又有一个临界值的问题:当向左的加速度a≤gtanα时F1=m(gsinα-acosα)沿绳向斜上方;当agtanα时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。
5.在动力学问题中的综合应用
【例7】如图所示,质量m=4kg的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F作用下,从静止起向右前进t1=2.0s后撤去F,又经过t2=4.0s物体刚好停下。求:F的大小、最大速度vm、总位移s。
解析:由运动学知识可知:前后两段匀变速直线运动的加速度a与时间t成反比,而第二段中μmg=ma2,加速度a2=μg=5m/s2,所以第一段中的加速度一定是a1=10m/s2。再由方程可求得:F=54.5N
第一段的末速度和第二段的初速度相等都是最大速度,可以按第二段求得:vm=a2t2=20m/s又由于两段的平均速度和全过程的平均速度相等,所以有m
点评:需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。
可见,在动力学问题中应用牛顿第二定律,正确的受力分析和运动分析是解题的关键,求解加速度是解决问题的纽带,要牢牢地把握住这一解题的基本方法和基本思路。我本在下一专题将详细研究这一问题。
三、针对训练
1.下列关于力和运动关系的几种说法中,正确的是
A.物体所受合外力的方向,就是物体运动的方向
B.物体所受合外力不为零时,其速度不可能为零
C.物体所受合外力不为零,其加速度一定不为零
D.合外力变小的,物体一定做减速运动
2.放在光滑水平面上的物体,在水平方向的两个平衡力作用下处于静止状态,若其中一个力逐渐减小到零后,又恢复到原值,则该物体的
A.速度先增大后减小
B.速度一直增大,直到某个定值
C.加速度先增大,后减小到零
D.加速度一直增大到某个定值
3.下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是
A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比
B.由可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比
C.由可知,物体的加速度与其所受合外力成正比,与其质量成反比
D.由可知,物体的质量可以通过测量它的加速度和它所受到的合外力而求得
4.在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法正确的是
A.在任何情况下k都等于1
B.因为k=1,所以k可有可无
C.k的数值由质量、加速度和力的大小决定
D.k的数值由质量、加速度和力的单位决定
5.对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用的瞬间
A.物体立即获得速度
B.物体立即获得加速度
C.物体同时获得速度和加速度
D.由于物体未来得及运动,所以速度和加速度都为零
6.质量为1kg的物体受到两个大小分别为2N和2N的共点力作用,则物体的加速度大小可能是
A.5m/s2B.3m/s2C.2m/s2D.0.5m/s2
7.如图所示,质量为10kg的物体,在水平地面上向左运动.物体与水平面间的动摩擦因数为0.2.与此同时,物体受到一个水平向右的推力F=20N的作用,则物体的加速度为(g取10m/s2)
A.0B.4m/s2,水平向右
C.2m/s2,水平向右D.2m/s2,水平向左
8.质量为m的物体放在粗糙的水平面上,水平拉力F作用于物体上,物体产生的加速度为a,若作用在物体上的水平拉力变为2F,则物体产生的加速度
A.小于aB.等于a
C.在a和2a之间D.大于2a
9.物体在力F作用下做加速运动,当力F逐渐减小时,物体的加速度________,速度______;当F减小到0时,物体的加速度将_______,速度将________.(填变大、变小、不变、最大、最小和零)等.
10.如图所示,物体A、B用弹簧相连,mB=2mA,A、B与地面间的动摩擦因数相同,均为μ,在力F作用下,物体系统做匀速运动,在力F撤去的瞬间,A的加速度为_______,B的加速度为_______(以原来的方向为正方向).
11.甲、乙两物体的质量之比为5∶3,所受外力大小之比为2∶3,则甲、乙两物体加速度大小之比为.
12.质量为8×103kg的汽车,以1.5m/s2的加速度沿水平路面加速,阻力为2.5×103N,那么汽车的牵引力为N.
13.质量为1.0kg的物体,其速度图像如图所示,4s内物体所受合外力的最大值是N;合外力方向与运动方向相反时,合外力大小为N.
14.在质量为M的气球下面吊一质量为m的物体匀速上升.某时刻悬挂物体的绳子断了,若空气阻力不计,物体所受的浮力大小不计,求气球上升的加速度.

参考答案:
1.C2.BC3.CD4.D5.B6.ABC?7.B8.D
9.变小、增大、为零、不变10.0;-μg
11.2∶512.1.45×10413.4214.
教学后记
学生通过复习掌握了解决动力学两类问题的方法,但是对于比较复杂的综合性题目,
学生解起来有一定的难度,在以后的复习中应注意加强训练。

牛顿运动定律的应用

教学目标:
1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤
2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解
3.理解超重、失重的概念,并能解决有关的问题
4.掌握应用牛顿运动定律分析问题的基本方法和基本技能
教学重点:牛顿运动定律的综合应用
教学难点:受力分析,牛顿第二定律在实际问题中的应用
教学方法:讲练结合,计算机辅助教学
教学过程:
一、牛顿运动定律在动力学问题中的应用
1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题):
(1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.
(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向).
但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.
两类动力学基本问题的解题思路图解如下:

可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。
点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如
等.
2.应用牛顿运动定律解题的一般步骤
(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型。
(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象。
(3)分析研究对象的受力情况和运动情况。
(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。
(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。
(6)求解方程,检验结果,必要时对结果进行讨论。
3.应用例析
【例1】一斜面AB长为10m,倾角为30°,一质量为2kg的小物体(大小不计)从斜面顶端A点由静止开始下滑,如图所示(g取10m/s2)
(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B点时的速度及所用时间.
(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数μ是多少?
解析:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。
(1)以小物块为研究对象进行受力分析,如图所示。物块受重力mg、斜面支持力N、摩擦力f,
垂直斜面方向上受力平衡,由平衡条件得:mgcos30°-N=0
沿斜面方向上,由牛顿第二定律得:mgsin30°-f=ma
又f=μN
由以上三式解得a=0.67m/s2
小物体下滑到斜面底端B点时的速度:3.65m/s
运动时间:s
(2)小物体沿斜面匀速下滑,受力平衡,加速度a=0,有
垂直斜面方向:mgcos30°-N=0
沿斜面方向:mgsin30°-f=0
又f=μN
解得:μ=0.58
【例2】如图所示,一高度为h=0.8m粗糙的水平面在B点处与一倾角为θ=30°光滑的斜面BC连接,一小滑块从水平面上的A点以v0=3m/s的速度在粗糙的水平面上向右运动。运动到B点时小滑块恰能沿光滑斜面下滑。已知AB间的距离s=5m,求:
(1)小滑块与水平面间的动摩擦因数;
(2)小滑块从A点运动到地面所需的时间;
解析:(1)依题意得vB1=0,设小滑块在水平面上运动的加速度大小为a,则据牛顿第二定律可得f=μmg=ma,所以a=μg,由运动学公式可得得,t1=3.3s
(2)在斜面上运动的时间t2=,t=t1+t2=4.1s
【例3】静止在水平地面上的物体的质量为2kg,在水平恒力F推动下开始运动,4s末它的速度达到4m/s,此时将F撤去,又经6s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小。
解析:物体的整个运动过程分为两段,前4s物体做匀加速运动,后6s物体做匀减速运动。
前4s内物体的加速度为

设摩擦力为,由牛顿第二定律得

后6s内物体的加速度为

物体所受的摩擦力大小不变,由牛顿第二定律得

由②④可求得水平恒力F的大小为
点评:解决动力学问题时,受力分析是关键,对物体运动情况的分析同样重要,特别是像这类运动过程较复杂的问题,更应注意对运动过程的分析。
在分析物体的运动过程时,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的瞬时速度即是前后过程的联系量。分析受力时要注意前后过程中哪些力发生了变化,哪些力没发生变化。四、连接体(质点组)
在应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。使解题过程简单明了。
二、整体法与隔离法
1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:
(1)明确研究的系统或运动的全过程.
(2)画出系统的受力图和运动全过程的示意图.
(3)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解
2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:
(1)明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少。
(2)将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来。
(3)对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图。
(4)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解。
3.整体和局部是相对统一相辅相成的
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则
4.应用例析
【例4】如图所示,A、B两木块的质量分别为mA、mB,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力FN。
解析:这里有a、FN两个未知数,需要要建立两个方程,要取两次研究对象。比较后可知分别以B、(A+B)为对象较为简单(它们在水平方向上都只受到一个力作用)。可得
点评:这个结论还可以推广到水平面粗糙时(A、B与水平面间μ相同);也可以推广到沿斜面方向推A、B向上加速的问题,有趣的是,答案是完全一样的。
【例5】如图所示,质量为2m的物块A和质量为m的物块B与地面的摩擦均不计.在已知水平推力F的作用下,A、B做加速运动.A对B的作用力为多大?
解析:取A、B整体为研究对象,其水平方向只受一个力F的作用
根据牛顿第二定律知:F=(2m+m)a
a=F/3m
取B为研究对象,其水平方向只受A的作用力F1,根据牛顿第二定律知:
F1=ma
故F1=F/3
点评:对连结体(多个相互关联的物体)问题,通常先取整体为研究对象,然后再根据要求的问题取某一个物体为研究对象.
【例6】如图,倾角为α的斜面与水平面间、斜面与质量为m的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。求水平面给斜面的摩擦力大小和方向。
解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。可以先求出木块的加速度,再在水平方向对质点组用牛顿第二定律,很容易得到:
如果给出斜面的质量M,本题还可以求出这时水平面对斜面的支持力大小为:
FN=Mg+mg(cosα+μsinα)sinα,这个值小于静止时水平面对斜面的支持力。
【例7】如图所示,mA=1kg,mB=2kg,A、B间静摩擦力的最大值是5N,水平面光滑。用水平力F拉B,当拉力大小分别是F=10N和F=20N时,A、B的加速度各多大?
解析:先确定临界值,即刚好使A、B发生相对滑动的F值。当A、B间的静摩擦力达到5N时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A在滑动摩擦力作用下加速运动。这时以A为对象得到a=5m/s2;再以A、B系统为对象得到F=(mA+mB)a=15N
(1)当F=10N15N时,A、B一定仍相对静止,所以
(2)当F=20N15N时,A、B间一定发生了相对滑动,用质点组牛顿第二定律列方程:,而aA=5m/s2,于是可以得到aB=7.5m/s2
【例8】如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的,即a=g,则小球在下滑的过程中,木箱对地面的压力为多少?
命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B级要求.
错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.
解题方法与技巧:
解法一:(隔离法)
木箱与小球没有共同加速度,所以须用隔离法.
取小球m为研究对象,受重力mg、摩擦力Ff,如图2-4,据牛顿第二定律得:
mg-Ff=ma①
取木箱M为研究对象,受重力Mg、地面支持力FN及小球给予的摩擦力Ff′如图.
据物体平衡条件得:
FN-Ff′-Mg=0②
且Ff=Ff′③
由①②③式得FN=g
由牛顿第三定律知,木箱对地面的压力大小为
FN′=FN=g.
解法二:(整体法)
对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:
(mg+Mg)-FN=ma+M×0
故木箱所受支持力:FN=g,由牛顿第三定律知:
木箱对地面压力FN′=FN=g.
三、临界问题
在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。
【例9】一个质量为0.2kg的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.
命题意图:考查对牛顿第二定律的理解应用能力、分析推理能力及临界条件的挖掘能力。
错解分析:对物理过程缺乏清醒认识,无法用极限分析法挖掘题目隐含的临界状态及条件,使问题难以切入.
解题方法与技巧:当加速度a较小时,小球与斜面体一起运动,此时小球受重力、绳拉力和斜面的支持力作用,绳平行于斜面,当加速度a足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a=10m/s2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a0.(此时,小球所受斜面支持力恰好为零)
由mgcotθ=ma0
所以a0=gcotθ=7.5m/s2
因为a=10m/s2>a0
所以小球离开斜面N=0,小球受力情况如图,则
Tcosα=ma,Tsinα=mg
所以T==2.83N,N=0.
四、超重、失重和视重
1.超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象。
产生超重现象的条件是物体具有向上的加速度。与物体速度的大小和方向无关。
产生超重现象的原因:当物体具有向上的加速度a(向上加速运动或向下减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F,由牛顿第二定律得
F-mg=ma
所以F=m(g+a)>mg
由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′>mg.
2.失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象。
产生失重现象的条件是物体具有向下的加速度,与物体速度的大小和方向无关.?
产生失重现象的原因:当物体具有向下的加速度a(向下加速运动或向上做减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F。由牛顿第二定律
mg-F=ma,所以
F=m(g-a)<mg
由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′<mg.
完全失重现象:物体对支持物的压力(或对悬挂物的拉力)等于零的状态,叫做完全失重状态.
产生完全失重现象的条件:当物体竖直向下的加速度等于重力加速度时,就产生完全失重现象。
点评:(1)在地球表面附近,无论物体处于什么状态,其本身的重力G=mg始终不变。超重时,物体所受的拉力(或支持力)与重力的合力方向向上,测力计的示数大于物体的重力;失重时,物体所受的拉力(或支持力)与重力的合力方向向下,测力计的示数小于物体的重力.可见,在失重、超重现象中,物体所受的重力始终不变,只是测力计的示数(又称视重)发生了变化,好像物体的重量有所增大或减小。
(2)发生超重和失重现象,只决定于物体在竖直方向上的加速度。物体具有向上的加速度时,处于超重状态;物体具有向下的加速度时,处于失重状态;当物体竖直向下的加速度为重力加速度时,处于完全失重状态.超重、失重与物体的运动方向无关。
3.应用例析
【例10】质量为m的人站在升降机里,如果升降机运动时加速度的绝对值为a,升降机底板对人的支持力F=mg+ma,则可能的情况是
A.升降机以加速度a向下加速运动
B.升降机以加速度a向上加速运动
C.在向上运动中,以加速度a制动
D.在向下运动中,以加速度a制动
解析:升降机对人的支持力F=mg+ma大于人所受的重力mg,故升降机处于超重状态,具有向上的加速度。而A项中加速度向下,C项中加速度也向下,即处于失重状态。故只有选项B、D正确。
【例11】下列四个实验中,能在绕地球飞行的太空实验舱中完成的是
A.用天平测量物体的质量
B.用弹簧秤测物体的重力
C.用温度计测舱内的温度
D.用水银气压计测舱内气体的压强
解析:绕地球飞行的太空试验舱处于完全失重状态,处于其中的物体也处于完全失重状态,物体对水平支持物没有压力,对悬挂物没有拉力。
用天平测量物体质量时,利用的是物体和砝码对盘的压力产生的力矩,压力为0时,力矩也为零,因此在太空实验舱内不能完成。
同理,水银气压计也不能测出舱内温度。
物体处于失重状态时,对悬挂物没有拉力,因此弹簧秤不能测出物体的重力。
温度计是利用了热胀冷缩的性质,因此可以测出舱内温度。故只有选项C正确。
五、针对训练:
1.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定一个质量为m的小球,小球上下振动时,框架始终没有跳起。当框架对地面压力为零瞬间,小球的加速度大小为
A.gB.g
C.0D.g
2.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为
A.都等于B.和0
C.和0D.0和
3..如图,质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A、B之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x时,A、B间摩擦力的大小等于
A.0B.kx
C.()kxD.()kx
4.质量为m的物块B与地面的动摩擦因数为μ,A的质量为2m与地面间的摩擦不计。在已知水平推力F的作用下,A、B做匀加速直线运动,A对B的作用力为____________。
5.质量为60kg的人站在升降机中的体重计上,当升降机做下列各种运动时,体重计的读数是多少?
(1)升降机匀速上升
(2)升降机以4m/s2的加速度上升
(3)升降机以5m/s2的加速度下降
(4)升降机以重力加速度g加速下降
(5)以加速度a=12m/s2加速下降
6.(1999年广东)A的质量m1=4m,B的质量m2=m,斜面固定在水平地面上。开始时将B按在地面上不动,然后放手,让A沿斜面下滑而B上升。A与斜面无摩擦,如图,设当A沿斜面下滑s距离后,细线突然断了。求B上升的最大高度H。
7.质量为200kg的物体,置于升降机内的台秤上,从静止开始上升。运动过程中台秤的示数F与时间t的关系如图所示,求升降机在7s钟内上升的高度(取g=10m/s2)
8.空间探测器从某一星球表面竖直升空。已知探测器质量为1500Kg,发动机推动力为恒力。探测器升空后发动机因故障突然关闭,图6是探测器从升空到落回星球表面的速度随时间变化的图线,则由图象可判断该探测器在星球表面达到的最大高度Hm为多少m?发动机的推动力F为多少N?
参考答案:
1.D2.D3.D4.N=(F+2μmg)
5.以人为研究对象,受重力和体重计的支持力F的作用,由牛顿第三定律知,人受到支持力跟人对体重计的压力大小相等,所以体重计的读数即为支持力的大小.
(1)匀速上升时,a=0,所以F-mg=0即F=mg=600N
(2)加速上升时,a向上,取向上为正方向,则根据牛顿第二定律:F-mg=ma
所以F=mg+ma=m(g+a)=840N
(3)加速下降时,a向下,取向下为正方向,根据牛顿第二定律:mg-F=ma
所以F=mg-ma=m(g-a)=300N
(4)以a=g加速下降时,取向下为正,根据牛顿第二定律:mg-F=mg
故F=0,即完全失重
(5)以a=12m/s2加速下降,以向下为正,根据牛顿第二定律:F=mg-ma
F=mg-ma=m(g-a)=-120N负号表示人已离开体重计,故此时体重计示数为0.
6.H=1.2s
7.解析:在0~2s这段时间内台秤示数为3000N,即超重1000N,这时向上的加速度;在2~5s这段时间内台秤的示数为2000N,等于物体的重力,说明物体做匀速运动;在5~7s这段时间内,台秤的示数为F3=1000N,比物重小1000N,即失重,这时物体做匀减速上升运动,向下的加速度。画出这三段时间内的v-t图线如图所示,v-t图线所围成的面积值即表示上升的高度,由图知上升高度为:h=50m.
8.Hm=480mF=11250N
教学后记
整体法与隔离法,临界问题是牛顿运动定律应用的重点也是难点,高考也经常出现,引导学生正确理解掌握这些方法是关键,也为后面的复习打下基础。

高考物理第一轮考点复习教案5


第二章直线运动
知识网络:
单元切块:
按照考纲的要求,本章内容可以分成三部分,即:基本概念、匀速直线运动;匀变速直线运动;运动图象。其中重点是匀变速直线运动的规律和应用。难点是对基本概念的理解和对研究方法的把握。

基本概念匀速直线运动
知识点复习
一、基本概念
1、质点:用来代替物体、只有质量而无形状、体积的点。它是一种理想模型,物体简化为质点的条件是物体的形状、大小在所研究的问题中可以忽略。
2、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末,几秒时。
时间:前后两时刻之差。时间坐标轴上用线段表示时间,例如,前几秒内、第几秒内。
3、位置:表示空间坐标的点。
位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。
路程:物体运动轨迹之长,是标量。
注意:位移与路程的区别.
4、速度:描述物体运动快慢和运动方向的物理量,是位移对时间的变化率,是矢量。
平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,v=s/t(方向为位移的方向)
瞬时速度:对应于某一时刻(或某一位置)的速度,方向为物体的运动方向。
速率:瞬时速度的大小即为速率;
平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。
注意:平均速度的大小与平均速率的区别.
【例1】物体M从A运动到B,前半程平均速度为v1,后半程平均速度为v2,那么全程的平均速度是:()
A.(v1+v2)/2B.C.D.
解析:本题考查平均速度的概念。全程的平均速度,故正确答案为D
5、加速度:描述物体速度变化快慢的物理量,a=△v/△t(又叫速度的变化率),是矢量。a的方向只与△v的方向相同(即与合外力方向相同)。
点评1:
(1)加速度与速度没有直接关系:加速度很大,速度可以很小、可以很大、也可以为零(某瞬时);加速度很小,速度可以很小、可以很大、也可以为零(某瞬时)。
(2)加速度与速度的变化量没有直接关系:加速度很大,速度变化量可以很小、也可以很大;加速度很小,速度变化量可以很大、也可以很小。加速度是“变化率”——表示变化的快慢,不表示变化的大小。
点评2:物体是否作加速运动,决定于加速度和速度的方向关系,而与加速度的大小无关。加速度的增大或减小只表示速度变化快慢程度增大或减小,不表示速度增大或减小。
(1)当加速度方向与速度方向相同时,物体作加速运动,速度增大;若加速度增大,速度增大得越来越快;若加速度减小,速度增大得越来越慢(仍然增大)。
(2)当加速度方向与速度方向相反时,物体作减速运动,速度减小;若加速度增大,速度减小得越来越快;若加速度减小,速度减小得越来越慢(仍然减小)。
【例2】一物体做匀变速直线运动,某时刻速度大小为4m/s,经过1s后的速度的大小为10m/s,那么在这1s内,物体的加速度的大小可能为
解析:本题考查速度、加速度的矢量性。经过1s后的速度的大小为10m/s,包括两种可能的情况,一是速度方向和初速度方向仍相同,二是速度方向和初速度方向已经相反。取初速度方向为正方向,则1s后的速度为vt=10m/s或vt=-10m/s
由加速度的定义可得
m/s或m/s。
答案:6m/s或14m/s
点评:对于一条直线上的矢量运算,要注意选取正方向,将矢量运算转化为代数运算。
6、运动的相对性:只有在选定参考系之后才能确定物体是否在运动或作怎样的运动。一般以地面上不动的物体为参照物。
【例3】甲向南走100米的同时,乙从同一地点出发向东也行走100米,若以乙为参考系,求甲的位移大小和方向?
解析:如图所示,以乙的矢量末端为起点,向甲的矢量末端作一条有向线段,即为甲相对乙的位移,由图可知,甲相对乙的位移大小为m,方向,南偏西45°。
点评:通过该例可以看出,要准确描述物体的运动,就必须选择参考系,参考系选择不同,物体的运动情况就不同。参考系的选取要以解题方便为原则。在具体题目中,要依据具体情况灵活选取。下面再举一例。
【例4】某人划船逆流而上,当船经过一桥时,船上一小木块掉在河水里,但一直航行至上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥有5400米远,若此人向上和向下航行时船在静水中前进速率相等。试求河水的流速为多大?
解析:选水为参考系,小木块是静止的;相对水,船以恒定不变的速度运动,到船“追上”小木块,船往返运动的时间相等,各为1小时;小桥相对水向上游运动,到船“追上”小木块,小桥向上游运动了位移5400m,时间为2小时。易得水的速度为0.75m/s。
二、匀速直线运动
1.定义:,即在任意相等的时间内物体的位移相等.它是速度为恒矢量的运动,加速度为零的直线运动。
2.图像:匀速直线运动的s-t图像为一直线:图线的斜率在数值上等于物体的速度。

三、综合例析
【例5】关于位移和路程,下列说法中正确的是()
A.物体沿直线向某一方向运动,通过的路程就是位移
B.物体沿直线向某一方向运动,通过的路程等于位移的大小
C.物体通过一段路程,其位移可能为零
D.物体通过的路程可能不等,但位移可能相同
解析:位移是矢量,路程是标量,不能说这个标量就是这个矢量,所以A错,B正确.路程是物体运动轨迹的实际长度,而位移是从物体运动的起始位置指向终止位置的有向线段,如果物体做的是单向直线运动,路程就和位移的大小相等.如果物体在两位置间沿不同的轨迹运动,它们的位移相同,路程可能不同.如果物体从某位置开始运动,经一段时间后回到起始位置,位移为零,但路程不为零,所以,CD正确.
【例6】关于速度和加速度的关系,下列说法中正确的是()
A.速度变化越大,加速度就越大
B.速度变化越快,加速度越大
C.加速度大小不变,速度方向也保持不变
C.加速度大小不断变小,速度大小也不断变小
解析:根据可知,Δv越大,加速度不一定越大,速度变化越快,则表示越大,故加速度也越大,B正确.加速度和速度方向没有直接联系,加速度大小不变,速度方向可能不变,也可能改变.加速度大小变小,速度可以是不断增大.故此题应选B.
【例7】在与x轴平行的匀强电场中,场强为E=1.0×106V/m,一带电量q=1.0×10-8C、质量m=2.5×10-3kg的物体在粗糙水平面上沿着x轴作匀速直线运动,其位移与时间的关系是x=5-2t,式中x以m为单位,t以s为单位。从开始运动到5s末物体所经过的路程为m,位移为m。
解析:须注意本题第一问要求的是路程;第二问要求的是位移。
将x=5-2t和对照,可知该物体的初位置x0=5m,初速度v0=m/s,运动方向与位移正方向相反,即沿x轴负方向,因此从开始运动到5s末物体所经过的路程为10m,而位移为m。
【例8】某游艇匀速滑直线河流逆水航行,在某处丢失了一个救生圈,丢失后经t秒才发现,于是游艇立即返航去追赶,结果在丢失点下游距丢失点s米处追上,求水速.(水流速恒定,游艇往返的划行速率不变)。
解析:以水为参照物(或救生圈为参照物),则游艇相对救生圈往返的位移大小相等,且游艇相对救生圈的速率也不变,故返航追上救生圈的时间也为t秒,从丢失到追上的时间为2t秒,在2t秒时间内,救生圈随水运动了s米,故水速
思考:若游艇上的人发现丢失时,救生圈距游艇s米,此时立即返航追赶,用了t秒钟追上,求船速.
【例9】如图所示为高速公路上用超声测速仪测车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到信号间的时间差,测出被测物体速度,图中P1、P2是测速仪发出的超声波信号,n1、n2分别是P1、P2被汽车反射回来的信号,设测速仪匀速扫描,P1,P2之间的时间间隔Δt=1.0s,超声波在空气中传播的速度是340m/s,若汽车是匀速行驶的,则根据图B可知汽车在接收P1、P2两个信号之间的时间内前进的距离是___m,汽车的速度是_____m/s.
解析:本题首先要看懂B图中标尺所记录的时间每一小格相当于多少:由于P1P2之间时间间隔为1.0s,标尺记录有30小格,故每小格为1/30s,其次应看出汽车两次接收(并反射)超声波的时间间隔:P1发出后经12/30s接收到汽车反射的超声波,故在P1发出后经6/30s被车接收,发出P1后,经1s发射P2,可知汽车接到P1后,经t1=1-6/30=24/30s发出P2,而从发出P2到汽车接收到P2并反射所历时间为t2=4.5/30s,故汽车两次接收到超声波的时间间隔为t=t1+t2=28.5/30s,求出汽车两次接收超声波的位置之间间隔:s=(6/30-4.5/30)v声=(1.5/30)×340=17m,故可算出v汽=s/t=17÷(28.5/30)=17.9m/s.
【例10】天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度远离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v和它们离我们的距离r成正比,即v=Hr,式中H为一恒量,称为哈勃常数,已由天文观测测定。为解释上述现象,有人提出一种理论,认为宇宙是从一个爆炸的大火球开始形成的,大爆炸后各星体即以各自不同的速度向外匀速运动,并设想我们就位于其中心。由上述理论和天文观测结果,可估算宇宙年龄T,其计算式为T=。根据近期观测,哈勃常数H=3×10-2m/s﹒光年,由此估算宇宙的年龄约为年。
解析:本题涉及关于宇宙形成的大爆炸理论,是天体物理学研究的前沿内容,背景材料非常新颖,题中还给出了不少信息。题目描述的现象是:所有星体都在离我们而去,而且越远的速度越大。提供的一种理论是:宇宙是一个大火球爆炸形成的,爆炸后产生的星体向各个方向匀速运动。如何用该理论解释呈现的现象?可以想一想:各星体原来同在一处,现在为什么有的星体远,有的星体近?显然是由于速度大的走得远,速度小的走的近。所以距离远是由于速度大,v=Hr只是表示v与r的数量关系,并非表示速度大是由于距离远。
对任一星体,设速度为v,现在距我们为r,则该星体运动r这一过程的时间T即为所要求的宇宙年龄,T=r/v
将题给条件v=Hr代入上式得宇宙年龄T=1/H
将哈勃常数H=3×10-2m/s光年代入上式,得T=1010年。
点评:有不少考生遇到这类完全陌生的、很前沿的试题,对自己缺乏信心,认为这样的问题自己从来没见过,老师也从来没有讲过,不可能做出来,因而采取放弃的态度。其实只要静下心来,进入题目的情景中去,所用的物理知识却是非常简单的。这类题搞清其中的因果关系是解题的关键。
四、针对训练
1.对于质点的运动,下列说法中正确的是()
A.质点运动的加速度为零,则速度为零,速度变化也为零
B.质点速度变化率越大,则加速度越大
C.质点某时刻的加速度不为零,则该时刻的速度也不为零
D.质点运动的加速度越大,它的速度变化越大
2.某质点做变速运动,初始的速度为3m/s,经3s速率仍为3m/s测()
A.如果该质点做直线运动,该质点的加速度不可能为零
B.如果该质点做匀变速直线运动,该质点的加速度一定为2m/s2
C.如果该质点做曲线运动,该质点的加速度可能为2m/s2
D.如果该质点做直线运动,该质点的加速度可能为12m/s2
3.关于物体的运动,不可能发生的是()
A.加速度大小逐渐减小,速度也逐渐减小
B.加速度方向不变,而速度方向改变
C.加速度和速度都在变化,加速度最大时,速度最小
D.加速度为零时,速度的变化率最大
4.两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示.连续两次曝光的时间间隔是相等的.由图可知()
A.在时刻t2以及时刻t5两木块速度相同
B.在时刻t3两木块速度相同
C.在时刻t3和时刻t4之间某瞬时两木块速度相同
D.在时刻t4和时刻t5之间某瞬时两木块速度相同
5.一辆汽车在一直线上运动,第1s内通过5m,第2s内通过10m,第3s内通过20m,4s内通过5m,则最初两秒的平均速度是m/s,最后两秒的平均速度是__m/s,全部时间的平均速度是______m/s.
6.在离地面高h处让一球自由下落,与地面碰撞后反弹的速度是碰前3/5,碰撞时间为Δt,则球下落过程中的平均速度大小为_____,与地面碰撞过程中的平均加速度大小为_______。(不计空气阻力).
7.物体以5m/s的初速度沿光滑斜槽向上做直线运动,经4s滑回原处时速度大小仍为5m/s,则物体的速度变化为_____,加速度为_____.(规定初速度方向为正方向).
8.人们工作、学习和劳动都需要能量,食物在人体内经消化过程转化为葡萄糖,葡萄糖在体内又转化为CO2和H2O,同时产生能量E=2.80×106Jmol-1.一个质量为60kg的短跑运动员起跑时以1/6s的时间冲出1m远,他在这一瞬间内消耗体内储存的葡萄糖质量是多少?
参考答案:
1.B
2.BC
3.D
4.C
5.7.5;12.5;10
6.,
7.m/s;m/s2
8.0.28g
附:
知识点梳理
阅读课本理解和完善下列知识要点
一、参考系
1.为了描述物体的运动而的物体叫参考系(或参照物)。
2.选取哪个物体作为参照物,常常考虑研究问题的方便而定。研究地球上物体的运动,一般来说是取为参照物,对同一个运动,取不同的参照物,观察的结果可能不同。
3.运动学中的同一公式中所涉及的各物理量应相对于同一参照物。如果没有特别说明,都是取地面为参照物。
二、质点
1.定义:
2.物体简化为质点的条件:
3.注意:同一物体,有时能被看作质点,有时就不能看作质点。
三、时间和时刻
1.时刻;在时间轴上可用一个确定的点来表示,如“2s末”、“3s初”等。
2.时间:指两个时刻之间的一段间隔,如“第三秒内”、“10分钟”等。
四、位移和路程
1.位移
①意义:位移是描述的物理量。
②定义:
③位移是矢量,有向线段的长度表示位移大小,有向线段的方向表示位移的方向。
2.路程:路程是;路程是标量,只有大小,没有方向。
3.物体做运动时,路程才与位移大小相等。在曲线运动中质点的位移的大小一定路程。
五、速度和速率
1.速度
①速度是描述的物理量。速度是矢量,既有大小又又方向。
②瞬时速度:对应或
的速度,简称速度。瞬时速度的方向为该时刻质点的方向。
③平均速度:定义式为,该式适用于运动;而平均速度公式仅适用于运动。
平均速度对应某一段时间(或某一段位移),平均速度的大小跟时间间隔的选取有关,不同的阶段平均速度一般不同,所以求平均速度时,必须明确是求哪一段位移或哪一段时间内的平均速度。
2.速率:瞬时速度的大小叫速率,速率是标量,只有大小,没有方向。
六、加速度
1.加速度是描述的物理量。
2.定义式:。
3.加速度是矢量,方向和方向相同。
4.加速度和速度的区别和联系:
①加速度的大小和速度(填“有”或“无”)直接关系。质点的运动的速度大,加速度大;速度小,其加速度
小;速度为零,其加速度为零(填“一定”或“不一定”)。
②加速度的方向(填“一定”或“不一定”)和速度方向相同。质点做加速直线运动时,加速度与速度方向;质点做减速直线运动时,加速度与速度方向;质点做曲线运动时,加速度方向与初速度方向成某一角度。
③质点做加速运动还是减速运动,取决于加速度的和速度的关系,与加速度的无关。
七、匀速直线运动
1.定义:
叫匀速直线运动。
2.速度公式:
巩固训练
1.两辆汽车在平直的公路上行驶,甲车内一个人看见窗外树木向东移动,乙车内一个人发现甲车没有运动,如果以大地为参照物,上述事实说明…………………………()
A.甲车向西运动,乙车不动
B.乙车向西运动,甲车不动
C.甲车向西运动,乙车向东运动
D.甲、乙两车以相同的速度同时向西运动
2.某物体沿着半径为R的圆周运动一周的过程中,最大路程为,最大位移为。
3.物体做直线运动,若在前一半时间是速度为v1的匀速运动,后一半时间是速度为v2的匀速运动,则整个运动过程的平均速度大小是;若在前一半路程是速度为v1的匀速运动,后一半路程是速度为v2的匀速运动,则整个运动过程的平均速度大小是。
4.下列说法中正确的是…………………()
A.物体有恒定速率时,其速度仍可能有变化
B.物体有恒定速度时,其速率仍可能有变化
C.物体的加速度不为零时,其速度可能为零
D.物体具有沿x轴正向的加速度时,可能具有沿x轴负向的速度
5.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的_____倍
6.下列关于质点的说法中,正确的是…()
A.质点是非常小的点;B.研究一辆汽车过某一路标所需时间时,可以把汽车看成质点;C.研究自行车运动时,由于车轮在转动,所以无论研究哪方面,自行车都不能视为质点;D.地球虽大,且有自转,但有时仍可被视为质点
7.下列说法中正确的是…………………()
A.位移大小和路程不一定相等,所以位移才不等于路程;B.位移的大小等于路程,方向由起点指向终点;C.位移取决于始末位置,路程取决于实际运动路线;
D.位移描述直线运动,是矢量;路程描述曲线运动,是标量。
8.下列说法中正确的是…………………()
A.质点运动的加速度为0,则速度为0,速度变化也为0;B.质点速度变化越慢,加速度越小;C.质点某时刻的加速度不为0,则该时刻的速度也不为0;D.质点运动的加速度越大,它的速度变化也越大。
9.某同学在百米比赛中,经50m处的速度为10.2m/s,10s末以10.8m/s冲过终点,他的百米平均速度大小为m/s。

教学后记
运动学涉及到的公式很多,而且运动学是在高一第一学期就已经学过,时间比较长了,很多推论学生都差不多忘了,运用起来会乱套,特别是对基础不是很好的学生。对成绩好的学生来讲,运动学是比较简单的,关键是要让学生培养一题多解的思想,并且能够在解题时选择最简单的方法来解。运动学在高考中单独考查的不多,主要是很力学电磁学综合出现,因此,第一轮复习关键复习基本公式及灵活运用,为在综合解题做准备。

匀变速直线运动

一、匀变速直线运动公式
1.常用公式有以下四个
点评:
(1)以上四个公式中共有五个物理量:s、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。
(2)以上五个物理量中,除时间t外,s、v0、vt、a均为矢量。一般以v0的方向为正方向,以t=0时刻的位移为零,这时s、vt和a的正负就都有了确定的物理意义。
2.匀变速直线运动中几个常用的结论
(1)Δs=aT2,即任意相邻相等时间内的位移之差相等。可以推广到
sm-sn=(m-n)aT2
(2),某段时间的中间时刻的即时速度等于该段时间内的平均速度。
,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。
可以证明,无论匀加速还是匀减速,都有。
点评:运用匀变速直线运动的平均速度公式解题,往往会使求解过程变得非常简捷,因此,要对该公式给与高度的关注。
3.初速度为零(或末速度为零)的匀变速直线运动
做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:
,,,
以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。
4.初速为零的匀变速直线运动
(1)前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……
(2)第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……
(3)前1米、前2米、前3米……所用的时间之比为1∶∶∶……
(4)第1米、第2米、第3米……所用的时间之比为1∶∶()∶……
对末速为零的匀变速直线运动,可以相应的运用这些规律。
5.一种典型的运动
经常会遇到这样的问题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,可以得出以下结论:
(1)
(2)
6、解题方法指导:
解题步骤:
(1)根据题意,确定研究对象。
(2)明确物体作什么运动,并且画出运动示意图。
(3)分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。
(4)确定正方向,列方程求解。
(5)对结果进行讨论、验算。
解题方法:
(1)公式解析法:假设未知数,建立方程组。本章公式多,且相互联系,一题常有多种解法。要熟记每个公式的特点及相关物理量。
(2)图象法:如用v—t图可以求出某段时间的位移大小、可以比较vt/2与vS/2,以及追及问题。用s—t图可求出任意时间内的平均速度。
(3)比例法:用已知的讨论,用比例的性质求解。
(4)极值法:用二次函数配方求极值,追赶问题用得多。
(5)逆向思维法:如匀减速直线运动可视为反方向的匀加速直线运动来求解。
综合应用例析
【例1】在光滑的水平面上静止一物体,现以水平恒力甲推此物体,作用一段时间后换成相反方向的水平恒力乙推物体,当恒力乙作用时间与恒力甲的作用时间相同时,物体恰好回到原处,此时物体的速度为v2,若撤去恒力甲的瞬间物体的速度为v1,则v2∶v1=?
解析:解决此题的关键是:弄清过程中两力的位移关系,因此画出过程草图(如图5),标明位移,对解题有很大帮助。
通过上图,很容易得到以下信息:
,而,得v2∶v1=2∶1
思考:在例1中,F1、F2大小之比为多少?(答案:1∶3)
点评:特别要注意速度的方向性。平均速度公式和加速度定义式中的速度都是矢量,要考虑方向。本题中以返回速度v1方向为正,因此,末速度v2为负。
【例2】两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知

A.在时刻t2以及时刻t5两木块速度相同
B.在时刻t1两木块速度相同
C.在时刻t3和时刻t4之间某瞬间两木块速度相同
D.在时刻t4和时刻t5之间某瞬时两木块速度相同
解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体明显地是做匀速运动。由于t2及t5时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t3、t4之间,因此本题选C。
【例3】在与x轴平行的匀强电场中,一带电量q=1.0×10-8C、质量m=2.5×10-3kg的物体在光滑水平面上沿着x轴作直线运动,其位移与时间的关系是x=0.16t-0.02t2,式中x以m为单位,t以s为单位。从开始运动到5s末物体所经过的路程为m,克服电场力所做的功为J。
解析:须注意:本题第一问要求的是路程;第二问求功,要用到的是位移。
将x=0.16t-0.02t2和对照,可知该物体的初速度v0=0.16m/s,加速度大小a=0.04m/s2,方向跟速度方向相反。由v0=at可知在4s末物体速度减小到零,然后反向做匀加速运动,末速度大小v5=0.04m/s。前4s内位移大小,第5s内位移大小,因此从开始运动到5s末物体所经过的路程为0.34m,而位移大小为0.30m,克服电场力做的功W=mas5=3×10-5J。
【例4】一辆汽车沿平直公路从甲站开往乙站,起动加速度为2m/s2,加速行驶5秒,后匀速行驶2分钟,然后刹车,滑行50m,正好到达乙站,求汽车从甲站到乙站的平均速度?
解析:起动阶段行驶位移为:
s1=……(1)
匀速行驶的速度为:v=at1……(2)
匀速行驶的位移为:s2=vt2……(3)
刹车段的时间为:s3=……(4)
汽车从甲站到乙站的平均速度为:
=
【例5】汽车以加速度为2m/s2的加速度由静止开始作匀加速直线运动,求汽车第5秒内的平均速度?
解析:此题有三解法:
(1)用平均速度的定义求:
第5秒内的位移为:s=at52-at42=9(m)
第5秒内的平均速度为:v===9m/s
(2)用推论v=(v0+vt)/2求:v==m/s=9m/s
(3)用推论v=vt/2求。第5秒内的平均速度等于4.5s时的瞬时速度:
v=v4.5=a4.5=9m/s
【例6】一物体由斜面顶端由静止开始匀加速下滑,最初的3秒内的位移为s1,最后3秒内的位移为s2,若s2-s1=6米,s1∶s2=3∶7,求斜面的长度为多少?
解析:设斜面长为s,加速度为a,沿斜面下滑的总时间为t。则:
斜面长:s=at2……(1)
前3秒内的位移:s1=at12……(2)
后3秒内的位移:s2=s-a(t-3)2……(3)
s2-s1=6……(4)
s1∶s2=3∶7……(5)
解(1)—(5)得:a=1m/s2t=5ss=12.5m
【例7】物块以v0=4米/秒的速度滑上光滑的斜面,途经A、B两点,已知在A点时的速度是B点时的速度的2倍,由B点再经0.5秒物块滑到斜面顶点C速度变为零,A、B相距0.75米,求斜面的长度及物体由D运动到B的时间?
解析:物块作匀减速直线运动。设A点速度为VA、B点速度VB,加速度为a,斜面长为S。
A到B:vB2vA2=2asAB……(1)
vA=2vB……(2)
B到C:0=vB+at0……..(3)
解(1)(2)(3)得:vB=1m/s
a=2m/s2
D到C0v02=2as……(4)
s=4m
从D运动到B的时间:
D到B:vB=v0+at1t1=1.5秒
D到C再回到B:t2=t1+2t0=1.5+20.5=2.5(s)
【例8】一质点沿AD直线作匀加速直线运动,如图,测得它在AB、BC、CD三段的时间均为t,测得位移AC=L1,BD=L2,试求质点的加速度?
解析:设AB=s1、BC=s2、CD=s3则:
s2s1=at2s3s2=at2
两式相加:s3s1=2at2
由图可知:L2L1=(s3+s2)(s2+s1)=s3s1
则:a=
【例9】一质点由A点出发沿直线AB运动,行程的第一部分是加速度为a1的匀加速运动,接着做加速度为a2的匀减速直线运动,抵达B点时恰好静止,如果AB的总长度为s,试求质点走完AB全程所用的时间t?
解析:设质点的最大速度为v,前、后两段运动过程及全过程的平均速度相等,均为。
全过程:s=……(1)
匀加速过程:v=a1t1……(2)
匀减速过程:v=a2t2……(3)
由(2)(3)得:t1=代入(1)得:
s=s=
将v代入(1)得:
t=
【例10】一个做匀加速直线运动的物体,连续通过两段长为s的位移所用的时间分别为t1、t2,求物体的加速度?
解析:
方法一:
设前段位移的初速度为v0,加速度为a,则:
前一段s:s=v0t1+……(1)
全过程2s:2s=v0(t1+t2)+……(2)
消去v0得:a=
方法二:
设前一段时间t1的中间时刻的瞬时速度为v1,后一段时间t2的中间时刻的瞬时速度为v2。所以:
v1=……(1)v2=……(2)
v2=v1+a()……(3)解(1)(2)(3)得相同结果。
方法三:
设前一段位移的初速度为v0,末速度为v,加速度为a。
前一段s:s=v0t1+……(1)
后一段s:s=vt2+……(2)
v=v0+at……(3)解(1)(2)(3)得相同结果。
二、匀变速直线运动的特例
1.自由落体运动
物体由静止开始,只在重力作用下的运动。
(1)特点:加速度为g,初速度为零的匀加速直线运动。
(2)规律:vt=gth=gt2vt2=2gh
2.竖直上抛运动
物体以某一初速度竖直向上抛出,只在重力作用下的运动。
(1)特点:初速度为v0,加速度为-g的匀变速直线运动。
(2)规律:vt=v0-gth=v0t-gt2vt2-v02=-2gh
上升时间,下降到抛出点的时间,上升最大高度
(3)处理方法:
一是将竖直上抛运动全过程分为上升和下降两个阶段来处理,要注意两个阶段运动的对称性。
二是将竖直上抛运动全过程视为初速度为v0,加速度为-g的匀减速直线运动
综合应用例析
【例11】(1999年高考全国卷)一跳水运动员从离水面10m高的平台上向上跃起,举双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是______s。(计算时,可以把运动员看作全部质量集中在重心的一个质点,g取10m/s2,结果保留二位数)
解析:运动员的跳水过程是一个很复杂的过程,主要是竖直方向的上下运动,但也有水平方向的运动,更有运动员做的各种动作。构建运动模型,应抓主要因素。现在要讨论的是运动员在空中的运动时间,这个时间从根本上讲与运动员所作的各种动作以及水平运动无关,应由竖直运动决定,因此忽略运动员的动作,把运动员当成一个质点,同时忽略他的水平运动。当然,这两点题目都作了说明,所以一定程度上“建模”的要求已经有所降低,但我们应该理解这样处理的原因。这样,我们把问题提炼成了质点作竖直上抛运动的物理模型。
在定性地把握住物理模型之后,应把这个模型细化,使之更清晰。可画出如图所示的示意图。由图可知,运动员作竖直上抛运动,上升高度h,即题中的0.45m;从最高点下降到手触到水面,下降的高度为H,由图中H、h、10m三者的关系可知H=10.45m。
由于初速未知,所以应分段处理该运动。运动员跃起上升的时间为:s
从最高点下落至手触水面,所需的时间为:s
所以运动员在空中用于完成动作的时间约为:=1.7s
点评:构建物理模型时,要重视理想化方法的应用,要养成化示意图的习惯。
【例12】如图所示是我国某优秀跳水运动员在跳台上腾空而起的英姿.跳台距水面高度为10m,此时她恰好到达最高位置,估计此时她的重心离跳台台面的高度为1m,当她下降到手触及水面时要伸直双臂做一个翻掌压水花的动作,这时她的重心离水面也是1m.(取g=10m/s2)求:
(1)从最高点到手触及水面的过程中其重心可以看作是自由落体运动,她在空中完成一系列动作可利用的时间为多长?
(2)忽略运动员进入水面过程中受力的变化,入水之后,她的重心能下沉到离水面约2.5m处,试估算水对她的平均阻力约是她自身重力的几倍?
解析:(1)这段时间人重心下降高度为10m
空中动作时间t=
代入数据得t=s=1.4s
(2)运动员重心入水前下降高度h+Δh=11m
据动能定理mg(h+Δh+h水)=fh水
整理并代入数据得=5.4
三、针对训练
1.骑自行车的人沿着直线从静止开始运动,运动后,在第1s、2s、3s、4s内,通过的路程分别为1m、2m、3m、4m,有关其运动的描述正确的是
A.4s内的平均速度是2.5m/s
B.在第3、4s内平均速度是3.5m/s
C.第3s末的即时速度一定是3m/s
D.该运动一定是匀加速直线运动
2.汽车以20m/s的速度做匀速直线运动,刹车后的加速度为5m/s2,那么开始刹车后2s与开始刹车后6s汽车通过的位移之比为
A.1∶4B.3∶5C.3∶4D.5∶9
3.有一个物体开始时静止在O点,先使它向东做匀加速直线运动,经过5s,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5s,又使它的加速度方向改为向东,但加速度大小不改变,如此重复共历时20s,则这段时间内
A.物体运动方向时而向东时而向西
B.物体最后静止在O点
C.物体运动时快时慢,一直向东运动
D.物体速度一直在增大
4.物体做匀变速直线运动,某时刻速度的大小为4m/s,1s后速度的大小变为10m/s,关于该物体在这1s内的位移和加速度大小有下列说法
①位移的大小可能小于4m
②位移的大小可能大于10m
③加速度的大小可能小于4m/s2
④加速度的大小可能大于10m/s2
其中正确的说法是
A.②④B.①④C.②③D.①③
5.物体从斜面顶端由静止开始滑下,经ts到达中点,则物体从斜面顶端到底端
共用时间为
A.sB.sC.2tsD.ts
6.做匀加速直线运动的物体,先后经过A、B两点时的速度分别为v和7v,经
历的时间为t,则
A.前半程速度增加3.5v
B.前时间内通过的位移为11vt/4
C.后时间内通过的位移为11vt/4
D.后半程速度增加3v
7.一观察者站在第一节车厢前端,当列车从静止开始做匀加速运动时
A.每节车厢末端经过观察者的速度之比是1∶∶∶…∶
B.每节车厢末端经过观察者的时间之比是1∶3∶5∶…∶n
C.在相等时间里经过观察者的车厢数之比是1∶3∶5∶…
D.在相等时间里经过观察者的车厢数之比是1∶2∶3∶…
8.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4m/s2的加速度做匀加速运动,经过30s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8m/s的速度从A车旁边驶过,且一直以相同速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始
A.A车在加速过程中与B车相遇
B.A、B相遇时速度相同
C.相遇时A车做匀速运动
D.两车不可能再次相遇
9.做匀加速直线运动的火车,车头通过路基旁某电线杆时的速度是v1,车尾通过该电线杆时的速度是v2,那么,火车中心位置经过此电线杆时的速度是_______.
10.一物体由静止开始做匀加速直线运动,在第49s内位移是48.5m,则它在第60s内位移是_______m.
11.一物体初速度为零,先以大小为a1的加速度做匀加速运动,后以大小为a2的加速度做匀减速运动直到静止.整个过程中物体的位移大小为s,则此物体在该直线运动过程中的最大速度为_______.
12.如图所示为用打点计时器测定匀变速直线运动的加速度的实验时记录下的一条纸带.纸带上选取1、2、3、4、5各点为记数点,将直尺靠在纸带边,零刻度与纸带上某一点0对齐.由0到1、2、3…点的距离分别用d1、d2、d3…表示,测量出d1、d2、d3…的值,填入表中.已知打点计时器所用交流电的频率为50Hz,由测量数据计算出小车的加速度a和纸带上打下点3时小车的速度v3,并说明加速度的方向.
距离d1d2d3d4d5
测量值(cm)
加速度大小a=_______m/s2,方向_______,小车在点3时的速度大小v3=_______m/s.
13.一物体做匀加速直线运动,初速度为0.5m/s,第7s内的位移比第5s内的位移多4m,求:
(1)物体的加速度.
(2)物体在5s内的位移.
14.某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10s内下降高度为1800m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.
(1)求飞机在竖直方向上产生的加速度多大?
(2)试估算成年乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.(g取10m/s2)
15.如图,一长为l的长方形木块可在倾角为a的斜面上无摩擦地滑下,连续经过1、2两点,1、2之间有一距离,物块通过1、2两点所用时间分别为t1和t2,那么物块前端P在1、2之间运动所需时间为多少?
参考答案
1.AB
2.C
3.C
4.B
5.A
6.C
7.AC
8.C
9.
10.59.5
11.vm=
12.0.58;与运动方向相反;0.13
13.利用相邻的相等时间里的位移差公式:Δs=aT2,知Δs=4m,T=1s.a=
=m/s2=2m/s2.再用位移公式可求得s5=v0t+at2=(0.5×5+×2×52)m=27.5m
14.由s=at2及:a=m/s2=36m/s2.
由牛顿第二定律:F+mg=ma得F=m(a-g)=1560N,成年乘客的质量可取45kg~65kg,因此,F相应的值为1170N~1690N
15.设P端通过1后时刻速度为v1′,通过2后时刻速度为v2′,由匀变速运动规律有:v1′=,v2′=.物体运动的加速度为a=gsinα,=又t1-1′=,t2-2′=,故t12=t1-1′-t2-2′+=
教学随感
运变速直线运动重点是让学生记住公式及推论,并且注意培养学生可逆思维和一题多解的思维,为后面复习打下牢固的基础。
运动图象追赶问题

一、运动图象
用图像研究物理现象、描述物理规律是物理学的重要方法,运动图象问题主要有:s-t、v-t、a-t等图像。
1.s-t图象。能读出s、t、v的信息(斜率表示速度)。
2.v-t图象。能读出s、t、v、a的信息(斜率表示加速度,曲线下的面积表示位移)。可见v-t图象提供的信息最多,应用也最广。
位移图象(s-t)速度图象(v-t)加速度图象(a-t)
匀速直线运动
匀加速直线运动
(a0,s有最小值)抛物线(不要求)
匀减速直线运动
(a0,s有最大值)抛物线(不要求)
备注位移图线的斜率表示速度①斜率表示加速度
②图线与横轴所围面积表示位移,横轴上方“面积”为正,下方为负

【例1】一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC。已知AB和AC的长度相同。两个小球p、q同时从A点分别沿AB和AC由静止开始下滑,比较它们到达水平面所用的时间
A.p小球先到
B.q小球先到
C.两小球同时到
D.无法确定
解析:可以利用v-t图象(这里的v是速率,曲线下的面积表示路程s)定性地进行比较。在同一个v-t图象中做出p、q的速率图线,显然开始时q的加速度较大,斜率较大;由于机械能守恒,末速率相同,即曲线末端在同一水平图线上。为使路程相同(曲线和横轴所围的面积相同),显然q用的时间较少。
【例2】两支完全相同的光滑直角弯管(如图所示)现有两只相同小球a和a/同时从管口由静止滑下,问谁先从下端的出口掉出?(假设通过拐角处时无机械能损失)
解析:首先由机械能守恒可以确定拐角处v1v2,而两小球到达出口时的速率v相等。又由题薏可知两球经历的总路程s相等。由牛顿第二定律,小球的加速度大小a=gsinα,小球a第一阶段的加速度跟小球a/第二阶段的加速度大小相同(设为a1);小球a第二阶段的加速度跟小球a/第一阶段的加速度大小相同(设为a2),根据图中管的倾斜程度,显然有a1a2。根据这些物理量大小的分析,在同一个v-t图象中两球速度曲线下所围的面积应该相同,且末状态速度大小也相同(纵坐标相同)。开始时a球曲线的斜率大。由于两球两阶段加速度对应相等,如果同时到达(经历时间为t1)则必然有s1s2,显然不合理。考虑到两球末速度大小相等(图中vm),球a/的速度图象只能如蓝线所示。因此有t1t2,即a球先到。
点评:1、应用物理图象的优越性
(1)利用图象解题可以使解题过程简化,思路更清晰,比解析法更巧妙、更灵活。在有些情况下运用解析法可能无能为力,用图象法可能使你豁然开朗。
(2)利用图象描述物理过程更直观
从物理图象可以更直观地观察出物理过程的动态特征。当然不是所有物理过程都可以用物理图象进行描述。
(3)利用图象分析物理实验
运用图象处理物理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比较和减少偶然误差的特点外,还可以有图象求第三个相关物理量、运用图想求出的相关物理量误差也比较小。
2、要正确理解图象的意义
(1)首先明确所给的图象是什么图象。即认清图象中横纵轴所代表的物理量及它们的函数关系。特别是那些图形相似容易混淆的图象,更要注意区分。
(2)要清楚地理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义。
①点:图线上的每一个点对应研究对象的一个状态,特别注意“起点”、“终点”、“拐点”,它们往往对应一个特殊状态。
②线:表示研究对象的变化过程和规律,如v-t图象中图线若为倾斜直线,则表示物体做匀变速直线运动。
③斜率:表示横、纵坐标上两物理量的比值,常有一个重要的物理量与之对应。用于求解定量计算对应物理量的大小和定性分析变化的快慢问题。如s-t图象的斜率表示速度大小,v-t图象的斜率表示加速度大小。
④面积;图线与坐标轴围成的面积常与某一表示过程的物理量相对应。如v-t图象与横轴包围的“面积”大小表示位移大小。
⑤截距:表示横、纵坐标两物理量在“边界”条件下的物理量的大小。由此往往能得到一个很有意义的物理量。
【例3】一物体做加速直线运动,依次通过A、B、C三点,AB=BC。物体在AB段加速度为a1,在BC段加速度为a2,且物体在B点的速度为,则
A.a1a2B.a1=a2C.a1a2D.不能确定
解析:依题意作出物体的v-t图象,如图所示。图线下方所围成的面积表示物体的位移,由几何知识知图线②、③不满足AB=BC。只能是①这种情况。因为斜率表示加速度,所以a1a2,选项C正确。
点评:本题是根据图象进行定性分析而直接作出解答的。分析时要熟悉图线下的面积、斜率所表示的物理意义。
【例4】蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心的距离L1=1m的A点处时,速度是v1=2cm/s。试问蚂蚁从A点爬到距巢中心的距离L2=2m的B点所需的时间为多少?
解析:本题若采用将AB无限分割,每一等分可看作匀速直线运动,然后求和,这一办法原则上可行,实际上很难计算。
题中有一关键条件:蚂蚁运动的速度v与蚂蚁离巢的距离x成反比,即,作出图象如图示,为一条通过原点的直线。从图上可以看出梯形ABCD的面积,就是蚂蚁从A到B的时间:s
点评:解该题的关键是确定坐标轴所代表的物理量,速率与距离成反比的条件,可以写成,也可以写成,若按前者确定坐标轴代表的量,图线下的面积就没有意义了,而以后者来确定,面积恰好表示时间,因此在分析时有一个尝试的过程。
二、追赶问题
讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题。
1.两个关系:即时间关系和位移关系
2.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
常见的情况有:
(1)物体A追上物体B:开始时,两个物体相距s0,则A追上B时,必有sA-sB=s0,且vA≥vB。
(2)物体A追赶物体B:开始时,两个物体相距s0,要使两物体恰好不相撞,必有sA-sB=s0,且vA≤vB。
3.解题思路和方法

【例5】从离地面高度为h处有自由下落的甲物体,同时在它正下方的地面上有乙物体以初速度v0竖直上抛,要使两物体在空中相碰,则做竖直上抛运动物体的初速度v0应满足什么条件?(不计空气阻力,两物体均看作质点).若要乙物体在下落过程中与甲物体相碰,则v0应满足什么条件?
命题意图:以自由下落与竖直上抛的两物体在空间相碰创设物理情景,考查理解能力、分析综合能力及空间想象能力.B级要求.
错解分析:考生思维缺乏灵活性,无法巧选参照物,不能达到快捷高效的求解效果。
解题方法与技巧:(巧选参照物法)
选择乙物体为参照物,则甲物体相对乙物体的初速度:v甲乙=0-v0=-v0
甲物体相对乙物体的加速度a甲乙=-g-(-g)=0
由此可知甲物体相对乙物体做竖直向下,速度大小为v0的匀速直线运动。所以,相遇时间为:t=
对第一种情况,乙物体做竖直上抛运动,在空中的时间为:0≤t≤
即:0≤≤
所以当v0≥,两物体在空中相碰。
对第二种情况,乙物体做竖直上抛运动,下落过程的时间为:≤t≤
即≤≤。
所以当≤v0≤时,乙物体在下落过程中与甲物体相碰。
【例6】(1999年全国)为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v=120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s,刹车时汽车受到阻力的大小f为汽车重的0.40倍,该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2)
解析:在反应时间内,汽车作匀速运动,运动的距离s1=vt
设刹车时汽车的加速度的大小为a,汽车的质量为m,有f=ma
自刹车到停下,汽车运动的距离s2=v2/2a
所求距离s=s1+s2
由以上各式得s=1.6×102m
【例7】在某市区内,一辆小汽车在公路上以速度v1向东行驶,一位观光游客正由南向北从斑马线上横过马路。汽车司机发现游客途经D处时,经过0.7s作出反应紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下,如图所示。为了判断汽车司机是否超速行驶以及游客横穿马路的速度是否过快,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经14.0m后停下来。在事故现场测得=17.5m,=14.0m,=2.6m.肇事汽车的刹车性能良好,问:
(1)该肇事汽车的初速度vA是多大?
(2)游客横过马路的速度是多大?
解析:(1)警车和肇事汽车刹车后均做匀减速运动,其加速度大小,与车子的质量无关,可将警车和肇事汽车做匀减速运动的加速度的大小视作相等。
对警车,有vm2=2s;对肇事汽车,有vA2=2s′,则
vm2/vA2=s/s′,即vm2/vA2=s/(+)=14.0/(17.5+14.0),
故m/s.
(2)对肇事汽车,由v02=2s∝s得
vA2/vB2=(+)/=(17.5+14.0)/14.0,
故肇事汽车至出事点B的速度为vB=vA=14.0m/s.
肇事汽车从刹车点到出事点的时间t1=2/(vA+vB)=1s,
又司机的反应时间t0=0.7s,故游客横过马路的速度
v′=/t0+t1=2.6/(0.7+1)≈1.53m/s。
从上面的分析求解可知,肇事汽车为超速行驶,而游客的行走速度并不快。
点评:本题涉及的知识点并不复杂,物理情景则紧密联系生活实际,主要训练学生的信息汲取能力和分析推理能力。
【例8】(2000年全国)一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=10m,如图所示.转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s.光束转动方向如图中箭头所示.当光束与MN的夹角为45°时,光束正好射到小车上.如果再经过Δt=2.5s,光束又射到小车上,则小车的速度为多少?(结果保留两位数字)
解析:该题为一“追及”的问题,有两种可能解,第一次为物追光点,在相同时间内,汽车与光点扫描的位移相等,L1=d(tan45°-tan30°),则v1==1.7m/s,第二次为(光)点追物,时间相同,空间位移相同,L2=d(tan60°-tan45°),可得v2==2.9m/s
三、针对训练
1.飞机从一地起飞,到另一地降落,如果飞机在竖直方向的分速度vy与时间t的关系曲线如图所示(作图时规定飞机向上运动时vy为正),则在飞行过程中,飞机上升的最大高度是_____m,在t=2200s到t=2400s一段时间内,它在竖直方向的分加速度ay为_____m/s2。
2.三个质点同时同地沿直线运动的位移图像如图所示,则下列说法中正确的是()
A.在t0时间内,它们的平均速度大小相等
B.在t0时间内,它们的平均速率大小相等
C.在t0时间内,Ⅱ、Ⅲ的平均速率相等
D.在t0时间内,Ⅰ的平均速度最大
3.在一次无线电测向比赛中,甲、乙、丙三个小分队从营地O同时出发,沿三条不同的路径在同一时刻于A点搜到目标,如图,则下列说法中正确的是()
①三个小分队的平均速度相同
②三个小分队的平均速率相同
③小分队乙的平均速度最小
④小分队甲的平均速率最大
A.①②B.①④
C.②③D.③④
4.将物体竖直向上抛出后,如图所示,如果在上升阶段和下落阶段所受空气阻力大小相等,则:
(1)能正确反映物体的速度(以竖直向上作为正方向)随时间变化的是()
(2)能正确反映物体的速率随时间变化的是()
5.如图为两个物体A和B在同一直线上沿同一方向同时作匀加速运动的v-t图线。已知在第3s末两个物体在途中相遇,则物体的出发点的关系是
A.从同一地点出发B.A在B前3m处C.B在A前3m处D.B在A前5m处
6.有两个光滑固定斜面AB和BC,A、C两点在同一水平面上,斜面BC比AB长(如图甲所示),下面四个图中(如图乙)正确表示滑块速率随时间t变化规律的是:
7.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行驶的距离为s,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持距离至少应为多少?
8.汽车在平直公路上以速度v0做匀速直线运动。当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车.根据上述的已知多件()
A.可求出乙车追上甲车时的速度
B.可求出乙车追上甲车时所走的路程
C.可求出乙车从开始运动到追上甲车所用的时间
D.不能求出上述三者中的任何一个
9.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为()
A.sB.2sC.3sD.4s
10.汽车以20m/s的速度沿公路向东行驶,自行车以5m/s的速度在汽车前与汽车同方向匀速运动,当汽车与自行车相距44m时开始以大小为2m/s2的加速度刹车,求汽车与自行车何时何处相遇。
11.A、B两棒均长1m,A悬于高处,B竖于地面,A的下端和B的上端相距20m。今A、B两棒同时运动,A做自由落体运动,B以初速度20m/s竖直上抛,在运动过程中两棒都保持竖直。求:两棒何时开始相遇?相遇(不相碰)过程为多少时间?(g=10m/s2)
12.如图所示,水平轨道上停放着一辆质量为5.0×102kg的小车A,在A的右方L=8.0m处,另一辆小车B正以速度vB=4.0m/s的速度向右做匀速直线运动远离A车,为使A车能经过t=10.0s时间追上B车,立即给A车适当施加向右的水平推力使小车做匀变速直线运动,设小车A受到水平轨道的阻力是车重的0.1倍,试问:在此追及过程中,推力至少需要做多少功?(取g=10m/s2)

教学后记
图象是高考考查的热点问题,有单独出现也经常和电学,电磁学结合出现,掌握好常见图象的分析方法是关键。特别是速度时间图象高考中经常出现,应该引导学生重视。

高考物理第一轮考点复习教案1


静悟导读提纲:(四)动能定理能量守恒定律
【考试说明】
机械能功和功率
动能和动能定理
重力做功与重力势能
功能关系、机械能守恒定律及其应用Ⅱ



【知识网络】
【考试说明解读】
一、功
1.功的计算公式W=Fscosα.
说明:
⑴式中F是作用在物体上的外力,s是受力物体的位移,α是F与s之间的夹角.
由功的计算式可知,有力和位移不一定有功(α=90°时,W=0)
⑵当F、s、α确定后,某个力F对物体做的功有确定的值,与物体的运动形式(无论是匀速或变速)无关,也与物体同时受到的其他力无关.
2.正功和负功
⑴.当α<90°时,W>0,力对物体做正功,此时力对物体的运动有推动作用,此力叫动力.
⑵.当90°<α≤180°时,W<0,力对物体做负功,此时力对物体的运动起阻碍作用,此力叫阻力,也可说成物体克服这个力做了功.
注意:力(F)和位移(s)都是矢量,功(W)虽然有正负,但功是标量。正负既不表示方向,也不表示大小.只表示力在做功过程中所起的作用.
二、功率
1.计算功率的两个公式
⑴公式p=W/t:是功率的定义式,算出的是在时间t内力做功的平均功率.
⑵公式P=Fv(F、v在一条直线上):当v为瞬时速度时,算出的是瞬时功率;当v为平均速度时,算出的是一段时间内的平均功率。若F、v不共线,夹角为θ时,P=Fvcosθ.
2.机车起动
⑴以恒定功率起动,其运动情况是:变加速(a↓)→(a=0)匀速;
⑵匀加速起动,其运动情况是:
匀加速(a恒定,P增大)→额定Pm后,作变加速(a↓)→(a=0)匀速.
【例1】某人用F=100N的恒力,通过滑轮把物体M拉上斜面,如图所示,用力F方向恒与斜面成60°,若物体沿斜面运动1m,他做的功是J。(g取10m/s2)(150J)
三、动能定理
1.动能:
⑴表达式:Ek=mv2/2单位:焦耳(J)
⑵理解
①动能是状态量;②动能是标量;③动能具有瞬时性,与某一时刻或位置相对应.
④动能具有相对性,对于不同的参考系,物体速度有不同的瞬时值,动能也就有不同的瞬时值.在研究物体的动能时一般都是以地面为参考系的.
2.动能定理
⑴内容:合外力对物体所做的功等于物体动能的增量.?
动能定理也可叙述为:合外力对物体所做的功,等于物体动能的增加;物体克服外力所做的功,等于物体动能的减少.?
⑵公式:W总=mv22/2-mv21/2
注意:
⑴W总是物体所受各外力对物体做功的代数和,特别注意功的正负,也可以先求出合外力,再求合外力的功.
⑵公式等号右边是动能的增量,是末状态的动能减初状态的动能.
⑶不论作用在物体上的力是恒力还是变力,也不论物体是做直线运动还是曲线运动,动能定理都适用.
⑷应用动能定理解题,一般比应用牛顿第二定律和运动学公式解题要简便,当题设条件涉及力的位移效应,或求变力做功问题,均优先考虑用动能定理求解.
【例2】质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是(BD)?
A.子弹克服阻力做的功与木块获得的动能相等
B.阻力对子弹做的功与子弹动能的减少相等
C.子弹克服阻力做的功与子弹对木块做的功相等
D.子弹克服阻力做的功大于子弹对木块做的功
四.机械能守恒定律
1.重力做功的特点:
由于重力的方向始终竖直向下,因而在物体运动的过程中,重力的功只取决于初、末位置间的高度差,与物体运动的路径无关,即WG=mgh
2.重力势能
⑴定义:受重力作用的物体,具有的与它相对地球的位置有关的能量叫重力势能.
重力势能大小的公式为Ep=mgh
⑵注意问题
①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的
②重力势能的大小和零势能面的选取有关.
③重力势能是标量,但有正、负
⑶做功跟重力势能改变的关系:重力做正功,重力势能减小;重力做负功,重力势能增加,总之,重力做功等于势能增量的负值,即WG=-△EP.
3.弹性势能
⑴定义:物体由于发生弹性形变而具有的能.
⑵大小:弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.
4.机械能守恒定律
(1)内容:在只有重力(或弹力)做功的条件下,物体的重力势能(或弹性势能)和动能相互转化,但机械能总量保持不变.
(2)公式:Ek+Ep=E′k+E′p或E1=E2或△E=0
(3)机械能守恒定律成立的条件:
对单个物体:只有重力做功,其他力不做功或做功的代数和为零.
对系统:不仅要看外力功,还要看内力功。因为内力做功也可引起系统机械能的变化。
【例3】如图所示,在水平台面上的A点,一个质量为m的物体以初速度v0被抛出,不计空气阻力,求它到达B点时速度的大小。(vB=)
五、功能关系
1.做功使不同形式的能发生转化;
2.功是能量转化的标志和量度;
3.功和能的区别.
①能是状态量,功是过程量;
②功和能不能相互转化.
4.功是能量转化的标志
①重力做功——重力势能的改变
②电场力做功——电势能的改变
③合外力做功——动能的改变
④弹簧中弹力做功——弹性势能的改变
⑤除重力之外的力做功——机械能的改变
5.功是能量转化的量度
做功的过程就是能量转化的过程,做了多少功,就有多少能量发生了转化,反之转化了多少能量就说明做了多少功.
注意:功和能是两个密切相关的物理量,但功和能有本质的区别,功是反映物体间在相互作用过程中能量变化多少的物理量,是一个过程量;能是用来反映物体运动状态的物理量,处于一定运动状态(如速度和相对位置)的物体就有一定的能量.
功和能的单位相同,在国际单位制中,都是焦(J).
6.应用能量守恒定律解题的步骤
①分清有多少种形式的能(如动能、势能、内能、电能等)在变化;
②分别列出减少的能量和增加的能量的表示式;
③列方程△E减=△E增进行求解.
【例4】一物块从图所示的弧型轨道上的A点,由静止开始滑下,由于轨道不光滑,它仅能滑到B点.由B点返回后,仅能滑到C点,已知A、B高度差为h1,B、C高度差为h2,则下列关系正确的是(C)
A.h1=h2
B.h1<h2
C.h1>h2
D.h1、h2大小关系不确定

六、实验《验证机械能守恒定律》
1.实验目的
验证机械能守恒定律.
2.实验原理
在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒,若物体某时刻速度为v,下落高度为h,恒有:
mgh=mv2/2
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度,即可验证机械能是否守恒.
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间T内下落的距离Sn和Sn+1,然后由公式vn=(Sn+Sn+1)/2T或由vn=(dn+1-dn-1)/2T算出(如图所示).
3.实验器材
铁架台(带铁夹),打点计时器,重锤(带纸带夹子),纸带几条,复写纸片,导线,直尺,学生电源.
4.注意事项
1.实验中打点计时器的安装,两纸带限位孔必须在同一竖直线上,以减少摩擦阻力.
2.实验时,必须先接通电源,让打点计时器工作正常后才松手让纸带重锤下落.
3.打点记时器必须接交流电源.
4.重锤的选择应是质量较大,从而使重力远大于下落过程中所受的阻力,实现减小实验误差的目的.
5.选用纸带时应尽量挑第一、二点间距离接近2mm的纸带.
6.计算下落高度时,都必须从起始点算起。不能搞错,为了减小测量h的相对误差,选取的各个计数点要离起始点远一些,但纸带也不宜过长,有效长度可在60cm-80cm内.
7.因为实验要求第一个点对应重锤开始下落的时刻,这就要尽量使每点是清晰小点,为此提起纸带的手要保持不动,待接通电源,打点计时器正常工作后再松开纸带.
8.实验中,只要验证gh是否等于V2/2即可,不用测重锤的质量.

高考物理第一轮考点复习教案10


静悟导读提纲:(七)磁场

【考试说明】

磁场

磁场、磁感应强度、磁感线

通电直导线和通电线圈周围磁场的方向

安培力、安培力的方向

匀强磁场中的安培力

洛仑兹力、洛仑兹力的方向

洛仑兹力公式

带电粒子在匀强磁场中的运动

质谱仪和回旋加速器

安培力的计算只限于电流与磁感应强度垂直的情形

洛仑兹力的计算只限于速度与磁场方向垂直的情形

【知识网络】

1kg/(As2)

(2)对定义式的理解:

①定义式中反映的F、B、I方向关系为:B⊥I,F⊥B,F⊥I,则F垂直于B和I所构成的平面。

②定义式可以用来量度磁场中某处磁感应强度,不决定该处磁场的强弱,磁场中某处磁感应强度的大小由磁场自身性质来决定。

③磁感应强度是矢量,其矢量方向是小磁针在该处的北极受力方向,与安培力方向是垂直的。

④如果空间某处磁场是由几个磁场共同激发的,则该点处合磁场(实际磁场)是几个分磁场的矢量和;某处合磁场可以依据问题求解的需要分解为两个分磁场;磁场的分解与合成必须遵循矢量运算法则。

【例1】有一小段通电导线,长为1cm,电流强度为5A,把它置于磁场中某点,受到的磁场力为0.1N,则该点的磁感应强度B一定是

A.B=2TB.B≤2TC.B≥2TD.以上情况都有可能

【例1】C

【例2】两根长直通电导线互相平行,电流方向相同,它们的截面处于等边△ABC的A和B处,如图所示.两通电导线在C处产生磁场的磁感应强度大小都是B0,则C处磁场的总磁感应强度大小是

A.0B.B0C.

等离子体射入,受洛伦兹力偏转,使两极板带正、负电,两极电压为U时稳定。

电子经U加速,从A孔入射经偏转打到P点,

D形盒内分别接频率为的高频交流电源两极,带电粒子在窄缝间电场加速,在D形盒内偏转

【例8】如图所示,PQ是空间位置固定的两个电荷量相等的异种电荷,它们的连线中点为O,MN是中垂线,两电荷连线与中垂线在纸平面内,在垂直纸面方向有一磁场,中垂线上一不计重力的带正电粒子以初速度v0保持沿中垂线运动,则

A.磁场的方向垂直纸面向外

B.带电粒子做匀速直线运动,所受洛仑兹力的大小不变

C.带电粒子做匀速直线运动,所受洛仑兹力的大小改变

D.带电粒子做变速直线运动,所受洛仑兹力的大小改变

【例8】C

【例9】如图所示,厚度为h,宽度为d的导体板放在垂直于它的磁感应强度为B的匀强磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A′之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U、电流I和B的关系为U=k,式中的比例系数k称为霍尔系数.霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板一侧,在导体板的两侧将出现匀强电场,电子将受到静电力作用.当静电力与洛伦兹力平衡时,两侧之间就会形成稳定的电势差.设电流I是由电子的定向移动而形成的,电子的平均速率为v,电量为e.回答下列问题:

(1)达到稳定状态时,导体板上侧面A的电势______下侧面A′的电势.(填“高于”、“低于”或“等于”)

(2)所受洛伦兹力的大小为______.

(3)当导体板上、下两侧面之间的电势差为U时,电子所受静电力的大小为______.

(4)由静电力和洛伦兹力平衡的条件,证明霍尔系数k=1/ne,n代表单位体积中自由电子的个数.

【例9】(1)低于;(2)F洛=Bev;(3)F电=Bev;(4)k=Ud/IB=

文章来源:http://m.jab88.com/j/73153.html

更多

最新更新

更多