88教案网

20xx高考物理复习微专题06卫星的变轨与追及问题多星模型学案新人教版

一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。怎么才能让教案写的更加全面呢?为此,小编从网络上为大家精心整理了《20xx高考物理复习微专题06卫星的变轨与追及问题多星模型学案新人教版》,供大家借鉴和使用,希望大家分享!

微专题06卫星的变轨与追及问题多星模型
卫星的变轨问题分析
1.卫星变轨的动力学原因
当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运动;
(1)当卫星的速度突然增加时,GMmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr,可知其运行速度比原轨道时减小.
(2)当卫星的速度突然减小时,GMmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时,由v=GMr,可知其运行速度比原轨道时增大,卫星的发射和回收就是利用这一原理.
2.卫星变轨特征
(1)速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.
(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.
(20xx天津卷)我国在20xx年9月15日发射了“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
解析:选C若使飞船与空间实验室在同一轨道上运行,然后飞船加速,则由于飞船所受合力小于所需向心力,故飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A错误;若使飞船与空间实验室在同一轨道上运行,然后空间实验室减速,则由于空间实验室所受合力大于所需向心力,故空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,选项B错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D错误.
(多选)“天宫一号”是中国第一个目标飞行器,随后发射的“神舟八号”无人飞船已与它成功对接,它们的运行轨迹如图所示,假设“天宫一号”绕地球做圆周运动的轨道半径为r,周期为T,引力常量为G,则以下说法正确的是()
A.根据题中条件可以计算出地球的质量
B.根据题中条件可以计算出地球对“天宫一号”的引力大小
C.在近地点P处,“神舟八号”的速度比“天宫一号”大
D.要实现“神舟八号”与“天宫一号”在近地点P处安全对接,需在靠近P处制动减速
解析:选ACD地球对“天宫一号”的万有引力提供向心力,GM地mr2=m4π2rT2,得M地=4π2r3GT2,故选项A正确;由于“天宫一号”的质量未知,故不能求出地球对“天宫一号”的引力大小,选项B错误;在P点“神舟八号”的速度比“天宫一号”大,要实现安全对接(两者的速度相等),需对“神舟八号”制动减速,选项C、D正确.
1.(20xx课标Ⅲ)20xx年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的()
A.周期变大B.速率变大
C.动能变大D.向心加速度变大
解析:C天舟一号货运飞船与天宫二号空间实验室对接形成的组合体仍沿天宫二号原来的轨道运行,根据GMmr2=ma=mv2r=mr4π2T2可知,组合体运行的向心加速度、速率、周期不变,质量变大,则动能变大,选项C正确.
2.(20xx山西省实验中学月考)(多选)我国发射的“神舟八号”飞船与先期发射的“天宫一号”空间站实现了完美对接.已知“天宫一号”绕地球做圆轨道运动,轨道半径为r,周期为T,引力常量为G.假设沿椭圆轨道运动的“神舟八号”环绕地球的运动方向与“天宫一号”相同,远地点与“天宫一号”的圆轨道相切于某点P,并在这点附近实现对接,如图所示.则下列说法正确的是()
A.根据题设条件可以计算出地球对“天宫一号”的引力大小
B.根据题中条件可以计算出地球的质量
C.要实现在远地点P处对接,“神舟八号”需在靠近P处之前点火减速
D.“神舟八号”的运动周期比“天宫一号”的小
解析:选BD根据GMmr2=mr4π2T2知,地球的质量M=4π2r3GT2,由于“天宫一号”的质量未知,无法求出地球对“天宫一号”的引力大小,故A错误,B正确.要实现在远地点P处对接,“神舟八号”需在靠近P处之前点火加速,使得万有引力等于向心力,故C错误.根据开普勒第三定律r3T2=k,由于“神舟八号”轨道的半长轴小于“天宫一号”的轨道半径,则“神舟八号”的运动周期比“天宫一号”的小,故D正确.
卫星的追及问题
若某中心天体有两颗轨道共面的环绕天体,当两环绕天体与中心天体在同一直线上,且位于中心天体同一侧时相距最近;当两环绕天体与中心天体在同一直线上,且位于中心天体异侧时相距最远.如两环绕天体某时刻相距最近,则:
(1)若经过时间t,两环绕天体与中心天体连线半径转过的角度相差2π的整数倍,则两环绕天体又相距最近;
(2)若经过时间t,两环绕天体与中心天体连线半径转过的角度相差π的奇数倍,则两环绕天体相距最远.
假设有一载人宇宙飞船在距地面高度为4200km的赤道上空绕地球做匀速圆周运动,地球半径约为6400km,地球同步卫星距地面高为36000km,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时,宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为()
A.4次B.6次
C.7次D.8次
解析:选C根据圆周运动的规律,分析一昼夜同步卫星与宇宙飞船相距最近的次数,即为卫星发射信号的次数,也为接收站接收到的信号次数.
设宇宙飞船的周期为T,由GMmr2=m4π2T2r,得T=2πr3GM,则T2242=(6400+42006400+36000)3,解得T=3h
设两者由相距最远至第一次相距最近的时间为t1,有
(2πT-2πT0)t1=π,解得t1=127h
再设两者相邻两次相距最近的时间间隔为t2,有
(2πT-2πT0)t2=2π,解得t2=247h
由n=24-t1t2=6.5次知,接收站接收信号的次数为7次.
如图所示,质量相同的三颗卫星a、b、c绕地球做匀速圆周运动,其中b、c在地球的同步轨道上,a距离地球表面的高度为R,此时a、b恰好相距最近.已知地球质量为M、半径为R、地球自转的角速度为ω,引力常量为G,则下列选项正确的是()
A.发射卫星a时速度要大于7.9km/s
B.若要卫星c与b实现对接,让卫星c加速即可
C.卫星b距离地面的高度为3GMω2
D.卫星a和b下一次相距最近还需经过的时间t=2πGM8R2-ω
解析:选A地球卫星的最小发射速度为7.9km/s,可知发射卫星a的速度大于7.9km/s,故A正确.让卫星c加速,万有引力小于向心力,卫星c会脱离圆轨道,做离心运动,不会与卫星b实现对接,故B错误.根据GMmR+h2=m(R+h)ω2得,卫星b离地的高度h=3GMω2-R,故C错误.当(ωa-ω)t=2π时,再一次相距最近,根据GMm2R2=m2Rω2a得,运动的时间t=2πGM8R2-ω,故D错误.
3.(多选)A、B两卫星在相同的轨道平面内运动,地球的半径为R,A、B两卫星的轨道高度分别为R和3R,某时刻两卫星距离最近,下列说法正确的是()
A.A、B两卫星的周期之比为3∶9
B.A、B两卫星的线速度之比为2∶1
C.A卫星可能再运动4+27圈两卫星距离最远
D.A卫星可能再运动4-27圈两卫星距离最远
解析:选BCD两卫星的轨道半径分别为rA=2R,rB=4R,由r3T2=k得,TATB=2∶4,A选项错误;由GMmr2=mv2r得,v=GMr,故vA∶vB=2∶1,B选项正确;设再经过t=nTA两卫星距离最近,若两卫星同向运动,有tTA-tTB=1,解得n=4+27,C选项正确;若两卫星反向运动,有ωAt+ωBt=π,2πtTA+2πtTB=π,解得n=4-27,D选项正确.
4.万有引力定律是科学史上最伟大的定律之一,利用它我们可以进行许多分析和预测.20xx年3月8日出现了“木星冲日”.当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学家称之为“木星冲日”.木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.下列说法正确的是()
A.下一次的“木星冲日”时间肯定在20xx年
B.下一次的“木星冲日”时间肯定在20xx年
C.木星运行的加速度比地球的大
D.木星运行的周期比地球的小
解析:选B木星和地球绕太阳做圆周运动,都是以万有引力为合外力做向心力,故加速度a=F万m=GMr2,木星到太阳的距离大约是地球到太阳距离的5倍,故木星运行的加速度比地球的小,万有引力做向心力,即GMmr2=m2πT2r,所以T=2πr3GM,木星到太阳的距离大约是地球到太阳距离的5倍,故木星运行的周期比地球的大,故CD错误;由T=2πr3GM可知,若地球公转周期为T1=1年,那么木星公转周期为T2=53T1≈11.2T1=11.2年;那么“木星冲日”的周期为T′,则有:T′T1-T′T2=1,所以T′=T1T2T2-T1≈11.210.2年≈1.1年,故20xx年3月8日出现了一次“木星冲日”,下一次的“木星冲日”时间肯定在20xx年,故A错误,B正确.
双星或多星模型
1.双星模型
(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.
(2)特点:
①各自所需的向心力由彼此间的万有引力相互提供,即
Gm1m2L2=m1ω21r1
Gm1m2L2=m2ω22r2
②两颗星的周期及角速度都相同,即
T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
(3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r1.
2.多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型:
①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).
(3)四星模型:
①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).
②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).
宇宙空间有一种由三颗星体A、B、C组成的三星体系,它们分别位于等边三角形ABC的三个顶点上,绕一个固定且共同的圆心O做匀速圆周运动,轨道如图中实线所示,其轨道半径rA<rB<rC.忽略其他星体对它们的作用,可知这三颗星体()
A.质量大小关系是mA>mB>mC
B.加速度大小关系是aA>aB>aC
C.线速度大小关系是vA>vB>vC
D.所受万有引力合力的大小关系是FA=FB=FC
解析:选A三星系统是一种相对稳定的结构,它们做圆周运动的角速度是相等的,由v=ωr,结合rA<rB<rC,可知,线速度大小关系是vA<vB<vC,故C错误;由a=ωr,结合rA<rB<rC.可知加速度大小关系是aA<aB<aC,故B错误;以A为研究对象,则受力如图:
由于向心力指向圆心,由矢量关系可知,B对A的引力大于C对A的引力,结合万有引力定律的表达式:F=Gm1m2r2可知B的质量大于C的质量,同理若以C为研究对象,可得A的质量大于B的质量,即质量大小关系是mA>mB>mC,故A正确;由于mA>mB>mC,结合万有引力定律:F=Gm1m2r2,可知A与B之间的引力大于A与C之间的引力,又大于B与C之间的引力.由题可知,A、B、C受到的两个万有引力之间的夹角都是相等的,根据两个分力的角度一定时,两个力的大小越大,合力越大可知FA>FB>FC,故D错误.所以A正确,BCD错误.
1.双星的特点
(1)两星的角速度、周期相等;
(2)两星做匀速圆周运动的向心力相等,都等于两者之间的万有引力;
(3)两星之间的距离不变,且两星的轨道半径之和等于两星之间的距离.
2.三星、四星问题
除满足各星的角速度相等以外,还要注意分析各星做匀速圆周运动的向心力大小和轨道半径.
(20xx西安联考)(多选)如图所示,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R的圆轨道上运行,若三颗星质量均为M,万有引力常量为G,则()
A.甲星所受合外力为5GM24R2B.乙星所受合外力为GM2R2
C.甲星和丙星的线速度相同D.甲星和丙星的角速度相同
解析:选AD由万有引力定律可知,甲、乙和乙、丙之间的万有引力为F1=GMMR2,甲、丙之间的万有引力为F2=GMM2R2=GM24R2,甲星所受两个引力的方向相同,故合力为F1+F2=5GM24R2,A项正确;乙星所受两个引力等大、反向,合力为零,B项错误;甲、丙两星线速度方向始终不同,C项错误;由题知甲、丙两星周期相同,由角速度定义可知,两星角速度相同,D项正确.
5.(20xx青岛一模)20xx年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现。在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105m,太阳质量M=2×1030kg,万有引力常量G=6.67×10-11Nm2/kg2.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是()
A.102HzB.104Hz
C.106HzD.108Hz
解析:选A由万有引力定律,Gm1m2L2=m1r1(2πf)2,Gm1m2L2=m2r2(2πf)2,联立解得f=12πGm1m2L3=102Hz,选项A正确.
6.(多选)宇宙中存在着这样一种四星系统,这四颗星的质量相等,远离其他恒星,因此可以忽略其他恒星对它们的作
用.四颗星稳定地分布在一个正方形的四个顶点上,且均围绕正方形对角线的交点做匀速圆周运动.假设每颗星的质量为m,正方形的边长为L,每颗星的半径为R,引力常量为G,则()
A.每颗星做圆周运动的半径为L2
B.每颗星做圆周运动的向心力大小为1+2Gm22L2
C.每颗星表面的重力加速度为GmR2
D.每颗星做圆周运动的周期为2πL2L1+2Gm
解析:选CD每颗星做圆周运动的半径为2L2,选项A错误.每颗星做圆周运动的向心力为其他三颗星对它万有引力的合力,即为F=Gm22L2+2Gm2L2cos45°=1+22Gm22L2,选项B错误.每颗星表面的重力加速度为g=GmR2,选项C正确.由1+22Gm22L2=m2L22πT2,解得:T=2πL2L1+2Gm,选项D正确JAb88.com

相关阅读

20xx高考物理大一轮复习微专题01运动图象追及相遇问题学案


微专题01运动图象追及相遇问题
运动图象的理解及应用
三种图象比较
图象x-t图象v-t图象a-t图象
图象实例
图线含义图线①表示质点做匀速直线运动(斜率表示速度v)图线①表示质点做匀加速直线运动(斜率表示加速度a)图线①表示质点做加速度增大的运动
图线②表示质点静止图线②表示质点做匀速直线运动图线②表示质点做匀变速运动
图线③表示质点向负方向做匀速直线运动图线③表示质点做匀减速直线运动图线③表示质点做加速度减小的运动
交点④表示此时三个质点相遇交点④表示此时三个质点有相同的速度交点④表示此时三个质点有相同的加速度
点⑤表示t1时刻质点位移为x1(图中阴影部分的面积没有意义)点⑤表示t1时刻质点速度为v1(图中阴影部分的面积表示质点在0~t1时间内的位移)点⑤表示t1时刻质点加速度为a1(图中阴影部分的面积表示质点在0~t1时间内的速度变化量)

Ⅰ.图象选择类问题
依据某一物理过程,设计某一物理量随时间(或位移、高度、速度等)变化的几个图象或此物理过程中某几个物理量随某一量的变化图象,从中判断其正误.
(20xx重庆巴蜀中学开学考试)(多选)如图所示,汽车以10m/s的速度匀速驶向路口,当行驶至距路口停车线20m处时,绿灯还有3s熄灭.而该汽车在绿灯熄灭时刚好停在停车线处,则汽车运动的速度—时间图象可能是()
解析:选BC根据v-t图象所围成的面积表示位移,来计算或估算位移的大小.A、sA=10+02×3m=15m<20m,选项A错误.B、由图可知sB>15m,选项B正确.C、sC=10×1+10+02×2m=20m,选项C正确.D、sD=10×0.5+10+02×2.5m=17.5m<20m,选项D错误.故选BC.
Ⅱ.图象信息类问题
这类问题是对某一物理情景给出某一物理量的具体变化图象,由图象提取相关信息或将图象反映的物理过程“还原”成数学表达形式从而对问题做出分析判断作答.
(多选)如图所示为A、B两质点在同一直线上运动的位移—时间(x-t)图象.A质点的图象为直线,B质点的图象为过原点的抛物线,两图象交点C、D坐标如图.下列说法正确的是()
A.A、B相遇两次
B.t1~t2时间段内B质点的平均速度与A质点匀速运动的速度相等
C.两物体速度相等的时刻一定在t1~t2时间段内的中间时刻
D.A在B前面且离B最远时,B的位移为x1+x22
解析:选ABC由x-t图象知,t1、t2两时刻A、B处于同一位置,故二次相遇,A正确;t1~t2时间内两质点的位移相同.平均速度相同,B正确;由于B质点的图象为过原点的抛物线,有x=kt2,则知B做匀加速直线运动,所以B在t1~t2时间内的平均速度等于中间时刻的速度,故C正确;由A、B运动情况可知,二者速度相等时,A的位移为x1+x22,B的位移小于x1+x22,D错误.
解决此类问题时要根据物理情景中遵循的规律,由图象提取信息和有关数据,根据对应的规律公式对问题做出正确的解答.具体分析过程如下:
Ⅲ.图象之间的相互转换
在物理量变化过程中,相关物理量之间相互关联,因此,通过定性推理或定量计算,我们可以由一种物理图象转换出另一种物理图象.(例如:由反映物体运动的v-t图象可以转换出x-t图象或a-t图象.)
(20xx集宁一中月考)一物体做直线运动,其加速度随时间变化的a-t图象如图所示.下列v-t图象中,可能正确描述此物体运动的是()
解析:选D在0~T2内,物体从静止开始沿加速度方向匀加速运动,v-t图象是向上倾斜的直线;在T2~T内,加速度为0,物体做匀速直线运动,v-t图象是平行于t轴的直线;在T~2T,加速度反向,速度方向与加速度方向相反,物体先做匀减速运动,到32T时刻速度为零,接着反向做初速度为零的匀加速直线运动,v-t图象是向下倾斜的直线,故D正确,AC错误;在0~T2内,由两个图象看出速度和加速度都沿正向,物体应做匀加速运动,在T2~T内,加速度为0,物体做匀速直线运动,在T~2T,加速度反向,物体做匀减速直线运动,所以该速度与a-t图象所反映的运动情况不符,故B错误.
图象转换问题的“三个”关键点
(1)注意合理划分运动阶段,分阶段进行图象转换.
(2)注意相邻运动阶段的衔接,尤其是运动参量的衔接.
(3)注意图象转换前后核心物理量间的定量关系,这是图象转换的依据.
追及与相遇问题
(对应学生用书P10)
讨论追及、相遇问题的实质,就是分析两物体在相同时间内能否到达相同的空间位置.
1.抓住一个条件,两个关系
(1)一个条件:二者速度相等.它往往是能否追上或距离最大、最小的临界条件,也是分析判断的切入点.
(2)两个关系:即时间关系和位移关系.可通过画草图找出两物体的位移关系,也是解题的突破口.
2.能否追上的判断方法
常见情形:物体A追物体B,开始二者相距x0,则
(1)A追上B时,必有xA-xB=x0,且vA≥vB.
(2)要使两物体恰不相撞,必有xA-xB=x0,且vA≤vB.
Ⅰ.与运动图象相结合的追及相遇问题
(20xx全国卷Ⅰ)(多选)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示.已知两车在t=3s时并排行驶,则()
A.在t=1s时,甲车在乙车后
B.在t=0时,甲车在乙车前7.5m
C.两车另一次并排行驶的时刻是t=2s
D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40m
解析:选BD根据v-t图,甲、乙都沿正方向运动.t=3s时,甲、乙相遇,此时v甲=30m/s,v乙=25m/s,由位移和v-t图线所围面积对应关系知,0~3s内甲车位移x甲=12×3×30m=45m,乙车位移x乙=12×3×(10+25)m=52.5m.故t=0时,甲、乙相距Δx1=x乙-x甲=7.5m,即甲在乙前方7.5m,B选项正确;0~1s内,x甲′=12×1×10m=5m,x乙′=12×1×(10+15)m=12.5m,Δx2=x乙′-x甲′=7.5m=Δx1,说明在t=1s时甲、乙第一次相遇,A、C错误;甲、乙两次相遇地点之间的距离为x=x甲-x甲′=45m-5m=40m,所以D选项正确.
相遇的本质就是同一时刻到达同一位置,是解决追及相遇问题不变的思路.注意起始位置是否在同一位置,速度相等和位置关系是解题的突破口.
(20xx定州中学模拟)(多选)甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的x-t图象如图所示,则下列说法正确的是()
A.t1时刻乙车从后面追上甲车
B.t1时刻两车相距最远
C.0到t1时间内,乙车的平均速度小于甲车的平均速度
D.0到t1时间内,乙车的平均速度等于甲车的平均速度
解析:选AD它们在同一时刻由同一地点沿同一方向开始做直线运动,经过时间t1位移又相等,故在t1时刻乙车刚好从后面追上甲车,故A正确,B错误;0到t1时间内,甲乙两车位移相等,根据平均速度等于位移除以时间可知,0到t1时间内,乙车的平均速度等于甲车的平均速度,故D正确,C错误.
Ⅱ.与实际生活相结合的追及相遇问题
(20xx济南实验中学模拟)在水平轨道上有两列火车A和B相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足什么条件.(可用多种方法)
解析:两车不相撞的临界条件是,A车追上B车时其速度与B车相等.设A、B两车从相距x到A车追上B车时,A车的位移为xA、末速度为vA、所用时间为t;B车的位移为xB、末速度为vB,运动过程如图所示,现用三种方法解答如下:
解法一分析法利用位移公式、速度公式求解,对A车有xA=v0t+12×(-2a)×t2,vA=v0+(-2a)×t
对B车有xB=12at2,vB=at
两车位移关系有x=xA-xB
追上时,两车不相撞的临界条件是vA=vB
联立以上各式解得v0=6ax
故要使两车不相撞,A车的初速度v0应满足的条件是
v0≤6ax.
解法二函数法利用判别式求解,由解法一可知
xA=x+xB,即v0t+12×(-2a)×t2=x+12at2
整理得3at2-2v0t+2x=0
这是一个关于时间t的一元二次方程,当根的判别式Δ=(-2v0)2-43a2x=0时,两车刚好不相撞,所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤6ax.
解法三图象法利用v-t图象求解,先作A、B两车的v-t图象,如图所示,设经过t时间两车刚好不相撞,则对A车有vA=v′=v0-2at
对B车有vB=v′=at
以上两式联立解得t=v03a
经t时间两车发生的位移之差为原来两车间距离x,它可用图中的阴影面积表示,由图象可知
x=12v0t=12v0v03a=v206a
所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤6ax.
答案:v0≤6ax
1.牢记“一个思维流程”
2.掌握“三种分析方法”
(1)分析法
应用运动学公式,抓住一个条件、两个关系,列出两物体运动的时间、位移、速度及其关系方程,再求解.
(2)极值法
设相遇时间为t,根据条件列出方程,得到关于t的一元二次方程,再利用数学求极值的方法求解.在这里,常用到配方法、判别式法、重要不等式法等.
(3)图象法
在同一坐标系中画出两物体的运动图线.位移图线的交点表示相遇,速度图线抓住速度相等时的“面积”关系找位移关系.

20xx高考物理复习微专题05圆周运动中的临界问题学案新人教版


微专题05圆周运动中的临界问题
水平面内的临界问题
水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题.
(1)与摩擦力有关的临界极值问题
物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有Fm=mv2r,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.
(2)与弹力有关的临界极值问题
压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等.
(20xx新课标全国卷Ⅰ)(多选)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()
A.b一定比a先开始滑动
B.a、b所受的摩擦力始终相等
C.ω=kg2l是b开始滑动的临界角速度
D.当ω=2kg3l时,a所受摩擦力的大小为kmg
解析:选AC木块a、b的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力fmax=kmg相同.它们所需的向心力由F向=mω2r知Fa<Fb,所以b一定比a先开始滑动,A项正确;a、b一起绕转轴缓慢地转动时,f=mω2r,r不同,所受的摩擦力不同,B项错;b开始滑动时有kmg=mω22l,其临界角速度为ωb=kg2l,选项C正确;当ω=2kg3l时,a所受摩擦力大小为f=mω2r=23kmg,选项D错误.
解决此类问题的一般思路
首先要考虑达到临界条件时物体所处的状态,其次分析该状态下物体的受力特点,最后结合圆周运动知识,列出相应的动力学方程综合分析.
(20xx安徽六安模拟)(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()
A.当ω>2Kg3L时,A、B相对于转盘会滑动
B.当ω>Kg2L时,绳子一定有弹力
C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大
D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大
解析:选ABD当AB所受静摩擦力均达到最大值时,A、B相对转盘将会滑动,Kmg+Kmg=mω2L+mω22L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=mω22L,解得:ω=Kg2L,B项正确;当Kg2L<ω<2Kg3L时,随角速度的增大,绳子拉力不断增大,B所受静摩擦力一直保持最大静摩擦力不变,C项错误;0<ω≤Kg2L时,A所受摩擦力提供向心力,即Ff=mω2L,静摩擦力随角速度增大而增大,当Kg2L<ω<2Kg3L时,以AB整体为研究对象,FfA+Kmg=mω2L+mω22L,可知A受静摩擦力随角速度的增大而增大,D项正确.
1.如图,一水平圆盘绕竖直中心轴以角速度ω做匀速圆周运动,紧贴在一起的M、N两物体(可视为质点)随圆盘做圆周运动,N恰好不下滑,M恰好不滑动,两物体与转轴距离为r,已知M与N间的动摩擦因数为μ1,M与圆盘面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.μ1与μ2应满足的关系式为()
A.μ1+μ2=1B.μ1μ2=1
C.μ1μ2=1D.μ1+μ2μ1μ2=1
解析:选C以M、N整体作为研究对象,则受力如图1所示,静摩擦力提供向心力,有Ff=(mN+mM)ω2r,且Ff=μ2(mN+mM)g,以N为研究对象,受力分析如图2所示,M对N的弹力FN提供向心力,有FN=mNω2r,且Ff′=μ1FN=mNg,联立各式得μ1μ2=1,故C正确.
图1图2
2.(20xx四川资阳一诊)(多选)如图所示,水平转台上有一个质量为m的物块,用长为l的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ=13,最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,角速度为ω,重力加速度为g,则()
A.当ω=g2l时,细绳的拉力为0
B.当ω=3g4l时,物块与转台间的摩擦力为0
C.当ω=4g3l时,细绳的拉力大小为43mg
D.当ω=gl时,细绳的拉力大小为13mg
解析:选AC当转台的角速度比较小时,物块只受重力、支持力和摩擦力,当细绳恰好要产生拉力时μmg=mω21lsin30°,解得ω1=2g3l,随角速度的增大,细绳上的拉力增大,当物块恰好要离开转台时,物块受到重力和细绳的拉力的作用,mgtan30°=mω22lsin30°,解得ω2=23g3l,由于ω1<3g4l<ω2,所以当ω=3g4l时,物块与转台间的摩擦力不为零,故B错误;由于g2l<w1,所以当ω=g2l时,细绳的拉力为零,故A正确;由于ω1<gl<ω2,由牛顿第二定律得f+Fsin30°=mgl2lsin30°,因为压力小于mg,所以f<13mg,解得F>13mg,故D错误;当ω=4g3l>ω2时,物块已经离开转台,细绳的拉力与重力的合力提供向心力,则mgtanα=m4g3l2lsinα,解得cosα=34,故F=mgcosα=43mg,故C正确.
竖直面内的临界问题
1.竖直面内圆周运动的临界问题——“轻绳和轻杆”模型
(1)“轻绳”模型特点:无支撑(如球与绳连接、沿内轨道的“过山车”等)
均是没有支撑的小球
①小球过最高点的条件是什么?
②过最高点时,若v>gr,当v增大时,小球受到的弹力FN如何变化?
(2)“轻杆”模型的特点:有支撑(如球与杆连接、小球在弯管内运动等).
均是有支撑的小球
①小球能过最高点的条件是什么?
②过最高点时,若0<v<gr时,小球受到的弹力FN的方向如何?随着v的增大FN怎样变化?若v>gr又会怎样?
2.两类模型对比
轻绳模型轻杆模型
示意图
均是没有支撑的小球
均是有支撑的小球
过最高
点的临
界条件由mg=mv2r
得v临=gr
由小球能运动即可得v临=0
讨论
分析(1)过最高点时,v≥gr,FN+mg=mv2r,绳、轨道对球产生弹力FN
(2)不能过最高点v<gr,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,FN=mg,FN背离圆心
(2)当0<v<gr时,mg-FN=mv2r,FN背离圆心并随v的增大而减小
(3)当v=gr时,FN=0
(4)当v>gr时,mg+FN=mv2r,FN指向圆心并随v的增大而增大
在最高
点的
FN
图象
取竖直向下为正方向
取竖直向下为正方向
(20xx陕西西安一中模拟)(多选)如图甲所示,用一轻质绳拴着一质量为m的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为T,小球在最高点的速度大小为v,其T-v2图象如图乙所示,则()
A.轻质绳长为amb
B.当地的重力加速度为am
C.当v2=c时,轻质绳的拉力大小为acb+a
D.只要v2≥b,小球在最低点和最高点时绳的拉力差均为6a
解析:选BD在最高点重力和绳子的拉力的合力充当向心力,所以有T+mg=mv2R,即T=mRv2-mg,故斜率k=mR,纵截距y=-mg,根据几何知识可得k=ab,y=-a,联立解得g=am,R=mba,A错误,B正确;当v2=c时,代入T=mRv2-mg,解得T=acb-a,C错误;只要v2≥b,绳子的拉力大于0,根据牛顿第二定律得最高点,T1+mg=mv21R,最低点,T2-mg=mv22R,从最高点到最低点的过程中,根据机械能守恒定律得12mv22=12mv21+2mgR,联立解得T2-T1=6mg,即小球在最低点和最高点时绳的拉力差均为6a,D正确.
在竖直面内的圆周运动临界问题
(20xx广东汕头二模)如图甲,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为T,拉力T与速度v的关系如图乙所示,图象中的数据a和b包括重力加速度g都为已知量,以下说法正确的是()
图甲图乙
A.数据a与小球的质量有关
B.数据b与圆周轨道半径有关
C.比值ba只与小球的质量有关,与圆周轨道半径无关
D.利用数据a、b和g能够求出小球的质量和圆周轨道半径
解析:选D在最高点对小球受力分析,由牛顿第二定律有T+mg=mv2R,可得图线的函数表达式为T=mv2R-mg,图乙中横轴截距为a,则有0=maR-mg,得g=aR,则a=gR;图线过点(2a,b),则b=m2aR-mg,可得b=mg,则ba=mR,A、B、C错.由b=mg得m=bg,由a=gR得R=ag,则D正确.
3.(20xx东城区模拟)(多选)长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v,下列说法中正确的是()
A.当v的值为gL时,杆对小球的弹力为零
B.当v由gL逐渐增大时,杆对小球的拉力逐渐增大
C.当v由gL逐渐减小时,杆对小球的支持力逐渐减小
D.当v由零逐渐增大时,向心力也逐渐增大
解析:选ABD在最高点球对杆的作用力为0时,由牛顿第二定律得:mg=mv2L,v=gL,A对;当v>gL时,轻杆对球有拉力,则F+mg=mv2L,v增大,F增大,B对;当v<gL时,轻杆对球有支持力,则mg-F′=mv2L,v减小,F′增大,C错;由F向=mv2L知,v增大,向心力增大,D对.
4.(20xx石家庄质检)(多选)如图所示,长为3L的轻杆可绕光滑水平转轴O转动,在杆两端分别固定质量均为m的球A、B,球A距轴O的距离为L.现给系统一定能量,使杆和球在竖直平面内转动.当球B运动到最高点时,水平转轴O对杆的作用力恰好为零,忽略空气阻力,已知重力加速度为g,则球B在最高点时,下列说法正确的是()
A.球B的速度为零B.球B的速度为2gL
C.球A的速度为2gLD.杆对球B的弹力方向竖直向下
解析:选CD水平转轴O对杆的作用力为零,这说明A、B对杆的作用力是一对平衡力,由于A所受杆的弹力必竖直向上,故B所受杆的弹力必竖直向下,且两力大小相等,D正确.对A球有F-mg=mω2L,对B球有F+mg=mω22L,由以上两式解得ω=2gL,则A球的速度vA=ωL=2gL,C正确;B球的速度vB=ω2L=22gL,A、B错误.
斜面上圆周运动的临界问题
(20xx安徽卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10m/s2.则ω的最大值是()
A.5rad/sB.3rad/s
C.1.0rad/sD.0.5rad/s
解析:选C经分析可知,小物体最先相对滑动的位置为最低点,对小物体受力分析得:μmgcosθ-mgsinθ=mω2r,代入数据得:ω=1.0rad/s,选项C正确.
如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10m/s2)
解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力.在垂直平板方向上合力为0,重力在沿平板方向的分
量为mgsinα,小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有FT+mgsinα=mv21l①
研究小球从释放到最高点的过程,根据动能定理有
-mglsinα=12mv21-12mv20②
若恰好能通过最高点,则绳子拉力FT=0③
联立①②③解得sinα=12,则α=30°
故α的范围为0°≤α≤30°.
答案:0°≤α≤30°
5.如图所示,在倾角为α=30°的光滑斜面上,有一根长为L=0.8m的轻杆,一端固定在O点,另一端系一质量为m=0.2kg的小球,沿斜面做圆周运动,取g=10m/s2,若要小球能通过最高点A,则小球在最低点B的最小速度是()
A.4m/sB.210m/s
C.25m/sD.22m/s
解析:选A小球受轻杆控制,在A点的最小速度为零,由2mgLsinα=12mvB2可得vB=4m/s,A正确.

20xx高考物理复习微专题02牛顿运动定律与图象综合问题学案


俗话说,磨刀不误砍柴工。教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助教师在教学期间更好的掌握节奏。怎么才能让教案写的更加全面呢?下面的内容是小编为大家整理的20xx高考物理复习微专题02牛顿运动定律与图象综合问题学案,欢迎您阅读和收藏,并分享给身边的朋友!

微专题02牛顿运动定律与图象综合问题
已知物体的速度、加速度图象分析受力情况
1.v-t图象
根据图象的斜率判断加速度的大小和方向,进而根据牛顿第二定律求解合外力.
2.at图象
要注意加速度的正负,正确分析每一段的运动情况,然后结合物体受力情况根据牛顿第二定律列方程.
(20xx全国新课标Ⅰ)(多选)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的vt图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()
A.斜面的倾角
B.物块的质量
C.物块与斜面间的动摩擦因数
D.物块沿斜面向上滑行的最大高度
解析:选ACD小球滑上斜面的初速度v0已知,向上滑行过程为匀变速直线运动,末速度0,那么平均速度即v02,所以沿斜面向上滑行的最远距离s=v02t1,根据牛顿第二定律,向上滑行过程v0t1=gsinθ+μgcosθ,向下滑行v1t1=gsinθ-μgcosθ,整理可得gsinθ=v0+v12t1,从而可计算出斜面的倾斜角度θ以及动摩擦因数,选项AC对.根据斜面的倾斜角度可计算出向上滑行的最大高度ssinθ=v02t1×v0+v12gt1=v0v0+v14g,选项D对.仅根据速度时间图象,无法找到物块质量,选项B错.
(1)弄清图象斜率、截距、交点、拐点的物理意义.
(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断.
(20xx漳州八校联考)如图甲所示,一个质量为3kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3s时间内物体的加速度a随时间t的变化规律如图乙所示.则()
A.F的最大值为12N
B.0~1s和2~3s内物体加速度的方向相反
C.3s末物体的速度最大,最大速度为8m/s
D.在0~1s内物体做匀加速运动,2~3s内物体做匀减速运动
解析:选C第1~2s内物体加速度恒定,故所受作用力恒定,根据牛顿第二定律F合=ma知合外力为12N,由于物体在水平方向受摩擦力作用,故作用力F大于12N,故A错误;物体在力F作用下由静止开始运动,加速度方向始终为正,与速度方向相同,故物体在前3s内始终做加速运动,第3s内加速度减小说明物体速度增加得慢了,但仍是加速运动,故B错误;因为物体速度始终增加,故3s末物体的速度最大,再根据Δv=aΔt知速度的增加量等于加速度与时间的乘积,在at图象上即为图象与时间轴所围图形的面积,Δv=12×(1+3)×4m/s=8m/s,物体由静止开始做加速运动,故最大速度为8m/s,所以C正确;第2s内物体的加速度恒定,物体做匀加速直线运动,在0~1s内物体做加速度增大的加速运动,2~3s内物体做加速度减小的加速运动,故D错误.
1.(20xx重庆理综)若货物随升降机运动的v-t图象如图所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图象可能是()

解析:选Bv-t图线斜率表示加速度,所以加速度图象如图所示.由牛顿第二定律可知F-mg=ma,所以支持力F=ma+mg,重力保持不变,所以Ft图象相当于at图象向上平移,B正确.
2.(20xx海南卷)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示.已知物体与斜面之间的动摩擦因数为常数,在0~5s、5~10s、10~15s内F的大小分别为F1、F2和F3,则()
A.F1<F2B.F2>F3
C.F1>F3D.F1=F3
解析:选A由vt图象可知,0~5s内加速度a1=0.2m/s2,沿斜面向下,根据牛顿第二定律有mgsinθ-f-F1=ma1,F1=mgsinθ-f-0.2m;5~10s内加速度a2=0,根据牛顿第二定律有mgsinθ-f-F2=ma2,F2=mgsinθ-f;10~15s内加速度a3=-0.2m/s2,沿斜面向上,根据牛顿第二定律有mgsinθ-f-F3=ma3,F3=mgsinθ-f+0.2m.故可得:F3>F2>F1,选项A正确.
已知物体的受力图象分析运动情况
1.Ft图象
要结合物体受到的力,根据牛顿第二定律求出加速度,分析每一时间段的运动性质.
2.Fa图象
首先要根据具体的物理情景,对物体进行受力分析,然后根据牛顿第二定律推导出两个量间的函数关系式,根据函数关系式结合图象,明确图象的斜率、截距或面积的意义,从而由图象给出的信息求出未知量.
(多选)静止在水平地面上的物块,受到水平向右的拉力F作用,F随时间t的变化情况如图所示.设物块与地面间的最大静摩擦力与滑动摩擦力大小相等,都是1N,则()
A.在0~1s时间内物块的加速度逐渐增大
B.在3s时,物块的加速度最大
C.在3s时,物块的速度最大
D.在8s时,物块的速度最大
解析:选BD在0~1s时间内,F小于或等于最大静摩擦力,可知物块处于静止状态,故A错误;t=3s时,拉力最大,且大于最大静摩擦力,故物块所受合力最大,物块的加速度最大,故B正确;t=3s后,拉力仍然大于最大静摩擦力,物块仍然做加速运动,速度仍增大,t=8s后,拉力小于最大静摩擦力,物块做减速运动,所以t=8s时,物块的速度最大,故C错误,D正确.
(多选)如图(a)所示,用一水平外力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图象如图(b)所示,若重力加速度g取10m/s2,根据图(b)中所提供的信息可以计算出()
A.物体的质量
B.斜面倾角的正弦值
C.加速度增大到6m/s2时物体的位移
D.物体静止在斜面上时的外力F
解析:选ABD对物体受力分析,受水平外力、重力、支持力,如图所示.
x方向:Fcosθ-mgsinθ=ma,
y方向:N-Fsinθ-mgcosθ=0,
从图象中取两个点(20N,2m/s2),(30N,6m/s2)代入解得m=2kg,θ=37°,故A、B正确.当a=0时,可解得F=15N,即最小拉力为15N.题中并未说明力F随时间变化的情况,故无法求出加速度为6m/s2时物体的速度大小,无法求出位移,故C错误,D正确.
3.(20xx黑龙江哈师大附中月考)“蹦极”是一项刺激的极限运动,运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下.在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示,其中t2、t4时刻图线的斜率最大.将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计.下列说法中正确的是()
A.t1~t2时间内运动员处于超重状态
B.t2~t4时间内运动员的机械能先减小后增大
C.t3时刻运动员的加速度为零
D.t4时刻运动员具有向下的最大速度
解析:选B在t1~t2时间内,合力向下,运动员加速下降,处于失重状态,故A错误;在t2、t4时刻图线的斜率最大,说明弹力变化最快,由于弹力与弹性绳的伸长量成正比,说明伸长量变化最快,即速度最大,而速度最大时弹力与重力平衡;由于整个过程重力势能、弹性势能和动能的总和保持不变,而t2~t4时间内弹性势能先变大后变小,故运动员的机械能先减小后增大,故B正确;t3时刻弹力最大,运动员运动到最低点,合力向上,故加速度向上,不为零,故C错误;t4时刻运动员受到的重力和弹力平衡,加速度为零,具有向上的最大速度,故D错误.
4.(多选)如图(甲)所示,物体原来静止在水平地面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图(乙)所示,设最大静摩擦力与滑动摩擦力相等.重力加速度g取10m/s2.根据题目提供的信息,下列判断正确的是()
A.物体的质量m=2kg
B.物体与水平面间的动摩擦因数μ=0.6
C.物体与水平面的最大静摩擦力fmax=3N
D.在F为10N时,物体的加速度a=2m/s2
解析:选AD根据牛顿第二定律F-μmg=ma,F1=7N,a1=0.5m/s2;F2=14N,a2=4m/s2,联立解得m=2kg,μ=0.3,A正确,B错误.最大静摩擦力f=μmg=6N,C错误.当F=10N时,代入得a=2m/s2,D正确.

20xx高考物理复习微专题03牛顿运动定律的应用_分离条件分析学案新人教版


微专题03牛顿运动定律的应用——分离条件分析
两物体分离的特点
如图A、B两个物体靠在一起,放在光滑的水平面上,质量分别为MA=3kg,MB=6kg.今用水平力FA向右推A,用水平力FB向右拉B,FA和FB随时间的变化关系分别为:
FA=(9-2t)N,FB=(3+2t)N
(1)试分析两者分离前的运动情况;
(2)求分离时两者的速度和加速度;
(3)从t=0到分离时两者通过的位移.
解析:(1)以A、B组成的系统为研究对象,由牛顿第二定律,得
F=FA+FB=(MA+MB)a①
又FA=(9-2t)N,FB=(3+2t)N②
由①②得:F=12N,a=43m/s2
分离前两物体一起做初速度为零的匀加速运动.
设分离前两物体之间的正压力为F′
由a=9-2t-F′MA=F′+3+2tMB,得t=0时,F′=5N
由于FA随t的增加而减小,FB随t的增加而增加,可以断定,分离前随着时间的增加,两物体之间的正压力F′逐渐减小,分离时两者之间的正压力F′为零.
(2)分离时两者的速度和加速度相等,加速度仍为a=43m/s2.此时两者之间的弹力为零,由加速度相等得
a=FAMA=FBMB=9-2t3=3+2t6
分离前的运动时间为t=2.5s,则分离时的速度
v=at=3.3m/s
(3)位移s=12at2=4.2m
答案:(1)见解析(2)3.3m/s43m/s2(3)4.2m
弹簧与物块的分离
如图所示,质量均为m=3kg的物块A、B紧挨着放置在粗糙的水平地面上,物块A的左侧连接一劲度系数为k=100N/m的轻质弹簧,弹簧另一端固定在竖直墙壁上.开始时两物块压紧弹簧并恰好处于静止状态,现使物块B在水平外力F作用下向右做a=2m/s2的匀加速直线运动直至与A分离,已知两物块与地面的动摩擦因数均为μ=0.5,g=10m/s2.求:
(1)物块A、B分离时,所加外力F的大小;
(2)物块A、B由静止开始运动到分离所用的时间.
解析:(1)开始时弹簧的压缩量为x1,则kx1=2μmg
得x1=0.3m.
物块A、B分离时,A、B间的相互作用力为零.
对B:F-μmg=ma,F=21N.
(2)物块A、B分离时,对A有
kx2-μmg=ma,x2=0.21m
又x1-x2=12at2,解得t=0.3s.
答案:(1)21N(2)0.3s
如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A和B,物体A、B和轻弹簧竖立静止在水平地面上.现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面.设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:此过程中所加外力F的最大值和最小值.
解析:A原静止时,设弹簧压缩x1,
由受力平衡和胡克定律有:kx1=mg①
物体A向上做匀加速运动,开始时弹簧的压缩形变量最大,向上的弹力最大,则所需外力F最小,设为F1
由牛顿第二定律:F1+kx1-mg=ma②
当B刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A,则所需外力F最大,设为F2
对B:kx2=mg③
对A:F2-kx2-mg=ma④
由位移公式对A有:x1+x2=12at2⑤
又t=0.4s⑥
由①②③④⑤⑥可得:
x1=x2=mgk=12×10800m=0.15m
a=3.75m/s2F1=45NF2=285N
答案:285N45N
1.如图所示,劲度系数为k的轻弹簧一端固定于墙上,另一端连接一物体A.用质量与A相同的物体B推物体A使弹簧压缩,A、B与地面的动摩擦因数分别为μA和μB,且μA<μB,释放A、B,两者向右运动一段时间之后将会分离,则A、B分离时弹簧的()
A.伸长量为μB+μAmgkB.压缩量为μB+μAmgk
C.伸长量为μB-μAmgkD.压缩量为μB-μAmgk
解析:选C弹簧压缩时A、B一起运动不会分离,当A、B分离时其相互作用力为0,
对B:μBmg=ma.
对A:μAmg+kx=ma
解得x=μB-μAmgk.
2.如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10m/s2),则下列结论正确的是()
A.物体与弹簧分离时,弹簧处于压缩状态
B.弹簧的劲度系数为7.5N/cm
C.物体的质量为3kg
D.物体的加速度大小为5m/s2
解析:选D物体与弹簧分离时弹簧恢复原长,A错误,
刚开始物体处于静止状态,有mg=kx.
拉力F1=10N时,F1+kx-mg=ma
物体与弹簧分离后F2=30N,F2-mg=ma
代入数据解得m=2kg,k=500N/m=5N/cm,a=5m/s2.故B、C错误,D正确.
3.如图,把长方体切成质量分别为m和M的两部分,切面与地面的夹角为30°,忽略一切摩擦,至少用多大的水平力F推m,才能使m相对M上滑?
解析:以m为研究对象,当m刚要上滑时,m与地面刚好分离,m与地面之间的正压力为零,m受重力mg、推力F和M施加的支持力N1作用,且在竖直方向处于平衡,有:
N1cos30°=mg,N1=mgcos30°
以M为研究对象,M受重力Mg、地面的支持力N和m对M的压力N′作用,在水平方向,由牛顿第二定律,得:
N1′sin30°=Ma,
由牛顿第三定律,N1′=N1得:a=N1′sin30°M=mgtan30°M
以m和M组成的系统为研究对象,由牛顿第二定律有:
F=(m+M)a=m+Mmgtan30°M
答案:m+Mmgtan30°M

文章来源:http://m.jab88.com/j/73121.html

更多

猜你喜欢

更多

最新更新

更多