2.5有理数的减法
一、课题§2.5有理数的减法
二、教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.?
三、教学重点和难点
有理数减法法则
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
(二)、师生共同研究有理数减法法则
问题1(1)(+10)-(+3)=______;
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即
(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2(1)(+10)-(-3)=______;
(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.
(三)、运用举例变式练习
例1计算:
(1)(-3)-(-5);(2)0-7.
例2计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3计算:
(1)(-3)-[6-(-2)];(2)15-(6-9).
例415℃比5℃高多少?15℃比-5℃高多少?
课堂练习
1.计算(口答):
(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);
(4)(-4)-9;(5)0-(-5);(6)0-5.
2.计算:
(1)15-21;(2)(-17)-(-12);(3)(-2.5)-5.9;
(四)、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
七、练习设计
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
(5)0-6;(6)6-0;(7)0-(-6);(8)(-6)-0.
2.计算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.
3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
5.计算:
(1)(3-10)-2;(2)3-(10-2);(3)(2-7)-(3-9);
6.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c;(2)b-c;
(3)a-b-c;(4)c-a-b.
利用有理数减法解下列问题(第7~9题):
7.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?
8.分别求出数轴上两点间的距离:
(1)表示数6的点与表示数2的点;[
(2)表示数5的点与表示数0的点;
(3)表示数2的点与表示数-5的点;
(4)表示数-1的点与表示数-6的点.
9.某地一周内每天的最高气温与最低气温如下表,哪天的温差最大?哪天的温差最小?
10*.填空:
(1)如果a-b=c,那么a=______;
(2)如果a+b=c,那么a=______;
(3)如果a+(-b)=c,那么a=______;
(4)如果a-(-b)=c,那么a=______.
11*.用“>”或“<”号填空:
(1)如果a>0,b<0,那么a-b______0;
(2)如果a<0,b>0,那么a-b______0;
(3)如果a<0,b<0,|a|>|b|,那么a-b______0;
(4)如果a<0,b<0,那么a-(-b)______0.
12*.解下列方程:
(1)x+8=5;(2)x-(-7)=-3;
(3)x-11=-4;(4)6+x=-10.
13*.把下面加减法混合运算的式子改成只含加法的式子:
(1)-30-15+13-(-7);(2)-7-4+(-9)-(-5).
八、板书设计
2.5有理数的减法
(一)知识回顾(三)例题解析(五)课堂小结
例1、例2、例3
(二)观察发现(四)课堂练习练习设计
九、教学后记
根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾.这种教法,归纳起来就是“三部曲”:提出问题——建立理论——解决问题.这节课的设计正是这一教学方法的具体体现.
每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“七年级数学上册《有理数的减法》复习资料浙教版”,欢迎您阅读和收藏,并分享给身边的朋友!
七年级数学上册《有理数的减法》复习资料浙教版
【有理数减法法则】
1.减去一个数,等于加这个数的相反数,有理数减法法则用字母表示成:a-b=a+(-b);
2.有理数减法的步骤:需要先将减法转化为加法,再按有理数的加法法则和运算律计算;
3.将减法转化为加法时,注意“两变一不变”,即“一是减法变加法;二是把减数变为它的相反数而被减数不变”。
【加法交换律和结合律】
加法交换律:a+b=b+a;
课后练习
1、下列各式可以写成a-b+c的是()
A、a-(+b)-(+c)B、a-(+b)-(-c)C、a+(-b)+(-c)D、a+(-b)-(+c)
解析:根据有理数的加减混合运算的符号省略法则化简,得,
A的结果为a-b-c,
B的结果为a-b+c,
C的结果为a-b-c,
D的结果为a-b-c,
故选B.
2、下列结论不正确的是()
A、若a0,b0,则a-b0B、若a0,b0,则a-b0
C、若a0,b0,则a-(-b)0D、若a0,b0,且,则a-b0.
3、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
解析:
∵记红星队胜一球为1,负一球为-1,
∴由题意得,
3+(-1)+2+(-3)+2+(-5)=-2,
∴红星队在4场比赛中总的净胜球数是-2.
答:红星队在4场比赛中总的净胜球数是-2.
每个老师上课需要准备的东西是教案课件,到写教案课件的时候了。需要我们认真规划教案课件工作计划,可以更好完成工作任务!你们知道多少范文适合教案课件?下面是小编为大家整理的“七年级数学有理数的减法55”,仅供您在工作和学习中参考。
§2.5有理数的减法文章来源:http://m.jab88.com/j/7219.html
更多