§3.7弧长及扇形面积
教学目标:
1.知识与技能:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题
2.过程与方法:经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
3.情感态度与价值观:经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点:经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.
教学难点:探索弧长及扇形面积计算公式;用公式解决实际问题.
教学设计:
一、创设问题情境,引入新课
在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
二、新课讲解
1复习
(1).圆的周长如何计算?
(2).圆的面积如何计算?
(3).圆的圆心角是多少度?
(若圆的半径为r,,则周长,面积,圆的圆心角是360°.)
2.探索弧长的计算公式
如右图,某传送带的一个转动轮的半径为lO.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1°,传送带上的物品A被传送多少厘米?
(3)转动轮转°,传送带上的物品A被传送多少厘米?
分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°的圆心角,所以转动轮转l°,传送带上的物品A被传送圆周长的;转动轮转°,传送带上的物品A被传送转l°时传送距离的倍.
解:(1)转动轮转一周,传送带上的物品A被传送×lO=20cm;
(2)转动轮转1°,传送带上的物品A被传送;
(3)转动轮转。,传送带上的物品A被传送.
根据上面的计算,你能猜想出在半径为R的圆中,°的圆心角所对的弧长的计算公式吗?请大家互相交流.
根据刚才的讨论可知,360°的圆心角对应圆周长2,那么1°的圆心角对应的弧长为,°的圆心角对应的弧长应为1°的圆心角对应的弧长的倍,即.
在半径为R的圆中,°的圆心角所对的弧长的计算公式为:.
下面我们看弧长公式的运用.
3.例题讲解
例1:制作弯形管道时,需要先按中心线计算“展直长度”再下料。试计算下图中管道的展直长度,即的长(结果精确到O.1mm).
分析:要求管道的展直长度,即求的长,根据弧长公式可求得的长,其中n为圆心角,R为半径,
解:R=40mm,=110.
∴的长=
因此,管道的展直长度约为76.8mm.
三、探索研究
1.想一想
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.
(1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过°角,那么它的最大活动区域有多大?
(1)如图(1),这只狗的最大活动区域是圆的面积,即.
(2)如图(2),狗的活动区域是扇形。扇形是圆的一部分,360°的圆心角对应的圆面积,l°的圆心角对应圆面积的,即×=,°的圆心角对应的圆面积为×=.
如果圆的半径为R,则圆的面积为,l°的圆心角对应的扇形面积为,°的圆心角对应的扇形面积为.
因此扇形面积的计算公式为
其中R为扇形的半径,为圆心角.
2.弧长与扇形面积的关系
我们探讨了弧长和扇形面积的公式。在半径为R的圆中,°的圆心角所对的弧长的计算公式为,°的圆心角的扇形面积公式为,在这两个公式中,弧长和扇形面积都和圆心角.半径R有关系,因此和S之间也有一定的关系,你能猜得出吗?请大家互相交流.
∵,
∴
∴
3.扇形面积的应用
例2:扇形AOB的半径为l2cm,∠AOB=120°,求的长(结果精确到O.1cm)和扇形A0B的面积(结果精确到O.1cm).
分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角即可,本题中这些条件已经告诉了,因此这个问题就解决了
解:的长=25.1cm.
=150.7cm.
因此,的长约为25.1cm,扇形AOB的面积约为150.7cm.
4.随堂练习:
四、课时小结
本节课学习了如下内容:
1.探索弧长的计算公式,并运用公式进行计算;
2.探索扇形的面积公式,并运用公式进行计算;
3.探索弧长及扇形的面积之间的关系,并能已知一方求另一方。
五、课后作业
1.复习本课的内容;
2.课本P142习题1、2、3
六、活动与探究
如图,两个同心圆被两条半径截得的的长为6,的长为10,又AC=12,求阴影部分ABDC的面积.
分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积,已知,则需要求两个半径0C与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.
解:设OA=R,0C=R十12,∠O=°,根据已知条件有:
得
∴3(R+12)=5R
∴R=18
∴OC=18+12=30
∴S=
所以阴影部分的面积为96.
弧长及扇形的面积
教学目标
(一)教学知识点
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.
2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
(三)情感与价值观要求
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
1.经历探索弧长及扇形面积计算公式的过程.
2.了解弧长及扇形面积计算公式.
3.会用公式解决问题.
教学难点
1.探索弧长及扇形面积计算公式
2.用公式解决实际问题.
教学方法
学生互相交流探索法
教具准备
2.投影片四张
第一张:(记作§3.7A)
第二张:(记作§3.7B)
第三张:(记作§3.7C)
第四张:(记作§3.7D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
Ⅱ.新课讲解
一、复习
1.圆的周长如何计算?
2.圆的面积如何计算?
3.圆的圆心角是多少度?
[生]若圆的半径为r,则周长l=2πr,面积S=πr2,圆的圆心角是360°.
二、探索弧长的计算公式
投影片(§3.7A)
如图,某传送带的一个转动轮的半径为10cm.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1°,传送带上的物品A被传送多少厘米?
(3)转动轮转n°,传送带上的物品A被传送多少厘米?
[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°的圆心角,所以转动轮转1°,传送带上的物品A被传送圆周长的;转动轮转n°,传送带上的物品A被传送转1°时传送距离的n倍.
[生]解:(1)转动轮转一周,传送带上的物品A被传送2π×10=20πcm;
(2)转动轮转1°,传送带上的物品A被传送cm;
(3)转动轮转n°,传送带上的物品A被传送n×=cm.
[师]根据上面的计算,你能猜想出在半径为R的圆中,n°的圆心角所对的弧长的计算公式吗?请大家互相交流.
[生]根据刚才的讨论可知,360°的圆心角对应圆周长2πR,那么1°的圆心角对应的弧长为,n°的圆心角对应的弧长应为1°的圆心角对应的弧长的n倍,即n×.
[师]表述得非常棒.
在半径为R的圆中,n°的圆心角所对的弧长(arclength)的计算公式为:
l=.
下面我们看弧长公式的运用.
三、例题讲解
投影片(§3.7B)
制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm).
分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径.
解:R=40mm,n=110.
∴的长=πR=×40π≈76.8mm.
因此,管道的展直长度约为76.8mm.
四、想一想
投影片(§3.7C)
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.
(1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过n°角,那么它的最大活动区域有多大?
[师]请大家互相交流.
[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9π;
(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360°的圆心角对应的圆面积,1°的圆心角对应圆面积的,即×9π=,n°的圆心角对应的圆面积为n×=.
[师]请大家根据刚才的例题归纳总结扇形的面积公式.
[生]如果圆的半径为R,则圆的面积为πR2,1°的圆心角对应的扇形面积为,n°的圆心角对应的扇形面积为n.因此扇形面积的计算公式为S扇形=πR2,其中R为扇形的半径,n为圆心角.
五、弧长与扇形面积的关系
[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n°的圆心角所对的弧长的计算公式为l=πR,n°的圆心角的扇形面积公式为S扇形=πR2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.
[生]∵l=πR,S扇形=πR2,
∴πR2=RπR.∴S扇形=lR.
六、扇形面积的应用
投影片(§3.7D)
扇形AOB的半径为12cm,∠AOB=120°,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)
分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n即可,本题中这些条件已经告诉了,因此这个问题就解决了.
解:的长=π×12≈25.1cm.
S扇形=π×122≈150.7cm2.
因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
1.探索弧长的计算公式l=πR,并运用公式进行计算;
2.探索扇形的面积公式S=πR2,并运用公式进行计算;
3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.
Ⅴ.课后作业
习题3.10
Ⅵ.活动与探究
如图,两个同心圆被两条半径截得的的长为6πcm,的长为10πcm,又AC=12cm,求阴影部分ABDC的面积.
分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积S=lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.
解:设OA=R,OC=R+12,∠O=n°,根据已知条件有:
得.
∴3(R+12)=5R,∴R=18.
∴OC=18+12=30.
∴S=S扇形COD-S扇形AOB=×10π×30-×6π×18=96πcm2.
所以阴影部分的面积为96πcm2.
板书设计
§3.7弧长及扇形的面积
一、1.复习圆的周长和面积计算公式;
2.探索弧长的计算公式;
3.例题讲解;
4.想一想;
5.弧长及扇形面积的关系;
6.扇形面积的应用.
二、课堂练习
三、课时小结
四、课后作业
做好教案课件是老师上好课的前提,是时候写教案课件了。我们制定教案课件工作计划,才能更好地安排接下来的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“弧长和扇形面积”,欢迎您参考,希望对您有所助益!
作课类别课题24.4.1弧长和扇形面积课型新授
教学媒体多媒体
教
学
目
标知识
技能掌握弧长公式和扇形面积公式的推导过程,能运用弧长公式和扇形面积公式进行有关计算.
过程
方法通过弧长和扇形面积公式的推导过程与运用,发展学生分析问题、解决问题的能力.
情感
态度通过弧长公式和扇形面积公式的推导,发展学生抽象、理解、概括、归纳能力和迁移能力.
教学重点弧长,扇形面积公式的导出及应用.
教学难点用公式解决实际问题
教学过程设计
教学程序及教学内容师生行为设计意图
一、情境引入
课本110页引例:制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题,这节课来探究弧长求法.
二、探究新知
(一)弧长公式
1推导:
问题:①弧长属于圆周上部分,圆周长计算公式是什么?
②圆周长可以看成是多少度的圆心角所对的弧长?
③10的圆心角所对的弧长是多少?20的圆心角所对的弧长呢?④n0的圆心角所对的弧长是多少?
得到:在半径为R的圆中,
因为3600的圆心角所对的弧长就是圆周长C=2πR,
10圆心角所对弧长n0的圆心角所对弧长
弧长公式:
2.应用:
⑴解决本节课开始的问题.
⑵填空:
①.半径为3cm,120°的圆心角所对的弧长是_______cm;
②.已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;
③.已知半径为3,则弧长为π的弧所对的圆心角为_______.
④如图:四边形ABCD是正方形,曲线DAlBlClDl……叫做“正方形的渐开线”,其中的圆心依次按A、B、C、D循环,它们依次连接.取AB=l,则曲线DAlBl…C2D2的长是______(结果保留π)
(二)扇形面积公式
1推导:
1)圆面积S=πR2;(2)圆心角为1°的扇形的面积:
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积=.
归纳:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
扇形面积公式S扇形=
2应用:
⑴扇形的半径为24,面积为240,则这个扇形的圆心角为;
⑵如图2,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m)
(三)弧长公式与扇形面积公式的关系
问题:扇形的面积公式与弧长公式有联系吗?得到
三、课堂训练
完成课本112页练习
补充:1.扇形的弧长为,半径为3,则其面积为;
2.已知:如图,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积.
四、小结归纳
1弧长公式
2扇形面积公式
3弧长公式与扇形面积公式的关系
五、作业设计
作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.
补充:将一块边长为1的正三角形木板沿水平线翻滚,B点从开始至结束所走过的路径是多少?教师提出问题,引起学生思考,了解本节课要学习内容.
教师提出问题,学生通过复习圆周长公式,以及圆心角和其所对弧的关系自主探究弧长公式,经历猜想计算推理感性理性,加深对弧长公式的理解,小组之间进行交流,汇总,师生总结.
学生初步应用弧长公式进行计算,结合图形分析思考,了解公式的不同使用方法.从而发展学生的解决实际问题的能力和应用意识,并让学生逐渐的学会总结,教师检查知识的落实性,以便发现问题和及时解决问题。
教师引导学生类比弧长公式的推导方法尝试探究扇形面积公式
学生独立思考,尝试解题,之后师生交流思路和解法,进一步加深对扇形面积公式的认识.
学生比较两个公式,找它们的联系,明确知识之间的联系,在解题时,根据条件,选择适当的公式.
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.
让学生尝试归纳,总结,发言,体会,反思,教师点评汇总由实际问题引出课题,激发学生的学习兴趣,感受数学来源于生活.
推导弧长公式,使学生明确公式的推导过程,知道公式的来龙去脉,让学生体会从特殊推广到一般的研究方法
让学生初步应用弧长公式,通过运用掌握公式的运用技巧,培养学生计算能力及分析解决实际问题的能力.
学生类比推导扇形面积公积公式
通过分析,引导学生将复杂问题转化为简单的问题,体现化归思想,同时,理解数学知识来源于生活实际,又用来解决实际中的问题,强化数学的应用意识.
运用所学公式迅速、正确解题,培养学生良好的学习习惯,训练学生的解题速度和综合运用知识解题的能力.
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
板书设计
课题
弧长公式
应用扇形面积公式关系定理应用
应用
弧长公式与扇形面积公式的关系归纳
教学反思
文章来源:http://m.jab88.com/j/71999.html
更多