§3.7弧长及扇形面积
教学目标:
1.知识与技能:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题
2.过程与方法:经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
3.情感态度与价值观:经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点:经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.
教学难点:探索弧长及扇形面积计算公式;用公式解决实际问题.
教学设计:
一、创设问题情境,引入新课
在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
二、新课讲解
1复习
(1).圆的周长如何计算?
(2).圆的面积如何计算?
(3).圆的圆心角是多少度?
(若圆的半径为r,,则周长,面积,圆的圆心角是360°.)
2.探索弧长的计算公式
如右图,某传送带的一个转动轮的半径为lO.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1°,传送带上的物品A被传送多少厘米?
(3)转动轮转°,传送带上的物品A被传送多少厘米?
分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°的圆心角,所以转动轮转l°,传送带上的物品A被传送圆周长的;转动轮转°,传送带上的物品A被传送转l°时传送距离的倍.
解:(1)转动轮转一周,传送带上的物品A被传送×lO=20cm;
(2)转动轮转1°,传送带上的物品A被传送;
(3)转动轮转。,传送带上的物品A被传送.
根据上面的计算,你能猜想出在半径为R的圆中,°的圆心角所对的弧长的计算公式吗?请大家互相交流.
根据刚才的讨论可知,360°的圆心角对应圆周长2,那么1°的圆心角对应的弧长为,°的圆心角对应的弧长应为1°的圆心角对应的弧长的倍,即.
在半径为R的圆中,°的圆心角所对的弧长的计算公式为:.
下面我们看弧长公式的运用.
3.例题讲解
例1:制作弯形管道时,需要先按中心线计算“展直长度”再下料。试计算下图中管道的展直长度,即的长(结果精确到O.1mm).
分析:要求管道的展直长度,即求的长,根据弧长公式可求得的长,其中n为圆心角,R为半径,
解:R=40mm,=110.
∴的长=
因此,管道的展直长度约为76.8mm.
三、探索研究
1.想一想
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.
(1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过°角,那么它的最大活动区域有多大?
(1)如图(1),这只狗的最大活动区域是圆的面积,即.
(2)如图(2),狗的活动区域是扇形。扇形是圆的一部分,360°的圆心角对应的圆面积,l°的圆心角对应圆面积的,即×=,°的圆心角对应的圆面积为×=.
如果圆的半径为R,则圆的面积为,l°的圆心角对应的扇形面积为,°的圆心角对应的扇形面积为.
因此扇形面积的计算公式为
其中R为扇形的半径,为圆心角.
2.弧长与扇形面积的关系
我们探讨了弧长和扇形面积的公式。在半径为R的圆中,°的圆心角所对的弧长的计算公式为,°的圆心角的扇形面积公式为,在这两个公式中,弧长和扇形面积都和圆心角.半径R有关系,因此和S之间也有一定的关系,你能猜得出吗?请大家互相交流.
∵,
∴
∴
3.扇形面积的应用
例2:扇形AOB的半径为l2cm,∠AOB=120°,求的长(结果精确到O.1cm)和扇形A0B的面积(结果精确到O.1cm).
分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角即可,本题中这些条件已经告诉了,因此这个问题就解决了
解:的长=25.1cm.
=150.7cm.
因此,的长约为25.1cm,扇形AOB的面积约为150.7cm.
4.随堂练习:
四、课时小结
本节课学习了如下内容:
1.探索弧长的计算公式,并运用公式进行计算;
2.探索扇形的面积公式,并运用公式进行计算;
3.探索弧长及扇形的面积之间的关系,并能已知一方求另一方。
五、课后作业
1.复习本课的内容;
2.课本P142习题1、2、3
六、活动与探究
如图,两个同心圆被两条半径截得的的长为6,的长为10,又AC=12,求阴影部分ABDC的面积.
分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积,已知,则需要求两个半径0C与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.
解:设OA=R,0C=R十12,∠O=°,根据已知条件有:
得
∴3(R+12)=5R
∴R=18
∴OC=18+12=30
∴S=
所以阴影部分的面积为96.
一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有规划好新的教案课件工作,新的工作才会更顺利!你们知道哪些教案课件的范文呢?下面是小编精心为您整理的“九年级数学弧长和扇形面积学案27”,大家不妨来参考。希望您能喜欢!
学案设计24.4弧长和扇形面积学案
编写人
时间
月日
学生姓名
班级
年级班
组
学习目标
1.了解圆锥的基本概念,理解圆锥各要素与其侧面展开图之间的对应关系;2.经历探索圆锥侧面积计算公式的过程,会计算圆锥的侧面积。
学习重点难点
1.理解圆锥各要素与其侧面展开图之间的对应关系;
2.经历探索圆锥侧面积计算公式的过程,会计算圆锥的侧面积。
学
习
过
程
自主学习
知识网络弧长l=圆锥的侧面积S侧=
扇形面积S==
圆锥的全面积S=
自学指导
S
A
B
O
图1
在现实生活中你见过哪些锥形物体?你想了解圆锥更多的知识吗?请同学们通过阅读课本第112页,去了解圆锥的基本知识吧!试一试,完成下面的填空。
1.如图1,圆锥是由一个底面和一个侧面围成的,其底面是一个。我们把连接圆锥和底面的线段叫做圆锥的母线,图中的就是圆锥的母线。圆锥的母线有条,它们都。连接圆锥顶点与底面的线段叫圆锥的高,如图中的就是圆锥的高。
图2
2.如图2,沿圆锥的一条母线将它剪开并展平,可以看到,圆锥的侧面展开图是一个,这个扇形的半径是圆锥的,扇形的弧长是圆锥底面圆的。若设圆锥底面圆的半径是r,圆锥母线长是l,则扇形的半径是,扇形的弧长是,所以扇形的面积==,即圆锥的侧面积=,所以圆锥的全面积=。(利用你手中的扇形纸片体会一下吧。)
合作
交流
1.如图2,圆锥的底面周长为32米,母线长7米,则圆锥的侧面积为平方米。2.若圆锥底面半径为3cm,母线长5,则它的侧面展开图面积是cm2。
3.用一个圆心角为1200,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是。
4.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高是()
A6cmB8cmC10cmD12cm
5.圆锥的底面直径是80cm,母线长90cm,求它的侧面展开图的圆心角和圆锥的全面积。
6.Rt△ABC中,∠C=900,AC=3,BC=4,把它分别沿三边所在的直线旋转一周,所得几何体的形状相同吗?表面积一样吗?发挥你的聪明才智,小组分工合作,可以分别求它的一种情况,比较所得结果,去探求问题的答案吧!
7.同学们都知道,两点之间线段最短。如果这两个点在一个曲面上,两点之间的最短距离该如何来解呢?来看下面一个问题。
展示
反馈
积极思考团结协作亮出自我
精讲总结
达
标
检
测
A组1.母线长为l,底面半径为r的圆锥的表面积为
2.已知圆锥的底面半径是3,高是4,则这个圆锥的侧面展开图的面积是()
A12∏B15∏C30∏D24∏
3.一个圆锥的侧面展开图形是半径为8cm,圆心角为1200的扇形,则此圆锥的底面半径为()
A8/3cmB16/3cmC3cmD4/3cm
4.圆锥底面半径为9cm,母线长36cm,则圆锥侧面展开图的圆心角为。
5.如果圆锥的底面周长是20∏,侧面展开后所得的扇形的圆心角为1200,求该圆锥的侧面积和全面积。
B组
在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()
A2280B1440C720D360
课后反思
做好教案课件是老师上好课的前提,是时候写教案课件了。我们制定教案课件工作计划,才能更好地安排接下来的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“弧长和扇形面积”,欢迎您参考,希望对您有所助益!
作课类别课题24.4.1弧长和扇形面积课型新授
教学媒体多媒体
教
学
目
标知识
技能掌握弧长公式和扇形面积公式的推导过程,能运用弧长公式和扇形面积公式进行有关计算.
过程
方法通过弧长和扇形面积公式的推导过程与运用,发展学生分析问题、解决问题的能力.
情感
态度通过弧长公式和扇形面积公式的推导,发展学生抽象、理解、概括、归纳能力和迁移能力.
教学重点弧长,扇形面积公式的导出及应用.
教学难点用公式解决实际问题
教学过程设计
教学程序及教学内容师生行为设计意图
一、情境引入
课本110页引例:制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题,这节课来探究弧长求法.
二、探究新知
(一)弧长公式
1推导:
问题:①弧长属于圆周上部分,圆周长计算公式是什么?
②圆周长可以看成是多少度的圆心角所对的弧长?
③10的圆心角所对的弧长是多少?20的圆心角所对的弧长呢?④n0的圆心角所对的弧长是多少?
得到:在半径为R的圆中,
因为3600的圆心角所对的弧长就是圆周长C=2πR,
10圆心角所对弧长n0的圆心角所对弧长
弧长公式:
2.应用:
⑴解决本节课开始的问题.
⑵填空:
①.半径为3cm,120°的圆心角所对的弧长是_______cm;
②.已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;
③.已知半径为3,则弧长为π的弧所对的圆心角为_______.
④如图:四边形ABCD是正方形,曲线DAlBlClDl……叫做“正方形的渐开线”,其中的圆心依次按A、B、C、D循环,它们依次连接.取AB=l,则曲线DAlBl…C2D2的长是______(结果保留π)
(二)扇形面积公式
1推导:
1)圆面积S=πR2;(2)圆心角为1°的扇形的面积:
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积=.
归纳:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
扇形面积公式S扇形=
2应用:
⑴扇形的半径为24,面积为240,则这个扇形的圆心角为;
⑵如图2,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m)
(三)弧长公式与扇形面积公式的关系
问题:扇形的面积公式与弧长公式有联系吗?得到
三、课堂训练
完成课本112页练习
补充:1.扇形的弧长为,半径为3,则其面积为;
2.已知:如图,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积.
四、小结归纳
1弧长公式
2扇形面积公式
3弧长公式与扇形面积公式的关系
五、作业设计
作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.
补充:将一块边长为1的正三角形木板沿水平线翻滚,B点从开始至结束所走过的路径是多少?教师提出问题,引起学生思考,了解本节课要学习内容.
教师提出问题,学生通过复习圆周长公式,以及圆心角和其所对弧的关系自主探究弧长公式,经历猜想计算推理感性理性,加深对弧长公式的理解,小组之间进行交流,汇总,师生总结.
学生初步应用弧长公式进行计算,结合图形分析思考,了解公式的不同使用方法.从而发展学生的解决实际问题的能力和应用意识,并让学生逐渐的学会总结,教师检查知识的落实性,以便发现问题和及时解决问题。
教师引导学生类比弧长公式的推导方法尝试探究扇形面积公式
学生独立思考,尝试解题,之后师生交流思路和解法,进一步加深对扇形面积公式的认识.
学生比较两个公式,找它们的联系,明确知识之间的联系,在解题时,根据条件,选择适当的公式.
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.
让学生尝试归纳,总结,发言,体会,反思,教师点评汇总由实际问题引出课题,激发学生的学习兴趣,感受数学来源于生活.
推导弧长公式,使学生明确公式的推导过程,知道公式的来龙去脉,让学生体会从特殊推广到一般的研究方法
让学生初步应用弧长公式,通过运用掌握公式的运用技巧,培养学生计算能力及分析解决实际问题的能力.
学生类比推导扇形面积公积公式
通过分析,引导学生将复杂问题转化为简单的问题,体现化归思想,同时,理解数学知识来源于生活实际,又用来解决实际中的问题,强化数学的应用意识.
运用所学公式迅速、正确解题,培养学生良好的学习习惯,训练学生的解题速度和综合运用知识解题的能力.
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
板书设计
课题
弧长公式
应用扇形面积公式关系定理应用
应用
弧长公式与扇形面积公式的关系归纳
教学反思
文章来源://m.jab88.com/j/68198.html
更多