88教案网

《用一元一次方程解决问题》教案

教案课件是老师不可缺少的课件,大家应该要写教案课件了。在写好了教案课件计划后,这样接下来工作才会更上一层楼!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“《用一元一次方程解决问题》教案”希望对您的工作和生活有所帮助。

《用一元一次方程解决问题》教案

【教学目标】
1、能用一元一次方程解决比例配套的实际问题,包括找准等量关系、准确设出未知数、列方程、解方程.
2、经历活动和思考、交流与讨论、分析解决问题等过程,体会数学的应用价值.
3、经历“模型准备——模型构成——模型求解与分析--模型检验--模型应用”的过程,感悟应用题中的数学建模思想.
【教学重、难点】
1、能用一元一次方程解决简单的实际问题.
2、能根据实际问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力.
【教学过程】:
一、模型准备:
准备一本月历,来玩猜数游戏。







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
问题1:在月历的同一行上任意圈出相邻的3个数,并把这3个数的和告诉同学,让同学求出这3个数.
问题2:在月历上,用一个正方形任意圈出2×2个数,并把这4个数的和告诉同学,让同学求出这4个数.
【设计意图】:给学生实际的问题背景和建模的目的,为接下来的建模过程做准备。从熟悉的日历出发,在师生互动的过程中,让学生体会用字母表示未知量,通过列方程解决问题的方法,提高学生学习数学的兴趣.
二、模型构成
问题1:一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03立方米,做一条桌腿需要木材0.002立方米,现做100张这样的桌子,共需木材立方米.
问题2:一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03立方米,做一条桌腿需要木材0.002立方米,现做一批这样的桌子,恰好用去木材3.8立方米,共做了多少张桌子?
分析:1.题目中涉及哪些量?
2.它们之间有什么关系?
3.怎么设未知数?
一个桌面
用去木材的体积
一条桌腿
用去木材的体积
桌子的张数
一共用去木材的体积
解:
【设计意图】有了模型假设后,学生可以选择适当的数学工具并根据已有的知识和搜集的信息来描述这些量之间的关联。
三、模型求解与分析
1.一张桌子有一张桌面和四条桌腿,做一张桌面和一条桌腿共需要木材0.032立方米,现做100张这样的桌子,恰好用去木材3.8立方米,做一张桌面需要木材几立方米,做一条桌腿需要木材几立方米?
2.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材的体积是做一条桌腿需要木材的体积10倍多0.01立方米,现做100张这样的桌子,恰好用去木材3.8立方米,做一张桌面需要木材几立方米,做一条桌腿需要木材几立方米?
3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材的体积和做一条桌腿需要木材的体积比为11:2,现做100张这样的桌子,恰好用去木材3.8立方米,做一张桌面需要木材几立方米,做一条桌腿需要木材几立方米?
【设计意图】:通过本例题的教学,让学生知道如何把问题转化为方程,进一步认识到建立方程模型的作用;教师通过规范的解答例题,向学生展示列方解应用题的规范步骤.而建立方程的关键就是找到等量关系.对一元一次方程这一数学模型进行理性的分析,得出这一模型的解决方法。
归纳用方程解决问题的一般解法步骤:
1.审:审题,分析题中的已知量、未知量,明确它们之间的关系.借助表格找出能表示应用题全部意义义的一个相等关系.
2.设:设一个合适的未知数(一般情况下求什么,就设什么为x),要写出单位名称.
3.列:根据找出的等量关系列出方程.
4.解:解所列出的方程,求出未知数的值.
5.验:检验求出的未知数的值①是否适合原方程②是否符合题意.
6.答:写出答案(包括单位名称).
【设计意图】:进一步明确建立方程模型的步骤,从而规范学生解题格式.
四.模型检验
1.甲、乙、丙三数之比为2:3:7,这三个数的和为48,求这三个数。若设一份为x,则甲数为_____,乙数为_______,丙数为______,列方程为___.
2.用一根50厘米的铁丝围成一个长方形,使它的长比宽多5厘米,这个长方形的长为厘米,宽为厘米.
3.某学生在暑假里给同学寄了2封信和一些明信片,一共花了4.6元.已知每封信的邮费为0.8元,每张明信片的邮费为0.6元,他寄了多少张明信片?
【设计意图】:在解决例题的基础上,学生不难完成随堂练习,在解决问题的过程中进一步提高了学习的自信心.同时通过模仿例题的解题格式,巩固列一元一次方程解应用题的步骤,提高灵活解决问题的能力,为下面的学习打好基础.进一步体会从数学的角度解决实际问题,同时检验一元一次方程这一数学模型的合理性。
小结:1、如何正确寻找实际问题中的等量关系?
2、用方程思想建立模型的一般步骤.
五、模型应用
1.几名同学在日历的纵列上圈出三个数,算出它们的和,其中正确的一个是()
A.38B.18C.75D.57
2.学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了_________张,相等关系是________________________,列出方程___________________.
3.某商店今年共销售21英寸,25英寸,29英寸3种彩电共360台,它们的销售数量的比是1:7:4,这三种彩电各销售多少台?
4.一本书封面的周长为68cm,长与宽的比是15:19,这本书封面长和宽分别为多少?面积呢?
5.某饮料店的A种果汁比B种果汁贵1元,小明和他的四位朋友共要了2杯A种果汁和3杯B种果汁,一共花了17元,问这两种果汁的单价分别是多少?
6.某人从甲地到乙地,全程的建模研究课五(市级公开课):4.3用一元一次方程解决问题(1)教案2016.11.15王军民乘车,全程的建模研究课五(市级公开课):4.3用一元一次方程解决问题(1)教案2016.11.15王军民乘船,最后又步行4km到达乙地,甲、乙两地的路程是多少?
【设计意图】:通过对这6题的设计,让学生对一元一次方程这一数学模型,从实际运用、书写规范性等多角度进行应用。
六、拓展延伸
1.某车间有28名木匠,生产某种桌子,一个桌面配四条桌腿,每人每天平均生产桌面12张或桌腿16条,问多少木匠生产桌面,多少木匠生产桌腿刚好使桌面和桌腿配套.
2.“以情境中的月历为例”解决下列问题:
(1)在月历上,用一个正方形任意圈出3×3个数的和为99,求这九天分别是几号?
(2)在月历上,任意圈出5个数组成英文字母“X”型,已知这5个数的和为75,求这5天分别是几号?如这5个数的和为100呢?
【设计意图】:用字母表示适当的未知数、各数量之间的关系;认识到建立方程模型的作用。同时对于方程的解要检验它的合理性.m.JAb88.COM

延伸阅读

用一元二次方程解决问题导学案


老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“用一元二次方程解决问题导学案”,大家不妨来参考。希望您能喜欢!

4.3用一元二次方程解决问题(1)

班级姓名学号

学习目标

1.进一步理解方程是刻画客观世界的有效模型,

2.通过对实际问题的决实际问题的过程,知道解应用题的一般步骤和关键所在

学习重点:认识不等式

学习难点:文字语言转化为数学不等式

教学过程

一、情境引入:

围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2.求这个公园的长与宽.

二、探究学习:

1.尝试:

通常用一元一次方程解决实际问题要经历怎样的过程?

2.概括总结.

用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。

3.典型例题:

例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。

甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?

例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米

池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。

例3、两个连续奇数的积是323,求这两个数。

4.巩固练习:

(1)在三位数345中,3,4,5是这个三位数的什么?

(2)如果a,b,c分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?

(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原来的数就得到1855,求原来的两位数。

(4)已知两个数的和等于12,积等于32,则这两个是

(5)求x:(x-1)=(x+2):3中的x.

(6)三个连续整数两两相乘后,再求和,得362,求这三个数。

三、归纳总结:

1、列一元二次方程解决实际问题的一般步骤.

2、解的取舍情况.

4.3用一元二次方程解决问题(1)

【课后作业】

班级姓名学号

1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,则这个百分数为()

A、10%B、20%C、120%D、180%

2、若两个连续整数的积是56,则它们的和是()

A、±15B、15C、-15D、11

3、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是。

4、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。

5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?

6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。

(1)如果要围成面积为45平方米的花圃,AB的长是多少米?

(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。

一元一次方程


每个老师为了上好课需要写教案课件,大家应该开始写教案课件了。教案课件工作计划写好了之后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“一元一次方程”,大家不妨来参考。希望您能喜欢!

第6章一元一次方程测试题
姓名班级分数
一、填空题(每题3分,共30分)
1、如果,那么(根据)。
2、7与x的差的比x的3倍小6的方程是
3、若方程是关于X的一元一次方程,则k=
4、当X=时,代数式3(x-2)与2(2+x)的值相等
5、已知长方形的周长为40cm、长为xcm、宽为8cm,由题意列方程为
6、要将方程的分母去掉,在方程的两边最好同时
乘以
7、当x=时,代数式的值为0.
8、某商店老板将一件进价为800元的商品先提价50%;再打8折出销,则出销这件商品所获利润是元。
9、一件工作,甲队单独做12天可以完成,乙队单独做18天可以完成,若两队合做则天可以完成。
10、某省今年高考招生17万人,比去年增加了18%,设该省去年招生x万人,则可以列方程。
二、选择题(每题3分,共30分)
1、方程2x+1=0的解是()
(A)(B)(C)2(D)--2
2、已知下列方程中①、②0.3x=1、③、④
⑤x=6、⑥x+2y=0、⑦,其中是一元一次方程的有()
(A)2个(B)3个(C)4个(D)5个
3、如果方程是一个关于x的一元一次方程,那么m的取值范围是()
(A)(B)(C)m=--1(D)m=0
4、方程2(x—7)=x+4的解是()
(A)x=--5(B)x=5(C)x=14(D)x=18
5、对于等式,下列变形正确的是()
(A)(B)(C)(D)
6、下列等式变形错误的是()
(A)由a=b,得a+5=b+5(B)由a=b,得
(C)由x+2=y+2,得x=y(D)由-3x=-3y,得x=-y
7、方程的解是()
(A)x=3(B)(C)(D)x=-3
8、将方程去括号后正确的是()
(A)(B)
(C)(D)14x-1-12x+3=11
9、方程的解是()
(A)(B)(C)(D)
10、某工人计划每生产a个零件,现在实际每天生产b个零件,则生产m个零件提前的天数为()
(A)(B)(C)(D)
三、解答题(共40分)
1、解方程:(5分)

2、解方程:(5分)

3、解方程:(5分)
4、用一根直径为16cm的圆柱形铅柱,锻造5个直径为16cm铅球,问应裁取多长的铅柱?(球的体积为)(7分)

5、为了促进销售,某商场将一种商品按标价的9折出售,仍可获利10%,若该商品的标价是33元,则该商品的进价是多少元?

6、甲、乙两站间的路程为35千米,一辆慢车从甲站开往乙站,走了一个半小时后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?(10分)

解一元一次方程


老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“解一元一次方程”,仅供参考,希望能为您提供参考!

课题3.3解一元一次方程—去括号与去分母课时本学期
第课时日期
课型新授主备人复备人审核人
学习
目标知识与能力:进一步掌握列一元一次方程解应用题的方法步骤.
过程与方法:通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.
情感态度与价值观:培养学生自主探究和合作交流意识和能力,体会数学的应用价值.
重点
难点重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程,并会解方程.
难点:找出能够表示问题全部含义的相等关系,列出方程.
关键:找出能够表示问题全部含义的相等关系.
教学流程师生活动时间复备标注
一、复习引入:1.解方程:5X+2(3X-3)=11-(X+5)
2.行程问题中的基本数量关系是什么?
路程=速度×时间,可变形为:速度=.
3.相遇问题或追及问题中所走路程的关系?
相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)
追及问题:快速行进路程=慢速行进路程+原来两者间的距离;或快速行进路程-慢速行进路程=原路程(原来两者间的距离)
二、新授:
例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.
分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的速度之间的关系如何?
顺流行驶速度=船在静水中的速度+水流速度
逆流行驶速度=船在静水中的速度-水流速度
(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).
(3)问题中的相等关系是什么?
解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括号,得2x+6=2.5x-7.5
移项及合并,得-0.5x=-13.5
系数化为1,得x=27
答:船在静水中的平均速度为27千米/时.
说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.
例3:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
分析:
已知条件:(1)分配生产螺钉和生产螺母人数共22名.
(2)每人每天平均生产螺钉1200个,或螺母2000个.
(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?
螺母的数量应是螺钉数量的两倍,这正是相等关系.

解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母2000(22-x)个,由相等关系,列方程
2×1200x=2000(22-x)
去括号,得2400x=44000-2000x
移项,合并,得4400x=44000
x=10
所以生产螺母的人数为22-x=12
答:应分配10名工人生产螺钉,12名工人生产螺母.
本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.
三、巩固练习课本第102页第7题.
解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:
2(x+24)=3(x-24)
去括号,得x+68=3x-72
移项,合并,得-x=-140
系数化为1,得x=840
两城之间的航程为3(x-24)=2448
答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.
解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?
分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.
在这个问题中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:
-24=+24
化简,得x-24=+24
移项,合并,得x=48
系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)
比较两种方法,第一种方法容易列方程,所以正确设元也很关键.
四、课堂达标练习
1.名校课堂59页3、4、7、
五、课堂小结:通过以上问题的讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,虽然不必写出检验过程,但这一步绝不是可有可无的.
六、作业:课本第102页习题3.3第5、题.
课件出示问题1:

教师引导,启发学生找出相等关系并列出相应代数式,从而得出方程

教师点拨进一步对此题进行巩固,培养学生归纳概括的能力

解答过程按课本,可由学生口述,教师板书.

文章来源:http://m.jab88.com/j/7122.html

更多

最新更新

更多