七年级下册《数据分析小结与复习》学案2
数据分析小结与复习(2)
教学目标
1.进一步描述平均数,中位数,众数的差别,初步感受它们在不同情境中的应用;概述刻画数据波动的统计量:方差.
2.进一步通过小组活动,培养团队精神.通过解决身边的实际问题,进一步认识数学与人类生活的密切联系及对人类历史发展的作用.
教学重点、难点
1.重点:平均数、中位数、众数、方差的应用.
2.难点:灵活运用本章知识.
教学过程
一、自主学习
阅读课本第155页对本章知识作进一步回顾.
二、巩固练习
1.如果样本方差,那么这个样本平均数为.样本容量为.
2.已知的平均数10,方差3,则的平均数为,方差为.
3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分5060708090100110120
人数2361415541
分别求出这些学生成绩的众数、中位数和平均数.
4.某养鱼户搞池塘养鱼已三年,头一年放养鲢鱼苗20000尾,其成活率约为70%,在秋季捕捞时,捞出10尾鱼,称得每尾鱼的重量如下:(单位:千克)0.8,0.9,1.2,1.3,0.8,0.9,1.1,1.0,1.2,0.8.
(1)根据样本平均数估计这塘鱼的总产量是多少千克?
(2)如果把这塘鲢鱼全部卖掉,其市场售价为每千克4元,那么能收人多少元?除去当年的投资成本16000元,第一年纯收入多少元?
解:(1)样本平均数
即每条鲢鱼约重1千克.因此可以估计这塘鲢鱼共重
(2)4×14000=56000(元)56000-16000=40000(元)
所以把鲢鱼全卖掉可收入56000元,除去当年的投资成本纯收入40000元。
选取样本容量的原则:
用样本估计总体时,样本容量越大,样本对总体的估计越精确,相应的搜集、整理。计算数据的工作量也越大,因此,在实际工作时,样本容量的确既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价。
三、当堂检测
1.一组数据:,,0,,1的平均数是0,则=.方差.
2.样本方差的作用是()
A.估计总体的平均水平;B.表示样本的平均水平;
C.表示总体的波动大小;D.表示样本的波动大小,从而估计总体的波动大小.
3.如果给定数组中每一个数都减去同一非零常数,则数据的()
A、平均数改变,方差不变B、平均数改变,方差改变
C、平均数不变,方差不变D、平均数不变,方差改变
4.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7
经过计算,两人射击环数的平均数相同,但SS,所以确定去参加比赛.
5.某公司的33名职工的月工资(以元为单位)如下:
职员董事长副董事长董事总经理经理管理员职员
人数11215320
工资5500500035003000250020001500
(1)求该公司职员月工资的平均数、中位数、众数?
(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
四、本节小结
1.这节课我们学到了什么知识?
2.我们感受到了什么?
3.还存在什么疑惑?
五、课后作业
课本第156-158页习题第4、7、8、9、10题.
老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“七年级下册《方差》小结与复习学案湘教版”,仅供参考,希望能为您提供参考!
七年级下册《方差》小结与复习学案湘教版
方差
目的要求:
1.认识极差、方差的概念.
2.能正确计算一组数据的极差、方差.
3.极差、方差对一组数据的意义.
重点:
极差、方差对一组数据的意义
准备:
小黑板、幻灯
教学过程:
一、复习.(幻灯)
1.权数与频率的关系.
2.求25、37、54、46、75的加权平均数.
⑴、已知权数为0.1、0.2、0.15、0.25、0.3
⑵、已知前四个数的权数为0.2、0.2、0.4、0.1
二、极差.
1.引入.(小黑板)
我班A同学的期中测试成绩如下:政:80语:85、数:95、外:60、史:90、地:65、生:95
我班B同学的期中测试成绩如下:政:85语:75、数:95、外:75、史:85、地:80、生:75
⑴、计算两同学的平均成绩,看看谁的成绩更好?
⑵、你认为哪个同学的成绩看起来一平衡?为什么?
B同学的成绩平衡些.虽然他们的最高分都相同,但B同学他的最低分只有75,而A同学的最低分是60分.)
2.教师引导得到:
一组数据中最大值与最小值之差,叫这组数据的极差.极差的大小反映了数据的波动或分散的程度.
如上,A同学的成绩的极差是95-60=35,B同学的成绩的极差是95-75=20,因而B同学的成绩的波动就小一些,成绩就比较平衡.极差越大,波动越大;极差越小,波动越小.
3.应用.
下表是1998年4—9月中每个月份湘江的最高水位和最低水位(单位:m)
⑴、计算每个月份水位变化的极差.
⑵、计算4—9月份最高水位变化的极差.
⑶、计算4—9月份最低水位变化的极差.
⑷、从上面的数据及其分析中,你能获得哪些信息?
(水位变化的极差反映了湘江水位涨落的程度;
6月份的极差最大,说明这一年6月份经常下大雨,雨水是最多的.水位波动最大
9月份极差最小,说明很少下雨,水位恒定.
从这6个月的水位变化情况看,最高水位极差达到10.41m,最低水位极差也在5.35m.说明这一年湘江发洪水,灾害严重.……)
可让学生自由发言,能够在数据中体现的信息都应给予肯定.
4.练习.
三、方差.
1.引入.(小黑板)
有两个合唱队,各由5名队员组成,他们的身高为(单位:cm)
甲队:160、162、159、160、159
乙队:180、160、150、150、160
⑴、计算两队的平均身高.看看这两队中从身高来说哪队更整齐?
⑵、哪组队员的身高更集中于160cm?
2.反映一组数据的分散程度,数学中可用方差来解决.
方差:一组数据中的各数与其平均数的偏差的平方的平均值,称为这组数据的方差.
如上题中用方差来解决看哪队更整齐的问题.
甲乙两队中,每队队员的平均身高都是160cm,则甲队队员的身高的方差是:
〔(160-160)2+(162-160)2+(159-160)2+(160-160)2+(159-160)2〕÷5=1.2
乙队队员的身高的方差是:
〔(180-160)2+(160-160)2+(150-160)2+(150-160)2+(160-160)2〕÷5=120显然,乙队队员身高的方差远远大于甲队队员的身高,这说明甲队队员的身高偏差较小,看起来更整齐;而乙队队员的身高偏差较大,则乙队队员高的高、矮的矮,不齐整.
3.方差的意义.
方差反映的是一组数据与其平均数的偏离程度,方差越小,数据越集中;方差越大,数据越分散.简而言之:方差反映了数据组与其平均数的偏离程度.
4.应用.(幻灯)
⑴我班某同学期中测试成绩如下:政:85语:75、数:95、外:75、史:85、地:60、生:95,计算这组数据的极差、方差.
⑵有一批棉花,其各种长度的纤维所占比例如表所示:
试求这批棉花纤维的平均长度与方差,并对这批的质量发表自己的看法.
四、作业.
五、小结.
(说明:由于学生使用的不同的计算器,所以请同学们自己参考阅读说明书,练习用计算器求方差.)
纤维长度3cm5cm6cm所占比例25%40%35%
教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“七年级下册《整式的乘法》小结与复习学案湘教版”,相信能对大家有所帮助。
七年级下册《整式的乘法》小结与复习学案湘教版
整式的乘法
教学目标:
1、回顾本章内容,熟练地运用乘法公式进行计算;
2、能正确地根据题目的要求选择不同的乘法公式进行运算。
教学重点:正确选择乘法公式进行运算。
教学难点:综合运用平方差和完全平方公式进行多项式的计算。
教学方法:范例分析、探索讨论、归纳总结。
教学过程:
一、导学
1、平方差公式:
2、完全平方公式:
3、计算
(1)(2)
(3)(4)
二、探究
(1)做一做运用乘法公式计算:
得:=
(2)直接利用第(1)题的结论计算:
分析(2)小题中的2x相当于公式中的a,3y相当于公式中的b,z相当于公式中的c。
解:=
=
=
三、精导
例1运用乘法公式计算:
(2)
(3)(4)
解:(1)
=
=
想一想:这道题你还能用什么方法解答?
(2)
=
=
=
(3)、(4)略
注意灵活运用乘法公式,按要求最好能写出详细的过程。
例3一个正方形花圃的边长增加到原来的2倍还多1m,它的面积就增
加到原来的4倍还多21,求这个正方形花圃原来的边长。
解:略
四、提升
1、练习P49的练习题
2、小结:利用乘法公式可以使多项式的计算更为简便,但必须注意正
确选择乘法公式。
3、布置作业:
复习题A组第3题、第4题
文章来源:http://m.jab88.com/j/7118.html
更多