88教案网

一元二次方程的应用(2)导学案(新版新人教版)

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《一元二次方程的应用(2)导学案(新版新人教版)》,仅供参考,欢迎大家阅读。

第9课时一元二次方程的应用(2)
一、学习目标1.会利用一元二次方程解答数字问题
2.会利用一元二次方程解答营销问题;
3.会利用一元二次方程解答动态几何问题.
二、知识回顾1.用一元二次方程解决实际问题,一般要经历以下几个基本步骤:
(1)审题找等量关系;
(2)设元列方程;
(3)求解并检验;
(4)写出答案.
2.数字问题中常用的数量关系有:
两位数表示为:十位数字×10+个位数字;
三位数表示为:百位数字×100+十位数字×10+个位数字;
三个连续整数可表示为:x-1,x,x+1;
三个连续奇数可表示为:2x-1,2x+1,2x+3;
三个连续偶数可表示为:2x-2,2x,2x+2.
三、新知讲解一元二次方程的应用——营销问题(“每每型”问题)
每每型问题指“每降低多少单价,每次就增加多少销量”或“每增加多少单价,每次就减少多少销量”的问题,关键是找出两个“每次”代表的数量,并用未知数表达出来,然后根据等量关系列出方程求解.
四、典例探究
1.一元二次方程的应用——数字问题
【例1】(2014秋冠县校级期末)一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,求这个两位数.

总结:对于数字问题,首先要明确数的表示方法:
(1)如果是两位数,个位数字设为a,十位数字设为b,那么这个两位数可表示为10b+a;
(2)如果是三位数,个位数字设为a,十位数字设为b,百位数字设为c,那么这个三位数可表示为100c+10b+a;
(3)设x为整数,三个连续整数可表示为x-1,x,x+1,三个连续奇数可表示为2x-1,2x+1,2x+3;三个连续偶数可表示为2x-2,2x,2x+2.
练1有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这个两位数.

练2(2015河北模拟)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如:把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m的值是()
A.3B.﹣1C.﹣3或1D.3或﹣1

2.一元二次方程的应用——营销问题
【例2】(2015乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?

总结:
用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润.
用一元二次方程解决的每每型问题,通常指“每降低多少单价,每次就增加多少销量”或“每增加多少单价,每次就减少多少销量”的问题,注意两个“每次”.
每每型问题中,每次涨(降)价,会引起定价和销量的变化,定价的变化又影响单件利润,等量关系式一般是单件利润×销售量=总利润.
每每型问题中要注意题设中“在顾客得实惠的前提下”“减少库存压力”等语句,这是进行答案取舍的重要信息.
练3(2015淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

3.一元二次方程的应用——动态几何问题
【例3】(2015春寿县校级月考)如图△ABC,∠B=90°,AB=6,BC=8.点P从A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动,问:
(1)经过几秒,△PBQ的面积等于8cm2?
(2)△PBQ的面积会等于10cm2吗?若会,请求出此时的运动时间;若不会,请说明理由.

总结:
动态几何问题指图形中存在动点、动线、动图等方面的问题.解决这类题,要搞清楚图形的变化过程,正确分析变量和其他量之间的联系,动中窥静,以静制动.
动态几何问题中常关心“不变量”.在求某个特定位置或特定值时,经常建立方程模型求解.
练4(2015春慈溪市校级月考)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12得方程,
解方程得x1=,x2=,∴点B将向外移动米.
(2)解完“思考题”后,小聪提出了如下问题:
梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这个问题.

五、课后小测一、选择题
1.已知两数之差为4,积等于45,则这两个数是()
A.5和9B.﹣9和﹣5C.5和﹣5或﹣9和9D.5和9或﹣9和﹣5
2.(2014鄂城区校级模拟)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低()元.
A.0.2或0.3B.0.4C.0.3D.0.2
3.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色形由3个正方形组成,第2个黑色形由7个正方形组成,那么组成第12个黑色形的正方形个数是()
A.44B.45C.46D.47.
二、填空题
4.(2014秋娄底校级期末)若两个连续偶数的积是224,则这两个数的和是______.
5.(2015东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价_____元时,商场日盈利可达到2100元.
三、解答题
6.(2015谷城县模拟)怎样用一条长40cm的绳子围成一个面积为96cm2的矩形?能围成一个面积为102cm2的矩形吗?如果能,说明围法;如果不能,说明理由.

7.(2015春江阴市期末)某大学生利用暑假社会实践参与了一家网店经营,该网店以每个20元的价格购进900个某新型商品.第一周以每个35元的价格售出300个,第二周若按每个35元的价格销售仍可售出300个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个).
(1)若第二周降低价格1元售出,则第一周,第二周分别获利多少元?
(2)若第二周单价降低x元销售一周后,商店对剩余商品清仓处理,以每个15元的价格全部售出,如果这批商品计划获利9500元,问第二周每个商品的单价应降低多少元?

8.(2014江西模拟)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.

9.(2015春汕头校级期中)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:
(1)当t=1秒时,四边形BCQP面积是多少?
(2)当t为何值时,点P和点Q距离是3cm?
(3)当t=以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)

典例探究答案:
【例1】【解析】设这个两位数字的个位数字是x,则十位数字是(x﹣3),则这个两位数为[10(x﹣3)+x],然后根据一个两位数等于它的个位数字的平方即可列出方程求解.
解:设这个两位数字的个位数字是x,则十位数字是(x﹣3),
根据题意得10(x﹣3)+x=x2
原方程可化为:x2﹣11x+30=0,
∴x1=5,x2=6,
当x=5时,x﹣3=2,两位数为25;
当x=6时,x﹣3=3,两位数为36.
答:这个两位数是25或36.
点评:此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
练1.【解析】设这个两位数字的个位数字为x,则十位数字为(x-2),则这个两位数为10(x-2)+x,然后根据这个两位数等于其数字之积的3倍列方程,并解方程即可.
解:设这个两位数字的个位数字为x,则十位数字为(x-2).
根据题意,得10(x-2)+x=3x(x-2),
原方程可化为:3x2-17x+20=0,
因式分解,得(3x-5)(x-4)=0,
解得x1=,x2=4.
因为x为整数,所以x=不符合题意,x=4.
10(x-2)+x=24,所以这个两位数是24.
点评:本题考查了一元二次方程的应用中的数字问题.注意:在求得解后,要进行实际意义的检验,舍去不符合题意的解.
练2.【解析】按照相应的运算方法与顺序,让得到的含m的一元二次方程的结果为2,列式求值即可.
解:由题意得:m2+(﹣2m)﹣1=2,
m2﹣2m﹣3=0,
(m﹣3)(m+1)=0,
解得m1=3,m2=﹣1.
故选:D.
点评:考查一元二次方程的应用;理解新定义的运算方法是解决本题的关键.
【例2】【解析】设降价x元,表示出售价和销售量,列出方程求解即可.
解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,
根据题意,得(60﹣x﹣40)(300+20x)=6080,
解得x1=1,x2=4,
又顾客得实惠,故取x=4,定价为:60-4=56(元),
答:应将销售单价定为56元.
点评:本题考查了一元二次方程应用,从题中找到关键描述语,并找出等量关系准确地列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
练3.【解析】(1)销售量=原来销售量﹣下降销售量,据此列式即可;
(2)根据销售量×每斤利润=总利润列出方程求解即可.
解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
(2)根据题意得:(4﹣2﹣x)(100+200x)=300,
解得:x=或x=1,
∵每天至少售出260斤,
∴x=1.
答:张阿姨需将每斤的售价降低1元.
点评:本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.
【例3】【解析】(1)设经过x秒,△PBQ的面积等于8cm2.先用含x的代数式分别表示BP和BQ的长度,再代入三角形面积公式,列出方程,即可求出时间;
(2)设经过y秒,△PBQ的面积等于10cm2.根据三角形的面积公式,列出关于y的一元二次方程,根据△=b2﹣4ac进行判断.
解:(1)设经过x秒,△PBQ的面积等于8cm2.
∵AP=1x=x,BQ=2x,
∴BP=AB﹣AP=6﹣x,
∴S△PBQ=×BP×BQ=×(6﹣x)×2x=8,
∴x2﹣6x+8=0,
解得:x=2或4,
即经过2秒或4秒,△PBQ的面积等于8cm2.
(2)设经过y秒,△PBQ的面积等于10cm2,
则S△PBQ=×(6﹣y)×2y=10,
即y2﹣6y+10=0,
因为△=b2﹣4ac=36﹣4×10=﹣4<0,
所以△PBQ的面积不会等于10cm2.
点评:本题考查了一元二次方程的应用.关键是用含时间的代数式准确表示BP和BQ的长度,再根据三角形的面积公式列出一元二次方程,进行求解并作出判断.
练4.【解析】(1)设点B将向外移动x米,即BB1=x,B1C=x+0.7,根据勾股定理求出A1C=AC﹣AA1=﹣0.4=2.在Rt△A1B1C中,由勾股定理得到B1C2+A1C2=A1B12,依此列出方程方程(x+0.7)2+22=2.52,解方程即可;
(2)设梯子顶端从A处下滑x米,点B向外也移动x米,根据勾股定理可得(x+0.7)2+(2.4﹣x)2=2.52,再解即可.
解:(1)设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2.
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12得方程(x+0.7)2+22=2.52,
解方程得x1=0.8,x2=﹣2.2(不合题意舍去),∴点B将向外移动0.8m.
故答案为(x+0.7)2+22=2.52,0.8,﹣2.2(不合题意舍去),0.8;
(2)有可能.
设梯子顶端从A处下滑x米,点B向外也移动x米,
则有(x+0.7)2+(2.4﹣x)2=2.52,
解得:x1=1.7或x2=0(不合题意舍去).
故当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.
点评:本题主要考查了一元二次方程的应用及勾股定理的应用,根据题意得出关于x的一元二次方程是解答此题的关键.

课后小测答案:
一、选择题
1.【解析】设其中一个数是x,另一个数是(x+4),依题意列出方程.
解:设其中一个数是x,另一个数是(x+4),则
x(x+4)=45,
整理,得
(x+2)2=49,
x+2=±7,
解得x1=5,x2=﹣9.
则x+4=9或x+4=﹣5.
故这两个数是5、9或﹣9、﹣5.
故选:D.
点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
2.【解析】设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:200+千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.
解:设应将每千克小型西瓜的售价降低x元.
根据题意,得(3﹣2﹣x)(200+)﹣24=200.
解这个方程,得x1=0.2,x2=0.3.
∵200+>200+,
∴应将每千克小型西瓜的售价降低0.3元.
故选:C.
点评:本题考查了一元二次方程的应用,通过生活实际较好地考查学生“用数学”的意识.注意题目的要求为了减少库存,舍去不合题意的结果.
3.【解析】看后面每个图形中正方形的个数是在3的基础上增加几个4即可.
解:第1个黑色“”形由3个正方形组成,
第2个黑色“”形由3+4=7个正方形组成,
第3个黑色“”形由3+2×4=11个正方形组成,
…,
那么组成第n个黑色“”形的正方形个数是3+(n﹣1)×4=4n﹣1.
故组成第12个“”的正方形个数是:4×12﹣1=47.
故选:D.
点评:考查图形的变化规律;得到第n个图形与第1个图形中正方形个数之间的关系是解决本题的关键.
二、填空题
4.【解析】设这两个连续偶数为x、x+2,根据“两个连续偶数的积是224”作为相等关系列方程x(x+2)=224,解方程即可求得这两个数,再求它们的和即可.
解:设这两个连续偶数为x、x+2,则x(x+2)=224
解之得x=14或x=﹣16
则x+2=16或x+2=﹣14
即这两个数为14,16或﹣14,﹣16
所以这两个数的和是30或﹣30.
点评:找到关键描述语,用代数式表示两个连续的偶数,找到等量关系准确的列出方程是解决问题的关键.
5.【解析】根据等量关系为:每件商品的盈利×可卖出商品的件数=2100,把相关数值代入计算得到合适的解即可.
解:∵降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x,
由题意得:(50﹣x)(30+2x)=2100,
化简得:x2﹣35x+300=0,
解得:x1=15,x2=20,
∵该商场为了尽快减少库存,
∴降的越多,越吸引顾客,
∴选x=20,
故答案为:20.
点评:此题主要考查了一元二次方程的应用;得到可卖出商品数量是解决本题的易错点;得到总盈利2100的等量关系是解决本题的关键.
三、解答题
6.【解析】首先设矩形的长为xcm,则宽为(20﹣x)cm,再利用矩形面积公式列出方程x(20﹣x)=96或x(20﹣x)=102,得出根据根的判别式的符号,进而得出答案.
解:设所围矩形的长为xcm,则所围矩形的宽为(20﹣x)cm,
(1)依题意,得x(20﹣x)=96,
化简,得x2﹣20x+96=0.
解,得x1=8,x2=12.
当x=8时,20﹣x=12;
当x=12时,20﹣x=8.
所以,当所围矩形的长为12cm,宽为8cm时,它的面积为96cm2.
(2)依题意,得x(20﹣x)=102
化简,得x2﹣20x+102=0.
∵△=b2﹣4ac=(﹣20)2﹣4×102=400﹣408=﹣8<0,
∴方程无实数根.
所以用一条长40cm的绳子不能围成一个面积为102cm2的矩形.
点评:此题主要考查了一元二次方程的应用,熟练应用根的判别式是解题关键.
7.【解析】(1)根据利润=每个的利润×销售量列式计算即可求解;
(2)设第二周每个商品的单价应降低x元,根据这批商品计划获利9500元建立方程,解方程即可.
解:(1)第一周获利:300×(35﹣20)=4500(元);
第二周获利:(300+50)×(35﹣1﹣20)=4900(元);
(2)根据题意,得:4500+(15﹣x)(300+50x)﹣5(900﹣300﹣300﹣50x)=9500,
即:x2﹣14x+40=0,
解得:x1=4,x2=10(不符合题意,舍去).
答:第二周每个商品的销售价格应降价4元.
点评:本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
8.【解析】由题可以看出P沿AB向右运动,Q沿BC向上运动,且速度都为1cm/s,S=QC×PB,所以求出QC、PB与t的关系式就可得出S与t的关系,另外应注意P点的运动轨迹,它不仅在B点左侧运动,达到一定时间后会运动到右侧,所以一些问题可能会有两种可能出现的情况,这时我们应分条回答.
解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t

当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10
∴(4分)
(2)∵S△ABC=(5分)
∴当t<10秒时,S△PCQ=
整理得t2﹣10t+100=0无解(6分)
当t>10秒时,S△PCQ=
整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)
∴当点P运动秒时,S△PCQ=S△ABC(8分)
(3)当点P、Q运动时,线段DE的长度不会改变.
证明:过Q作QM⊥AC,交直线AC于点M
易证△APE≌△QCM,
∴AE=PE=CM=QM=t,
∴四边形PEQM是平行四边形,且DE是对角线EM的一半.
又∵EM=AC=10∴DE=5
∴当点P、Q运动时,线段DE的长度不会改变.
同理,当点P在点B右侧时,DE=5
综上所述,当点P、Q运动时,线段DE的长度不会改变.
点评:做此类题应首先找出未知量与已知量的对应关系,利用已知量来表示未知量,许多问题就会迎刃而解.
9.【解析】(1)如图1,当t=1时,就可以得出CQ=1cm,AP=2cm,就有PB=6﹣2=4cm,由梯形的面积就可以得出四边形BCQP的面积;
(2)如图1,作QE⊥AB于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可,如图2,作PE⊥CD于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可;
(3)分情况讨论,如图3,当PQ=DQ时,如图4,当PD=PQ时,如图5,当PD=QD时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.
解:(1)如图1,∵四边形ABCD是矩形,
∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.
∵CQ=1cm,AP=2cm,
∴AB=6﹣2=4cm.
∴S==5cm2.
答:四边形BCQP面积是5cm2;
(2)如图1,作QE⊥AB于E,
∴∠PEQ=90°,
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴QE=BC=2cm,BE=CQ=t.
∵AP=2t,
∴PE=6﹣2t﹣t=6﹣3t.
在Rt△PQE中,由勾股定理,得
(6﹣3t)2+4=9,
解得:t=.
如图2,作PE⊥CD于E,
∴∠PEQ=90°.
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴PE=BC=2cm,BP=CE=6﹣2t.
∵CQ=t,
∴QE=t﹣(6﹣2t)=3t﹣6
在Rt△PEQ中,由勾股定理,得
(3t﹣6)2+4=9,
解得:t=.
综上所述:t=或;
(3)如图3,当PQ=DQ时,作QE⊥AB于E,
∴∠PEQ=90°,
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴QE=BC=2cm,BE=CQ=t.
∵AP=2t,
∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.
∵PQ=DQ,
∴PQ=6﹣t.
在Rt△PQE中,由勾股定理,得
(6﹣3t)2+4=(6﹣t)2,
解得:t=.
如图4,当PD=PQ时,
作PE⊥DQ于E,
∴DE=QE=DQ,∠PED=90°.
∵∠B=∠C=90°,
∴四边形BCQE是矩形,
∴PE=BC=2cm.
∵DQ=6﹣t,
∴DE=.
∴2t=,
解得:t=;
如图5,当PD=QD时,
∵AP=2t,CQ=t,
∴DQ=6﹣t,
∴PD=6﹣t.
在Rt△APD中,由勾股定理,得
4+4t2=(6﹣t)2,
解得t1=,t2=(舍去).
综上所述:t=,,,.
故答案为:,,,.
点评:本题考查了矩形的性质的运用,勾股定理的运用,等腰三角形的性质的运用,梯形的面积公式的运用,一元二次方程的解法的运用.解答时灵活运用动点问题的求解方法是关键.

延伸阅读

一元二次方程的应用学案


每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“一元二次方程的应用学案”,欢迎您阅读和收藏,并分享给身边的朋友!

学习目标:1.能根据题意找出正确的等量关系.

2.能正确的列出一元二次方程解决实际问题.

学习过程:

前面我们学习过了一元一次方程、分式方程,并能用它们来解决现实生活与生产中的许多问题,同样,我们也可以用一元二次方程来解决一些问题。

想一想,列方程解应用题的关键是什么?

一.自主学习

例1.如图,有一块长40cm、宽30cm的矩形铁片,在它的四角各截去一个全等的小正方形,然后拼成一个无盖的长方体盒子.如果这个盒子的底面积等于原来矩形铁片面积的一半,那么盒子的高是多少?

分析:这个问题中的等量关系是:

解:

例2.如图,MN是一面长10m的墙,要用长24m的篱笆,围成一个一面是墙、中间隔着一道篱笆的矩形花圃ABCD.已知花圃的设计面积为45平方米,花圃的宽度应当是多少?

解:设矩形花圃ABCD的宽为x(m),那么长____m.

根据问题中给出的等量关系,得到方程_________________________________.

解这个方程,得=,=

根据题意,舍去_________________.

所以,花圃的宽是________m.

二.对应练习

1.从一块正方形木板上锯掉2cm宽的矩形木条,剩余矩形木板的面积是48.求原正方形木板的面积.

2.有一块矩形的草坪,长比宽多4m.草坪四周有一条宽2m的小路环绕,已知小路的面积与草坪的面积相等地,求草坪的长和宽.

三.当堂检测

1.两个数的和是20,积是51,求这两个数.

2.如图,道路AB与BC分别是东西方向和南北方向,AB=1000m.某日晨练,小莹从点A出发,以每分钟150m的速度向东跑;同时小亮从点B出发,

以每分钟200m的速度向北跑,二人出发后经过几分钟,

他们之间的直线距离仍然是1000?

解一元二次方程——配方法导学案(新版新人教版)


第3课时解一元二次方程-配方法
一、学习目标1.掌握用配方法解一元二次方程的一般步骤;
2.学会利用配方法解一元二次方程.
二、知识回顾1.形如(≥0)的一元二次方程,利用求平方根的方法,立即可得ax+m=±,从而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.
2.如果方程能化成x2=p或(mx+n)2=p(p≥0)的形式,那么利用直接开平方法可得x=±或mx+n=±.
三、新知讲解1.配方法的依据
配方法解一元二次方程的依据是完全平方公式及直接开平方法.
2.配方法的步骤
(1)化——化二次项系数为1
如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1.
(2)移——移项
通过移项使方程左边为二次项和一次项,右边为常数项.
(3)配——配方
在方程两边都加上一次项系数一半的平方,根据完全平方公式把原方程变为(≥0)的形式.
(4)解——用直接开平方法解方程.
四、典例探究
1.配方法解一元二次方程
【例1】(2015科左中旗校级一模)用配方法解下列方程时,配方有错误的是()
A.x2﹣2x﹣99=0化为(x﹣1)2=100B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=
总结:配方法解一元二次方程的一般步骤:
(1)把二次项的系数化为1;
(2)把常数项移到等号的右边;
(3)等式两边同时加上一次项系数一半的平方.
(4)用直接开平方法解这个方程.
练1用配方法解方程:
x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120.

2.用配方法求多项式的最值
【例2】(2015春龙泉驿区校级月考)当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.

总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.
练2(2014甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.

练3(2014秋崇州市期末)已知a、b、c为△ABC三边的长.
(1)求证:a2﹣b2+c2﹣2ac<0.
(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.

五、课后小测一、选择题
1.(2015延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()
A.(x+1)2+4B.(x﹣1)2+2
C.(x﹣1)2+4D.(x+1)2+2
2.(2015东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()
A.(x﹣4)2=17B.(x+4)2=15
C.(x+4)2=17D.(x﹣4)2=17或(x+4)2=17
二、填空题
3.(2015春盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a=.
4.(2014秋营山县校级月考)当x=时,代数式3x2﹣6x的值等于12.
三、解答题
5.(2015东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.

6.(2013秋安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?

7.(2014秋蓟县期末)阅读下面的材料并解答后面的问题:
小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?
小华:能.求解过程如下:
因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7
而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.
问题:
(1)小华的求解过程正确吗?
(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.

8.(2014秋安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值为4
仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.

9.(2014春乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.

10.(2014秋江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时a=﹣1.
①当x=时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.
②当x=时,代数式﹣x2+4x+3有最(填写大或小)值为.
③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?

典例探究答案:
【例1】【解析】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.
解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.
B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.
C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.
D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴(x﹣)2=.故D选项正确.
故选:B.
点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练1.【解析】(1)移项,得x2﹣2x=24,
配方,得:x2﹣2x+1=24+1,
即:(x﹣1)2=25,
开方,得:x﹣1=±5,
∴x1=6,x2=﹣4.
(2)两边除以3,得:,
移项,得:,
配方,得:,
即:,
开方,得:

(3)整理,得:,
配方,得:,
即:,
开方,得:

点评:本题考查了解一元二次方程﹣﹣配方法.
【例2】【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.
解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,
又∵(x+2)2+(2y﹣1)2的最小值是0,
∴x2+4x+4y2﹣4y+1的最小值为﹣4.
∴当x=﹣2,y=时有最小值为﹣4.
点评:本题考查配方法的应用;根据﹣4y,4x把所给代数式整理为两个完全平方式子的和是解决本题的关键.
练2.【解析】将﹣8x2+12x﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.
解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,
∵(x﹣)2≥0,
∴﹣8(x﹣)2≤0,
∴﹣8(x﹣)2﹣<0,
即﹣8x2+12﹣5的值一定小于0.
点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.
练3.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;
(2)将等式右边的项移至左边,然后配方即可.
解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)
∵a、b、c为△ABC三边的长,
∴(a﹣c+b)>0,(a﹣c﹣b)<0,
∴a2﹣b2+c2﹣2ac<0.
(2)由a2+2b2+c2=2b(a+c)
得:a2﹣2ab+b2+b2﹣2bc+c2=0
配方得:(a﹣b)2+(b﹣c)2=0
∴a=b=c
∴△ABC为等边三角形.
点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.

课后小测答案:
一、选择题
1.【解析】二次项系数为1,则常数项是一次项系数的一半的平方.
解:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2.
故选:B.
点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.
2.【解析】先移项,得x2﹣8x=1,然后在方程的左右两边同时加上16,即可得到完全平方的形式.
解:移项,得x2﹣8x=1,
配方,得x2﹣8x+16=1+16,
即(x﹣4)2=17.
故选A.
点评:本题考查了用配方法解一元二次方程,对多项式进行配方,不仅应用于解一元二次方程,还可以应用于二次函数和判断代数式的符号等,应熟练掌握.
二、填空题
3.【解析】利用完全平方公式化简后,即可确定出a的值.
解:∵(x﹣3)2=x2﹣6x+9,∴a=9;
故答案为:9.
点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
4.【解析】根据题意列出方程,两边除以3变形后,再加上1配方后,开方即可求出解.
解:根据题意得:3x2﹣6x=12,即x2﹣2x=4,
配方得:x2﹣2x+1=5,即(x﹣1)2=5,
开方得:x﹣1=±,
解得:x=1±.
故答案为:1±.
点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
三、解答题
5.【解析】按照配方法的一般步骤计算:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
解:把方程x2﹣2x﹣4=0的常数项移到等号的右边,得到x2﹣2x=4,
方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4+1,
配方得(x﹣1)2=5,
∴x﹣1=±,
∴x1=1﹣,x2=1+.
点评:本题考查了用配方法解一元二次方程的步骤,解题的关键是牢记步骤,并能熟练运用,此题比较简单,易于掌握.
6.【解析】原式利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值.
解:原式=x2﹣2x+1+4y2+4y+1+3
=(x﹣1)2+(2y+1)2+3≥3,
当x=1,y=﹣时,x2+4y2﹣2x+4y+5有最小值是3.
点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.
7.【解析】对于x2+4x﹣3和x2﹣3x+4都是同时加上且减去一次项系数一半的平方.配成一个完全平方式与常数的和,利用完全平方式为非负数的性质得到原代数式的最小值.
解:(1)正确
(2)能.过程如下:
x2﹣3x+4=x2﹣3x+﹣+4=(x﹣)2+
∵(x﹣)2≥0,
所以x2﹣3x+4的最小值是.
点评:此题考查配方法的运用,配方法是常用的数学思想方法.不仅用于解方程,还可利用它解决某些代数式的最值问题.它的一个重要环节就是要配上一次项系数一半的平方.同时要理解完全平方式的非负数的性质.
8.【解析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;
(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.
解:(1)m2+m+4=(m+)2+,
∵(m+)2≥0,
∴(m+)2+≥.
则m2+m+4的最小值是;
(2)4﹣x2+2x=﹣(x﹣1)2+5,
∵﹣(x﹣1)2≤0,
∴﹣(x﹣1)2+5≤5,
则4﹣x2+2x的最大值为5.
点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.
9.【解析】先将原式变形为x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5,由非负数的性质就可以求出最小值.
解:x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5.
∵代数式x2﹣2m﹣m2+5m﹣5的最小值是﹣23,
∴﹣2m2+5m﹣5=﹣23
解得m=﹣2或m=
点评:本题考查了配方法的运用,非负数的性质,一个数的偶次幂为非负数的运用.解答时配成完全平方式是关键.
10.【解析】①由完全平方式的最小值为0,得到x=1时,代数式的最大值为3;
②将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;
③设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.
解:①∵(x﹣1)2≥0,
∴当x=1时,(x﹣1)2的最小值为0,
则当x=1时,代数式﹣2(x﹣1)2+3的最大值为3;
②代数式﹣x2+4x+3=﹣(x2﹣4x+4)+7=﹣(x﹣2)2+7,
则当x=2时,代数式﹣x2+4x+3的最大值为7;
③设垂直于墙的一边为xm,则平行于墙的一边为(16﹣2x)m,
∴花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x+16)+32=﹣2(x﹣4)2+32,
则当边长为4米时,花园面积最大为32m2.
故答案为:①1;大;3;②2;大;7
点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.

一元二次方程导学案


第1课时一元二次方程
一、学习目标1.理解一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;
3.会判断一元二次方程的二次项系数、一次项系数和常数项;
4.理解一元二次方程根的概念.
二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y,二次项系数为0,一次项系数为-2,常数项是-1.
2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.
三、新知讲解1.一元二次方程的概念
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.
2.一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;
bx是一次项,b是一次项系数;c是常数项.
概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分.如果明确了ax+bx+c=0是一元二次方程,就隐含了a≠0这个条件;
(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.
3.一元二次方程的根的概念
使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..
概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.
四、典例探究

1.根据定义判断一个方程是否是一元二次方程
【例1】(2015浠水县校级模拟)下列方程是一元二次方程的是()
A.x2+2x﹣y=3B.C.(3x2﹣1)2﹣3=0D.x2﹣8=x
总结:一元二次方程必须满足四个条件:
是整式方程;
含有一个未知数;
未知数的最高次数是2;
二次项系数不为0.
练1(2015科左中旗校级一模)关于x的方程:(a﹣1)+x+a2﹣1=0,求当a=时,方程是一元二次方程;当a=时,方程是一元一次方程.

2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)
【例2】(2014秋忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.
总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)
(1)特别要注意a≠0的条件;
(2)在一般形式中,ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.
练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.

练3(2014东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()
A.5,81B.5,﹣81C.﹣5,81D.5x,﹣81

3.根据一元二次方程的根求参数
【例3】(2015临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()
A.1B.0C.1或2D.2
总结:
使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.
可用代入法检验一个数是否是一元二次方程的解.
已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.
若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.
练4(2014绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a=.
练5(2015绵阳)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=.
五、课后小测一、选择题
1.(2015春莒县期中)下列关于x的方程中,一定是一元二次方程的为()
A.ax2+bx+c=0B.x+y=2C.x2+3y﹣5=0D.x2﹣1=0
2.(2014泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()
A.1个B.2个C.3个D.4个
3.(2014秋沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()
A.a≠0B.a≠3
C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠0
4.(2015石河子校级模拟)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()
A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,2
5.(2015石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()
A.0B.﹣C.D.0或,
6.(2014祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()
A.B.﹣
C.±D.以上答案都不对
7.(2014秋南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()
A.x=1B.x=﹣1C.x=2D.x=﹣2
二、填空题
8.(2015东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.
9.(2014秋西昌市校级期中)方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.
10.(2015厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.
三、解答题
11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.
(1)5x2=3x;
(2)(﹣1)x+x2﹣3=0;
(3)(7x﹣1)2﹣3=0;
(4)(﹣1)(+1)=0;
(5)(6m﹣5)(2m+1)=m2.

12.(2015春亳州校级期中)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,
(1)求m的值;
(2)求方程的解.

13.(2015春嵊州市校级月考)已知,下列关于x的一元二次方程
(1)x2﹣1=0(2)x2+x﹣2=0(3)x2+2x﹣3=0…(n)x2+(n﹣1)x﹣n=0
(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.
(2)请指出上述几个方程的根有什么共同特点,写出一条即可.

14.关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.

典例探究答案:
【例1】【解析】根据一元二次方程的定义解答.
一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.
由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
解:A、方程含有两个未知数,故选项错误;
B、不是整式方程,故选项错误;
C、含未知数的项的最高次数是4,故选项错误;
D、符合一元二次方程的定义,故选项正确.
故选:D.
点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.
练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.
解:依题意得,a2+1=2且a﹣1≠0,
解得a=﹣1.
即当a=﹣1时,方程是一元二次方程.
当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.
故答案是:﹣1;1.
点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.
解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.
故答案为:5x2+8x﹣2=0,5,8,﹣2
点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.
去括号,得x2-x=5x-10.
移项、合并同类项,
得x2-6x+10=0.
其中二次项系数是1,一次项系数为-6,常数项为10.
练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.
解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,
二次项系数,一次项系数,常数项分别为4,5,﹣81,
故选:B.
点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.
解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,
∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,
解方程得:m1=1(舍去),m2=2,
∴m=2,
故选:D.
点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.
练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.
解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0
∴a2﹣1=0,即a=±1;
∵a+1≠0,∴a≠﹣1;
∴a=1.
练5.【解析】先根据一元二次方程的解的定义得到4n﹣2n2﹣2=0,两边除以2n得n+=2,再利用完全平方公式变形得到原式=(n+)2﹣2,然后利用整体代入的方法计算.
解:把m=2代入nm2﹣n2m﹣2=0得4n﹣2n2﹣2=0,
所以n+=2,
所以原式=(n+)2﹣2
=(2)2﹣2
=26.
故答案为:26.
点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.

课后小测答案:
一、选择题
1.【解析】根据一元二次方程的定义进行判断.
解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;
B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;
C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;
D、符合一元二次方程的定义,故本选项正确.
故选:D.
点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.
解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.
故选:B.
点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.
3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:
(1)未知数的最高次数是2;
(2)二次项系数不为0.
解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.
点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.
4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.
解:由方程x(x+2)=5(x﹣2),得
x2﹣3x+10=0,
∴a、b、c的值分别是1、﹣3、10;
故选A.
点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.

5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,
故选:D.
点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.
6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.
解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,
∴3×32+2a×3﹣3a=0,
解得:a=﹣9,
则关于y的方程是y2﹣12=﹣9,
解得y=.
故选:C.
点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.
7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.
解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;
B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;
C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;
D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.
故选A.
点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
二、填空题
8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.
解:根据题意得m﹣2≠0,
所以m≠2.
故答案为:m≠2.
点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,
二次项系数是2,一次项系数是﹣,常数项是﹣1.
点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号
10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.
解:根据题意得m2﹣2m=2,
所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.
故答案为2014.
点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
三、解答题
11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.
解:(1)方程整理得:5x2﹣3x=0,
二次项系数为5,一次项系数为﹣3,常数项为0;
(2)x2+(﹣1)x﹣3=0,
二次项系数为1,一次项系数为﹣1,常数项为﹣3;
(3)方程整理得:49x2﹣14x﹣2=0,
二次项系数为49,一次项为﹣14,常数项为﹣2;
(4)方程整理得:x2﹣1=0,
二次项系数为,一次项系数为0,常数项为﹣1;
(5)方程整理得:11m2﹣4m﹣5=0,
二次项系数为11,一次项系数为﹣4,常数项为﹣5.
点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;
(2)分别将m的值代入原式求出即可.
解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,
∴m2﹣3m+2=0,
解得:m1=1,m2=2,
∴m的值为1或2;
(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:
x2+5x=0
x(x+5)=0,
解得:x1=0,x2=﹣5.
当m=1时,5x=0,
解得x=0.
点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.
13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;
(2)观察即可得出上述几个方程都有一个公共根是1.
解:(1)(1)x2﹣1=0,
(x+1)(x﹣1)=0,
x+1=0,或x﹣1=0,
解得x1=﹣1,x2=1;
(2)x2+x﹣2=0,
(x+2)(x﹣1)=0,
x+2=0,或x﹣1=0,
解得x1=﹣2,x2=1;
(3)x2+2x﹣3=0,
(x+3)(x﹣1)=0,
x+3=0,或x﹣1=0,
解得x1=﹣3,x2=1;

猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;
(2)上述几个方程都有一个公共根是1.
点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.
14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.
解:令y=1,得到m﹣n﹣p=0,
则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.
点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.

文章来源:http://m.jab88.com/j/68437.html

更多

最新更新

更多