第一单元【大数的认识】
1、亿以内数的认识:
10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
小结:相邻两个计数单位之间的进率是“十”
整数部分
数级…亿级万级个级
数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位
计数单位…千亿百亿十亿亿千万百万十万万千百十一
数字表示……………………100001000100101
2、亿以内数的读法:
小结:①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
3、亿以内数的写法:
小结:①、从高级写起,一级一级往下写。
②、当哪一位上一个计数单位也没有,就在哪一位上写0。
4、比较亿以内数的大小:
小结:①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,哪个数最高位上的数大,这个数就大。
③、如果碰到最高位上的数相同的时候,就再比下一位,以此类推,直到我们比较出相同的数位上的那个数,哪个数大的时候,我们就可以断定这个数比较大。
5、“万”做单位的数:
小结:有时候,为了读写方便,我们把整万的数改写成有“万”做单位的数。
6、求近似数:
小结:这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于或大于5。
7、表示物体个数:123456…….自然数
一个物体也没有:用0来表示。0也是自然数。
最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
8、十进制计数法:每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
9、亿以上数的读法:
小结:亿以上的数也是从高位读起,一级一级往下读,级末尾的0不读,中间连续有几个0都只读一个0
10、亿以上数的写法:
小结:1、从高级写起,一级一级地往下写。2、当哪一位上一个计数单位也没有,就在哪一位上写0。
11、“万”做单位的数:
小结:省略亿后面的尾数,改写成用亿作单位的数,就要看千万位进行四舍五入。
12、计算工具的认识:算盘,计算器
13、1亿有多大?100张纸的厚度是1厘米,一亿=一百万个100,1厘米×一百万=1000000厘米=1万米
第二单元【角的度量】
1、直线、射线、角
小结:没有端点,可以向两端无限延伸,这种线叫直角。
只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
2、角大小的比较:
角的计量单位是“度”,用符号“°”表示。把半圆平分成180等份,每一份所对的角的大小是l度。记做1°
角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
3、角的分类:
锐角<90°,直角=90°,90°<钝角<180°,平角=180°=2个直角,周角=360°=2个平角=4个平角
4、画角步骤:
①画一条射线,使量角器的中心和封线的端点重合,0刻度线和射线重合。
②在量角器65°刻度线的地方点一个点。
③以画出的射线的端点为端点,通过刚画的点,再画一条射线。
第三单元【三位数乘两位数】
1、口算乘法:
2、笔算乘法1:
3、笔算乘法2:
4、笔算乘法3:
5、行程问题:
小结:在上面的例题中,特快列车每小时行的路程叫做速度,可以写成160千米/时。普通列车的速度可以写成106千米/时。
“小林步行的速度是60米/分,就是说小林每分钟走60米。”
速度、时间与所行的路程之间的关系:速度×时间=路程
6、积的变化规律:
小结:一个因数不变,另一个因数扩大或缩小若干倍,积也扩大或缩小相同的倍数。
7、乘法估算:
第四单元【平行四边形和梯形】
1、垂直与平行:
①在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
图一:“直线A和直线B是平行线;直线A的平行线是直线B”
②如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
图二:“直线A和直线B相互垂直;直线A是直线B的垂线;点C是垂足。”
2、画垂线:
①例一:过直线上一点画这条直线的垂线方法?
答:把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。X
②例二:过直线外一点画这条直线的垂线方法?
答:把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔沿这条边画直线就可以了。
③例三:把直线外一点A与直线上任意一点连接,所画线段哪个最短?
小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”
3、画平行线:
①例一:怎样画平行线?
答:可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。
②例二:在两条平行线之间画几条与平行线垂直的线段,这些线段的长度特点?
小结:两条平行线之间的距离是相等的。
③例三:怎样画出一条长3厘米,宽2厘米的长方形?
提示:长方形的对边是互相平行,两条边是互相垂直的。因此可以用画垂线或平行线的方法画。
小结:先画一条长3厘米的线段;再过线段端点画一条2厘米的垂线;再过另一个点也画一条2厘米的垂线;连接两个端点就可以了。
4、平行四边形:
小结:两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
5、梯形:
小结:平行四边形容易变形,它不具有稳定性。
第五单元【除数是两位数的除法】
1、口算除法:
2、估算除法:
3、笔算除法:
例一:92本连环画,每班30本,可以分别给几个班?
例二:有140本故事书,每班30本,可以分给几个班?
例三:(1)售货员给顾客21本书,顾客付了84元,那一本书多少元?
(2)我有196元,要买39元一本的书,可以买多少本?还剩多少元?
例四:礼堂每排有26个座位,四年级共有140让你,可以坐满几排?还剩几人?
小结:可以把除数看做和它接近的整十来试商!
例五:(1)576名学生,每18人组成一个小组,可以组成多少组呢?
例五:(2)十月是学校环保月,共收集了930节废电池,平均每天收集废电池多少节?
除数是两位数的除法与除数是一位数的除法有什么相同点?有什么不同点?
相同点:
1、除到被除数的哪一位,就把商在哪一位上面;
2、每求出一位商,余下的数必须比除数小。
不同点:
除数是两位数:先用除数试除被除数的前两位数,如果前两位数比除数小,再除前三位数;
除数是一位数:先用除数试除被除数的前1位数,如果前1位数比除数小,再除前两位数;
4、商的变化规律:
小结:被除数和除数同时扩大或缩小相同的倍数,(零除外),商不变。
第六单元【统计】
【你寄过贺卡吗?】
培养查找、收集和处理信息以及解决问题的能力。通过阅读资料、运用统计、估算等数学知识,发现生活中存在的浪费资源的问题。正确解决因贺卡带来的环境问题。
第七单元【数学广角】
目标:通过观察、操作、实验、推理、交流,从数学的角度寻找解决问题的最优方案和策略。
1、烙饼类问题策略:
在每次只能烙两张饼,两面都要烙的情况下:
①烙3张饼:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。
②烙多张饼:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。
2、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
3、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
4、“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。
四年级数学下册重要知识点总结(人教版)
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
6、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数;字母表示:a÷0错误
2、一个数加上0还得原数;字母表示:a+0=a
3、一个数减去0还得原数;字母表示:a-0=a
4、被减数等于减数,差是0;字母表示:a-a=0
5、一个数和0相乘,仍得0;字母表示:a×0=0
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
注意:1、比例尺2、正北方向3、角的画法
2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)
3、简单路线图的绘制。
4.地图的三要素:图例、方向、比例尺。
5.确定方向时:A、先确定观测点
(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:①东偏南25°(标25°的那个角就靠近东)
②西偏北35°(标35°的那个角就靠近西)
6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。
运算定律及简便运算:
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
乘法分配律的应用:
①类型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②类型二:a×c+b×ca×c-b×c
=(a+b)×c=(a-b)×c
③类型三:a×99+aa×b-a
=a×(99+1)=a×(b-1)
④类型四:a×99a×102
=a×(100-1)=a×(100+2)
=a×100-a×1=a×100+a×2
三、简便计算
1.连加的简便计算:
①使用加法结合律(把和是整十、整百、整千、的结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-74
3.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:123+38-23=123-23+38146-78+54=146+54-78
4.连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等
看见25就去找4,看见125就去找8;
5.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)
例如:27×13÷9=27÷9×13
四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)
1、常见乘法计算:
25×4=100125×8=1000
2、加法交换律简算例子:3、加法结合律简算例子:
50+98+50488+40+60
=50+50+98=488+(40+60)
=100+98=488+100
=198=588
4、乘法交换律简算例子:5、乘法结合律简算例子:
25×56×499×125×8
=25×4×56=99×(125×8)
=100×56=99×1000
=5600=99000
6、含有加法交换律与结合律的简便计算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律简算例子:
1、分解式2、合并式
25×(40+4)135×12—135×2
=25×40+25×4=135×(12—2)
=1000+100=135×10
=1100=1350
3、特殊14、特殊2
99×256+25645×102
=99×256+256×1=45×(100+2)
=256×(99+1)=45×100+45×2
=256×100=4500+90
=25600=4590
5、特殊36、特殊4
99×2635×8+35×6—4×35
=(100—1)×26=35×(8+6—4)
=100×26—1×26=35×10
=2600—26=350
=2574
一、连续减法简便运算例子:
528—65—35528—89—128528—(150+128)
=528—(65+35)=528—128—89=528—128—150
=528—100=400—89=400—150
=428=311=250
二、连续除法简便运算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
三、其它简便运算例子:
256—58+44250÷8×4
=256+44—58=250×4÷8
=300—58=1000÷8
=242=125
五、有关简算的拓展:
102×38-38×2125×25×32125×88
37×96+37×3+37
易错的情况:38×99+99
小数的意义和性质:
1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
7、小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位
千位
百位
十位
个位
·
十分位
百分位
千分位
万分位
…
计数单位
…
万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分之一
…
(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),
8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的;
移动两位,小数就缩小100倍,即小数就缩小到原数的;
移动三位,小数就缩小1000倍,即小数就缩小到原数的;……
13、生活中常用的单位:
质量:1吨=1000千克;1千克=1000克
长度:1千米=1000米1分米=10厘米1厘米=10毫米
1分米=100毫米1米=10分米=100厘米=1000毫米
面积:1平方米=100平方分米1平方分米=100平方厘米
1平方千米=100公顷1公顷=10000平方米
人民币:1元=10角1角=10分1元=100分
长度单位:千米————米————分米————厘米
面积单位:平方千米———公顷———平方米————平方分米———平方厘米
质量单位:吨————千克————克
单位换算:
(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。
(2)低级单位转化成高级单位=======除以进率,小数点向左移动。
14、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。
(5)在表示近似数时,小数末尾的“0”不能去掉。
四年级数学上册期末知识点总结(苏教版)
第一单元除法
1.除数是两位数的除法的笔算法则:
(1)从被除数的高位数起,先看被除数的前两位;
(2)如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;
(3)余下的数必须比除数小。
2.除数是两位数的除法,一般把除数看作和它接近的整十数来试商;试商大了要调小,试商小了要调大。
3.三位数除以两位数,商可能是一位数,也可能是两位数。
4.在除法运算中,被除数不变,除数变大,商变小。
在除法运算中,被除数和除数同时扩大相同的倍数,商不变。
5.在除法运算中,如果余数比除数大,那么商偏小,需要把商调大。
用四舍法试商,除数变小,商可能偏大,需要把商调大;(例:32→30)
用五入法试商,除数变大,商可能变小,需要把商调大。(例:36→40)
6.a÷b=c……d有余数除法的验算:被除数=除数×商+余数(a=b×c+d)
第三单元混合运算
7.在只含有加法和减法的混合运算中,应先算前面的;(从左往右依次计算)
在只含有乘法和除法的混合运算中,应先算前面的;(从左往右依次计算)
在含有乘法和加减法的混合运算中,应先算乘法;
在含有除法和加减法的混合运算中,应先算除法;
在含有小括号的混合运算中,应先算括号内的。
第七单元运算律
8.加法交换律:a+b=b+a(特点:只有加法运算,数字的位置交换了)
加法结合律:(a+b)+c=a+(b+c)(特点:数字的位置没有改变,运算顺序发生了变化)
乘法交换律:a×b=b×a(特点:只有乘法运算,数字的位置交换了)
乘法结合律:(a×b)×c4=a×(b×c)(特点:数字的位置没有改变,运算顺序发生了变化)
减法性质:a-b-c=a-(b+c)(一个数连续减去两个数,等于一个数减去两个数的和。)
除法性质:a÷b÷c=a÷(b×c)(一个数连续除以两个数,等于一个数除以两个数的积。)
9.简便计算方法小结:①当三个或三个以上的数相加或相乘时,用“凑”——凑出整十数、整百或整千数。②当两个数相加时,用“拆”——把最接近整十数的数拆开,多减少补。(例:299=300-1,301=300+1)③当两个数相乘时,一般是把其中的偶数“拆”开。其中需要谨记的是,几组固定搭配:5×2=10,25×4=100,125×8=1000等。
★进行简便运算时需要注意运用的是哪种运算律或者性质,如果都没有,是不可以进行简便运算的,需要按本来的运算顺序进行计算。另外在试卷上书写了简便运算,在检查时可以不用简便运算,按原来的运算顺序去检查一遍,如果答案相同的话说明用对了,如果答案不相同,需要仔细检查错误在哪里。
第二单元角
10.
名称图例相同点不同点
端点数是否可以度量
线段直的2个可以
射线1个不可以,向一端无限延长
直线
没有不可以,向两端无限延长
11.连接两点间的线段的长度是最短的,这条线段叫做这两点间的距离。
12.从同一个点引两条射线可以组成一个角。因此,平角不是一条直线,而是两条射线;周角是两条射线正好重合在一起了,看起来像一条,但是仍然是两条射线。
角的大小与角的两条边的长短粗细无关,与角的叉开程度(也可以说张开程度)有关。
13.小于90°的角是锐角,等于90°的角是直角,大于90°小于180°的角是钝角,等于180°的角是平角,等于360°的角是周角。
1周角=2平角=4直角画出直角时要做好直角标记。
量一个角的大小用量角器,将量角器的中心与角的顶点重合,量角器的0刻度线与角的一条边重合,并使另一条边在量角器180度的范围内。从与量角器的0刻度线重合的那条边开始读数,读出度数后可以看一下这个角是是否符合锐角或钝角的特性。
14.钟面问题:钟面上一小时,时针转动的角度是30°,分针是360°。钟面上相邻两个数字间的角度是30°。解题时可以画一个钟面来进行解答。
方向问题:在八个方向中,每相邻的两个方向间的夹角是45°,解题时可以采用作图法来进行解答。
滚的远的问题中,角度越大,球在木板上滚的越远。
第四单元平行和相交
15.平行和相交问题,要注意在同一平面内
平行:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
垂直:相交成直角的两条直线互相垂直,其中一条直线叫做另一条直线的垂线,交点叫做垂足。
相交的两条直线不一定垂直,但是垂直的两条直线一定相交。
16.怎样画平行线?
答:可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。
①②
③④
17.过直线上一点,怎样画垂线?
答:把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。最后标上垂直符号。
18.过直线外一点画这条直线的垂线方法?
答:把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔沿这条边画直线就可以了。最后标上垂直符号。
19.直线外一点到一条直线最短线段的是垂直线段,叫做点到直线的距离。
20.平行线间的距离处处相等。
21.怎样画出一条长3厘米,宽2厘米的长方形?
提示:长方形的对边是互相平行,两条边是互相垂直的。因此可以用画垂线或平行线的方法画。
答:先画一条长3厘米的线段;再过线段端点画一条2厘米的垂线;再过另一个点也画一条2厘米的垂线;连接两个端点就可以了。最后,标上长和宽的长度,再画上垂直符号。
第五单元找规律
22.两种物体一一间隔排列成一条直线,如果两端物体相同,两端物体-中间物体=1。
23.两种物体一一间隔排列成一圈,两种物体个数相等。
24.空格数×间隔长度=总长度。
25.在马路一侧种树,①若两端都种树:树的棵树=段数+1
②若一端种,另一端不种:树的棵树=段数
③若两端都不种:树的棵树=段数-1
26.若是一个闭合的图形,如:池塘一周、长方形或是三角形一周等,物体数=段数。
★锯木头问题:可以把锯木头问题看成一条直线,两端都没有点,每个木头小段是段,每锯一下看成是点,此时段=点+1。(例:一段木头锯了3次,锯成几段。3+1=4段)
爬楼梯问题:可以把每一楼看成是点,每一层看成是段,两端都有点,点比段多1。(例:小明从1楼走到3楼走了30个台阶,每一层楼多少个台阶?3-1=2层,30÷2=15级)
27.在找规律的题目中可以采用画线段图的方法来区分不同类型。
第六单元观察物体
28.观察物体时需要注意几个物体是否是相连的。数正方体个数时,需注意被遮住的也要数进去。
第八单元解决问题的策略
29.解决问题的策略-列表,列表时需要把相同类型的项目列入同一项中,一一对应,通过观察比较它们间的数量关系来解答题目。
第十单元认数
30.10个一万是十万,10个十万是一百万,10个一百万是一千万。
10个一千万是一亿。10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
31.相邻两个计数单位之间的进率是“十”
数位顺序表
数级……亿级万级个级
数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位
计数单位……千亿百亿十亿亿千万百万十万万千百十个
32.读数:①先分级,从高位数读起,一级一级往下读。②亿级、万级的数按照个级的数的读法来读,再在后面加一个“亿”或“万”字。③每级末尾不管有几个0都不读,其他数位有一个0或连续几个0,都只读一个“零”。
如:4638006254读作:四十六亿三千八百万六千二百五十四
33.写数:先从读法中找到“亿”、“万”字,将其视作分级线,再从高位往低位写,每写完一级画一个分级线。若某一位上没有数字以0补充。
如:六千八百亿三千零二十万五千六百零八写作:680030205608
★除了最高级,每一级都有4位数,在写数的时候,若某一位没有数字,必须填“0”补充。
34.改写成以“万”或“亿”作单位的数:先分级,再把末尾的四个零或八个零去掉,并添上“万”或“亿”字。
如:460000=46万1300000000=13亿
35.近似数:①省略万(亿)后面的尾数或用“万”(亿)作单位求近似数,只要看千(千万)位上的数,用“四舍五入”的方法求近似数。
如:5738000≈574万49447930000≈494亿
②省略最高位后面的尾数求近似数,只要看尾数的最高位,也就是左起第2个数字,用“四舍五入”法求近似数。
如:268≈3003457≈300095412≈100000243581≈200000
第九单元统计与可能性
36.统计表填写时可以通过画“正”字的的办法进行统计,再将数据分段整理填入统计表中,注意不能重复,也不能遗漏,每数一个都要做好标记。
统计完之后,检查一遍统计的数据总和是否与题中数据总和相等。
37.画条形统计图时,先来观察纵轴上每一个代表多少个单位,然后来画出条形,并在上方写上数字,在右上方需要写好填表日期。
38.游戏规则的公平性:当双方出现的可能性相等时,游戏规则才公平。
四年级数学上册期末复习知识点归纳
第一单元【大数的认识】
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十”
,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
计数单位
数字表示
2、多位数的读法:
①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
3、多位数的写法
小结:①、从高级写起,一级一级往下写。
②、当哪一位上一个计数单位也没有,就在哪一位上写0
。
特别注意:多位数的读写都先划上分级线。
4、多位数的大小比较:
小结:①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,就从最高位开始比,哪个数位上的数大,这个数就大。
5、“万”“亿”作单位的数:
有时候,为了读写方便,我们把整万(亿)的数改写成有“万”(亿)做单位的数。
方法概括:分级、去0,写万(写亿)
6、求近似数:
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5
还是等于或大于5
。
方法概括:分级、去尾、四舍五入约
近似数的取值范围:近似数+4999(最大)
近似数—5000(最小)
7、表示物体个数的数:0、1
、2
、3、
4
、5
、6…….
叫自然数一个物体也没有:用0来表示。
0也是自然数。
最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
8、计算工具的认识:算盘,计算器
9、测量得到的数都是近似数,数出来的数都是准确数
第二单元【角的度量】
1、直线、射线、角
没有端点,可以向两端无限延伸,这种线叫直线。
只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
小学数学wbr四年级上册期末复习知识点归纳小学数学wbr四年级上册期末复习知识点归纳
2、角的计量单位是“度”,用符号“
°”表示。把半圆平分成180
等份,每一份所对的、角的大小是l
度。记做1°
3、角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
4、小于90°的角叫做锐角
直角=90°,
大于90而小于180°的角叫做钝角,
平角=180°=2个直角,周角=360°=2个平角=4个平角
特别注意:因为直线射线都无法度量,所以在判断题中,与直线射线比较长短的都是错误的。
平行四边形对角相等,邻角和等于180°,只需要量一个角的度数,就可以知道其他几个角的度数,
5、角的个数=n×(n-1)÷2
n为边的条数。数线段的方法也如此。
6、75度=45度+30度
15度=60度-45度=45度-30度
120度=30度+90度
150度=60度+90度
135度=90度+45度
第三单元【三位数乘两位数】
速度×时间=路程
单价×数量=总价
工作效率×工作时间=工作总量
路程÷时间=速度
总价÷单价=数量
工作总量÷工作时间=工作效率
路程÷速度=时间
总价÷数量=单价
工作总量÷工作效率=工作时间
积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)
一个因数乘几,另一个因数除以几,积不变(零除外)。
两位数乘三位数,积最多五位数,最少四位数
估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)
第四单元【平行四边形和梯形】
1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
2、两条平行线之间的距离处处相等。
3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。
4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。
5、只有一组对边平行的四边形叫梯形。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
5、画高:
小学数学wbr四年级上册期末复习知识点归纳
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。
小学数学wbr四年级上册期末复习知识点归纳
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
特别注意:画高时,请注意;虚线、垂直标记、和名称
第五单元【除数是两位数的除法】
除数是两位数除法:先看被除数的前两位,如果前两位数不够除,就看被除数的前三位数;
除到被除数的哪一位,就把商在哪一位上面;
每求出一位商,余数一定要比除数小
商的变化规律:
被除数和除数同时乘或除以一个相同的数(零除外),商不变。但是余数也要同时乘或除以一个相同的数
第六单元【统计】
小学数学wbr四年级上册期末复习知识点归纳
第七单元【数学广角】
目标:通过观察、操作、实验、推理、交流,从数学的角度寻找解决问题的最优方案和策略。
1、烙饼类问题策略:
饼个数×2÷同时可以烙的个数=需要烙多少次
需要烙多少次×每一面的时间=至少需要的时间
2、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
3、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
4、“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。
四年级数学上册第六单元重要知识点归纳(北师大版)
六单元《方向与位置》
确定位置一用数对确定位置
知识点
1、数对的表示方法先表示横的方向后表示纵的方向即根据直角坐标系确
定某一点的坐标x,y.
2、数对的写法先横向观察在第几位就在小括号里先写几再点上逗号然后
再纵向观察在第几位就在小括号里面写上几。如小青的位置在第三组第二个座位用
数对表示为32。
3、能根据数对说出相应的实际位置。如某个同学在56这个位置。他的实际
位置是班级中从左往右数第五组第六个座位。
确定位置二根据方向和距离确定位置
知识点
1、认识方向东、南、西、北、东南、东北、西南、西北。
2、根据方向和距离确定物体位置的方法1以某一点为观测中心标出方向
上北、下南、左西、右东将观测点与物体所在的位置连线用量角器测量角度最后得出
结论在哪个方向上。2用直尺测量两点之间的图上距离。
补充知识点:认识并初步了解比例尺如15000单位千米就表示图上1厘米等于实际距
离5000千米。
四年级数学上册第一单元知识点归纳
第一单元【大数的认识】
1、一万一万地数,10个一万是十万;10个十万是一百万;10个一百万是一千万;10个一千万是一亿。
2、一(个)、十、百、千、万……亿都是计数单位。个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位是数位。位数是指一个数由几个数组成。
四年级数学上册第一单元知识点-zpsx201233-.
3、相邻两个计数单位之间的进率是十。
4、我国的计数习惯,每四个数位是一级,可分为个级,万级,亿级三级。
5、多位数的读法:读数时,先分级,然后从高位到低位先读亿级,再读万级,最后读个级。在读到亿、万级的末尾时加上亿和万字。每级末尾不管有几个0,都不读。其它位置的0要读,不过在一起的0只读一个0。
6、多位数的写法:先把读出的数按级分成亿级、万级、个级三级,然后从高位到低位先写亿级,再写万级,最后写个级,没有读出来的数0补齐。
7、为了读写方便,把整亿、整万地数改写成用“亿”、“万”做单位的数。如5130000=513万(去掉个级四个0后添上单位万)1200000000=12亿(去掉个级和万级八个0后添上单位亿)
8、四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。
9、关于近似数的问题
⑴在实际问题中,有些数据是与实际完全符合的准确数。如:三班有12个男同学,27个女同学。这里的“12”“27”都是准确数。
⑵还有些数据,只是与实际大体符合的近似数。我们在测定物体的长度、质量时,由于测量工具的限制,必然会产生误差,所得的结果都是近似数。如:小明身高140厘米,体重35千克。这里的“140”、“35”都是近似数。
⑶在对大的数目在进行统计时,一般也只需要用它的近似数来表示。如:平常说一个城市有50人,一个钢铁厂去年产钢120万吨。这里的“50万”、“120万”都是近似数。
10、古时人们是通过“实物”、“结绳”“刻道”等方法来记数的。
11、表示物体个数的1.2.3.4……都是自然数。一个物体也没有,用0表示。0也是自然数。
12、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
13、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
14、为了方便计算,人们发明了各种各样的计算工具。早在14世纪,中国就发明了算盘。现在比较常见的计算工具是电子计算器。要知道开关机、删除、运算符号键等。CE为清除键,ON/C为开关及清屏键。
四年级数学上册知识点汇总(3-8单元)北师大版
三乘法
1、两三位数的乘法
1先用两位数个位上的数字去乘三位数,乘得的积的末位和两位数的个位对齐;再用两位十位数上的数字去乘三位数,乘得的积的末位和两位数的十位对齐,最后把两次科得的积加起来。
2因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
2、认识并会使用计算器,利用计算器探索规律
四运算律
1、四则混合运算的顺序
1先算乘、除,后算加、减,
2有括号先算括号里面的,算式中既有小括号又有中括号时,要先算小括号里面的,再算中括号里面的。
2、运算规律:加法交换律(a﹢b=b﹢a)
加法结合律(a+b)+c=a+(b+c)
乘法交换律(a×b=b×a)
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
或(a-b)×c=a×c-b×c
减法的性质a-b-c=a-(b+c)
五方向与位置
1、描述行走路线
1以出发点为基准,先确定每次要到达的地点,再按“从某处出发向某个方向走多到达某处”这样的方式进行描述。
2认识方向:东、南、西、北、东南、东北、西南、西北。
3根据方向和距离确定物体位置的方法:(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;
2、用数对确定位置
1数对:两个有顺序的数组成的且表示一个确定的位置。
2用数对表示物体位置的方法:先表示列数,再表示行数。
3根据数对可以确定物体的位置:数对中第一个数字表示物体所在列数,第二个数字表示物体所在行数。如某个同学在(5,6)这个位置。他的实际位置是,班级中(从左往右数)第五组第六个座位。
六除法
1、除法运算:
1被除数、除数和商之间的关系。
被除数÷除数=商……余数;(被除数=除数×商+余数)
2除到被除数的哪一位,就把商在哪一位上面;
2每求出一位商,余下的数必须比除数小。用乘法进行验算。
3商不变规律:被除数和除数同时扩大或缩小相同的倍数,(零除外),商不变。
4除数是整十数,商也是整十数的竖式计算方法。注意在商的末尾必须补0,它起到占位的作用。
2、三位数除以两位数
先看被除数的前两位,如果前两位不够除,就看被除数的前三位;除到哪一位,就把商写在那一位的上面。
3、试商
1估商的时候,把除数变大了,商就可能变小;如果把除数变小了,商就可能变大。(或者当所得的余数大于等于除数时,商小了需要调大;当试的商与除数的乘积大于被除数的时候,则商要调小。)
2确定商是几位数的方法:三位数除以两位数,如果前两位够商1,商则是两位数;如果前两位不够商1,商则是一位数。
4、商不变的规律)
商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
被除数不变,除数扩大或缩小若干倍(0除外),商随着缩小或扩大相同的倍数;除数不变,被除数扩大或缩小若干倍(0除外),商随着扩大或缩小相同的倍数。
3、路程、时间和速度
1、路程、时间和速度之间的关系。
路程=速度×时间时间=路程÷速度速度=路程÷时间
2将出意义并能比较速度的快慢。如:4千米|时
12千米/分340米|秒30万千米|秒
七生活中的负数
1、温度
1零下温度的表示方法,在温度前面写上“—”号,如“—2℃”“—12℃”通常读作零下2摄氏度、零下12摄氏度。
2能够正确地比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。
2、正负数
1正数和负数表示相反意义的量,规定一个量为正,与它相反意义的量就为负;
2正数:比0大的数字都是正数,正数是正数前面添上“+”号或省略不写,读作正几或几,如+5、+20等等,读作:正5、正20。
2负数:比0小的数字都是负数,负数是在负数前添上“—”号,读作负几,如—2、—10等等,读作:负2、负10。
3明确0既不是正数也不是负数。
正整数
整数零自然数
负整数
数
分数/小数
八可能性
1、不确定性
在生活中,有些事件的发生是可能的,即不确定现象;有些事件则是一定发生或不可能发生的,即确定现象。
2、摸球游戏
可能性的大小:可能发生的事件,可能性有大有小。在总数中所占数量越多,发生的可能性就越大;所占数量越少,发生的可能性就越小。
四年级数学上册第五、六单元知识点概括
第五单元除数是两位数的除法
1、除法计算法则:除数是两位数的除法,先用除数试除被除数的前两位,如果前两位不够除,就试除被除数的前三位,除到哪一位,商就上到哪一位的上面,每次除得的余数一定要比除数小。
2、除数是两位数的除法,一般把除数看作和它接近的整十数来试商;试商大了要调小,试商小了要调大。直到所得的余数比除数小为止。
3、三位数除以两位数,商可能是一位数,也可能是两位数
4、商不变性质:
①在除法里,被除数和除数同时乘(或除以)几(0除外),商不变。
②在除法里,除数不变,被除数乘(或除以)几(0除外),商也要乘(或除以)几。
③在除法里,被除数不变,除数乘(或除以)几,则商就除以(或乘)几。
7、有余除法关系式:被除数÷除数=商……余数
被除数=商×除数+余数
第六单元统计
1、条形统计图的意义:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排起来.条形统计图的优点是可以很容易看出各种数量的多少.
2、条形统计图的特点:?
(1)能够使人们一眼看出各个数据的大小。?
(2)易于比较数据之间的差别。
3、我们学过的统计图有横向条形统计图、纵向条形统计图以及单式统计图和复试统计图。
4、复试统计图一般由图号、图形、图目、图注等组成。在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。上课才能够为同学讲更多的,更全面的知识。那么一份优秀的教案应该怎样写呢?下面是小编为大家整理的“四年级数学《统计》知识点”,仅供参考,希望可以帮助到您。
四年级数学《统计》知识点
知识点
1、租船问题
共有32人,租小船每条24元,限乘4人;租大船每条30元,限乘6人,怎样租最省钱?
(1)比较哪种船的租金便宜
小船:24÷4=6(元/人)大船:30÷6=5(元/人)
经比较大船便宜
方案一:全租大船
应租大船只数:32÷6=5(条)……2(人)
这2人还要租一条小船,那么总租金就为:5×30+24=174(元)
如租5大船和1条小船,小船没有做满,还空2人这时不是最省钱的,还可在调整成租4条大船和2条小船,这是大小船刚好做满
租金为4×30+2×24=168(元)
答:租4条大船和2条小船最省钱。
2、解决租船问题的策略:
(1)根据船的租金和限乘人数,先计算哪种船便宜
(2)再假设所有人都租便宜的船,如果全部做满无空位并且人全部做完,那么这种租法就是最省钱的。
(3)就要调整,尽量做到两种船刚好做满,这时是最省钱的。
练习题
统计知识点
1.二年级一班参加运动会项目情况统计图
(1)参加()的人最多。
(2)参加()的人最少。
(3)二年级一班共有多少人?()
2.以上是某班同学出生的季节的统计表。
根据上表,在下图中的格子里,涂上颜色。
(1)哪个季节出生的人最多?()
(2)冬天出生的比夏天出生的少几个人?()
(3)这个班一共有多少人?()
参考答案
1.二年级一班参加运动会项目情况统计图
(1)参加(拍球)的人最多。
(2)参加(跑步)的人最少。
(3)二年级一班共有多少人?(58)
2.以上是某班同学出生的季节的统计表。
根据上表,在下图中的格子里,涂上颜色。(略)
(1)哪个季节出生的人最多?(春)
(2)冬天出生的比夏天出生的少几个人?(3)
(3)这个班一共有多少人?(43)
人教版小学四年级数学下册总复习知识点
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
6、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数;字母表示:a÷0错误
2、一个数加上0还得原数;字母表示:a+0=a
3、一个数减去0还得原数;字母表示:a-0=a
4、被减数等于减数,差是0;字母表示:a-a=0
5、一个数和0相乘,仍得0;字母表示:a×0=0
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
注意:1、比例尺2、正北方向3、角的画法
2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)
3、简单路线图的绘制。
4.地图的三要素:图例、方向、比例尺。
5.确定方向时:A、先确定观测点
(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:①东偏南25°(标25°的那个角就靠近东)
②西偏北35°(标35°的那个角就靠近西)
6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。
运算定律及简便运算:
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
乘法分配律的应用:
①类型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②类型二:a×c+b×ca×c-b×c
=(a+b)×c=(a-b)×c
③类型三:a×99+aa×b-a
=a×(99+1)=a×(b-1)
④类型四:a×99a×102
=a×(100-1)=a×(100+2)
=a×100-a×1=a×100+a×2
三、简便计算
1.连加的简便计算:
①使用加法结合律(把和是整十、整百、整千、的结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-74
3.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:123+38-23=123-23+38146-78+54=146+54-78
4.连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等。看见25就去找4,看见125就去找8;
5.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)
1、常见乘法计算:
25×4=100125×8=1000
2、加法交换律简算例子:3、加法结合律简算例子:
50+98+50488+40+60
=50+50+98=488+(40+60)
=100+98=488+100
=198=588
4、乘法交换律简算例子:5、乘法结合律简算例子:
25×56×499×125×8
=25×4×56=99×(125×8)
=100×56=99×1000
=5600=99000
6、含有加法交换律与结合律的简便计算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律简算例子:
1、分解式2、合并式
25×(40+4)135×12—135×2
=25×40+25×4=135×(12—2)
=1000+100=135×10
=1100=1350
3、特殊14、特殊2
99×256+25645×102
=99×256+256×1=45×(100+2)
=256×(99+1)=45×100+45×2
=256×100=4500+90
=25600=4590
5、特殊36、特殊4
99×2635×8+35×6—4×35
=(100—1)×26=35×(8+6—4)
=100×26—1×26=35×10
=2600—26=350
=2574
一、连续减法简便运算例子:
528—65—35528—89—128528—(150+128)
=528—(65+35)=528—128—89=528—128—150
=528—100=400—89=400—150
=428=311=250
二、连续除法简便运算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
三、其它简便运算例子:
256—58+44250÷8×4
=256+44—58=250×4÷8
=300—58=1000÷8
=242=125
五、有关简算的拓展:
102×38-38×2125×25×32125×88
37×96+37×3+37
易错的情况:38×99+99
小数的意义和性质:
1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
7、小数的数位顺序表
整数部分小数点小数部分
数位…万位千位百位十位个位十分位百分位千分位万分位…
计数单位…万千百十一(个)十分之一百分之一千分之一万分之一…
(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),
8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的;
移动两位,小数就缩小100倍,即小数就缩小到原数的;
移动三位,小数就缩小1000倍,即小数就缩小到原数的;……
13、生活中常用的单位:
质量:1吨=1000千克;1千克=1000克
长度:1千米=1000米1分米=10厘米1厘米=10毫米
1分米=100毫米1米=10分米=100厘米=1000毫米
面积:1平方米=100平方分米1平方分米=100平方厘米
1平方千米=100公顷1公顷=10000平方米
人民币:1元=10角1角=10分1元=100分
长度单位:千米————米————分米————厘米
面积单位:平方千米———公顷———平方米————平方分米———平方厘米
质量单位:吨————千克————克
单位换算:
(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。
(2)低级单位转化成高级单位=======除以进率,小数点向左移动。
14、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。
(5)在表示近似数时,小数末尾的“0”不能去掉。
三角形:
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。
3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。
15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
小数的加减法:
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
统计:
1、条形统计图优点:直观地反映数量的多少。
2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。
3、折线统计图中,变化趋势指:上升或者下降。
4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
数学广角:植树问题
(一)植树问题:
1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1
2、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1
间隔数=总长度÷间隔长度
情况分类:1、两端都植:棵数=间隔数+1
2、一端植,一端不植:棵数=间隔数
3、两端都不植:棵数=间隔数-1
4、封闭:棵数=间隔数
(二)锯木问题:段数=次数+1;次数=段数-1
总时间=每次时间×次数
(三)方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4
整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数
(五)棋盘棋子数目:
1.棋盘最外层棋子数:每边棋子数×边数-边数
2.棋盘总的棋子数:每行棋子数×每列棋子数
3.方阵最外层人数:每边人数×4-4
4.多边形上摆花盆:每边摆的花盆数×边数-边数
为了使每堂课能够顺利的进展,老师需要做好课前准备,编写一份教案。才能有计划、有步骤、有质量的完成教学任务,你们知道那些比较有创意的教学方案吗?下面是由小编为大家整理的人教版四年级数学上册《算盘》学案,仅供参考,希望能为您提供参考!
人教版四年级数学上册《算盘》学案
教学目标:
1、让学生知道算盘是我国古代的伟大发明之一,是中华民族对人类文化的一大贡献,从而增强民族自豪感。
2、让学生认识算盘,学会读写算盘上的数。
教学重点:认识算盘,学会读写算盘上的数.
教学难点:带有上珠的数的读写。
教学准备:算盘
教学过程:
一、介绍算盘的历史和现在.
算盘是我国古代的伟大发明之一,我们的祖先在600多年前就已经发明了算盘,开始用算盘进行计算,一直留传到现在。所以算盘的我国的优秀文化遗产。算盘还传到日本、朝鲜、美国、东南亚、欧洲等许多国家和地区。
认识算盘
(1)谈话:仔细观察算盘,你知道它是有哪些部分构成的吗?
教师出示算盘,引导认识:
现在的算盘形状不一,算盘有矩形木框排列一串串等数目的算珠,中有一道横梁把珠子分上下两部分,算珠内直柱叫“档”一般为9档,11档,13档。档中横梁上一个珠子表示5,梁下有5个珠子,每个珠子表示1.(课件显示)
(2)师:算盘的个位在哪啊?(出示课件说明)
出示小红的话:我选最右边的一档作为个位,向左边第二档是十位,第三档是什么位?(百位)
仔细观察,小明定的个位在哪啊?和学生一起探讨定数位的方法。
(必须从左往档框梁下珠下珠右依次定位)
教师小结:个位在哪里都可以,只要你标记一个档位是个位,其余的数位也就确定了,一般情况下,我们现在把最靠右边的梁记位个位,依次往左推算,分别是个位,十位,百位,千位......。
三、介绍在算盘拨数的方法
1、认识档、上珠、下珠
2、拨珠的方法:拨入下珠用大拇指,拨去下珠用食指,拨入拨去上珠用中指。在你的算盘中确定好个位,试一试,拨出“1”(让学生用大拇指在下珠拨2个珠子)
继续拨2,3,4
“5”怎么拨?
“6”怎么拨?
试一试:拨出1-9.
在你的算盘中确定好十位,试一试,拨出10-90
在你的算盘中确定好十位,试一试,拨出100-900
3.尝试拨出563.
说说563有几个百,几个十和几个一组成。
要求学生在算盘上拨563,教师巡视检查。
四.巩固练习
1.拨一些数让学生读写。
教师在算盘上拨数,学生读写。
2.完成教材P78“做一做”
第一题,先独立完成,再说说你是怎么想的?
2.数学游戏
(1)同位每人拨出一个数。然后俩人分别说出、写出算盘上所表示的数。
(2)拨一些数让学生读写。
五.课堂小结\
师:这节课你有什么收获?
小结:我们认识了算盘,你会用算盘上表示数了吗?
四年级数学下册简易方程知识点
一个单元,共有11个知识点。
信息窗一:
三个知识点:
1,等式的含义——用等号(=)来表示相等的式子,叫等式。3+6=9
2,方程的意义——含有未知数的等式叫做方程。x+3=9
3,等式与方程的关系——是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。
信息窗二:
四个知识点:
1,等式的性质1——方程两边同时加上或减去一个数,左右两边仍然相等。
2,方程的解——使方程左右两边相对的未知数的值,叫做方程的解。例如:x=3是15-x=12的解。
3,解方程——求方程的解的过程叫做解方程。(方程的解是一个数,解方程是一个过程。)
例如:
3+x=18
解:3+x-3=18-3
x=15
x=15是方程的解
4,检验方程——把算出来的方程解代入原方程(等号左边),如果方程的左、右两边相等式子成立,说明是原方程的解,是正确的,如果不成立,那么就应该再算算,可能是计算方面出现错误。
信息窗三:
三个知识点:
1,等式的性质2:方程两边同时乘以或除以一个不为0的数,左右两边仍然相等。(1,等式两边同时乘同一个数,等式仍然成立。2,等式两边同时除以同一个数“0除外”等式仍然成立。)
2,解方程:解方程就是求出方程中所有未知数的值。
3,用方程解答应用题:
(1)弄清题意,找出未知数,用x表示。
(2)分析,找出数量之间的相等关系,列方程。例如:梨树比苹果树的3倍少15棵。可以表示成“苹果树的棵树×3—15=梨树的棵数”.也可以表示成“梨树的棵数十15=苹果树的棵数×3”。
(3)解方程。
(4)检验方程,写出答案。
信息窗四:
两个知识点:
1,和倍应用题:题中告诉我们两个数的和以及这两个数的倍数关系,让我们求这两个数个是多少。这种题称和倍问题。
和÷(倍数+1)=一倍数(即较小数)
较小数×倍数=较大数
例如:两人共有32本书,哥哥的书是妹妹的三倍,两人各有多少本书?
解:设妹妹有x本,哥哥有3x本。
3x+x=32
4x=32
4x÷4=32÷4
x=8
3x=3×8=24
检验:方程左边=3×8+8
=24+8
=32
=方程右边
所以:x=8是方程的解
答:妹妹有8本书,哥哥有24本书。
2,差倍应用题解:题中告诉我们两个数的差与这两个数的倍数关系,求这两个数各是多少,这类问题称为差倍问题。
差÷(倍数-1)=较小数
较小数×倍数=较大数或(较小数+差)=较大数
例如:同学们植的杨树棵树是柳树的4倍,柳树棵树比杨树少75棵,杨树、柳树各植多少棵?
解:设杨树植4x棵,柳树植x棵。
4x-x=75
(4-1)x=75
3x=75
3x÷3=75÷3
x=25
4x=4×25=100或(75+25=100)
检验:方程左边=4×25-25
=100-25
=75
=方程右边
所以:x=25是方程的解
答:植杨树100棵,植柳树25棵。
《四年级数学上册重要知识点汇总(人教版)》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学四年级教案数学”专题。
文章来源:http://m.jab88.com/j/64854.html
更多