88教案网

一次函数说课稿

为了促进学生掌握上课知识点,老师需要提前准备教案,大家应该在准备教案课件了。用心制定好教案课件的工作计划,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?为满足您的需求,小编特地编辑了“一次函数说课稿”,供大家借鉴和使用,希望大家分享!

一次函数说课稿
各位评委老师好!我是07号考生,说课的内容是八年级上册第六章第一节《一次函数》,下面我从教材分析、教法与学法、教学过程三个方面向大家汇报我的说课。
首先谈谈教材分析,我谈三条:
(一)教材的地位和作用
从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标
1.知识目标
(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标
(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3.情感目标
(1)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
(三)教材重点、难点
1、重点
(1)一次函数、正比例函数的概念及关系。
(2)根据具体情境所给的信息确定一次函数的表达式
2、难点
根据具体情境所给的信息确定一次函数的表达式
接下来我来谈谈第二方面:教法与学法:
在本节课的教学中我准备采用的教学方法主要是指导——自学方式。根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。
下面是我说课的重点,也就是教学过程的设计、整节课我共设为四个环节:
第一个环节是创设问题,引领导入:
这一环节我通过设置两个问题引导学生概括出一次函数的概念。
问题1:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
x/千克012345
y/厘米33.544.555.5
(2)你能写出x与y之间的关系式吗?
这一环节让学生带着问题去研究,找出函数和变量之间的关系,计算出对应值。但是让学生写出x与y之间的关系式有一定的难度,学生出现一定的差异在所难免,教学中应该给予学生一定的思考空间,组织学生进行小组交流,教师适当点拨,不要简单地“告诉”。学生经过交流讨论会得出y=0.5x+3。
问题2:某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。
(1)完成下表:
汽车行驶路程x/千米050100150200300
油箱剩余油量y/升
你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)
这一问题让学生自主完成,对有困难的学生,教师适当给予帮助指导。
通过对上面两个问题的研究概括出一次函数的概念。发现两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
第二个环节是例题讲解
这一环节我设计两个例题,在理解一次函数和正比例函数的概念的基础上,根据x与y之间的关系式区分一次函数和正比例函数,并能根据所给条件写出简单的一次函数表达式。
例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)
学生根据已有的知识经验写出x与y之间的关系式,并在对一次函数和正比例函数概念掌握的基础上判断分析(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。
例2:我国现行个人工资薪金税征收办法规定:月收入低于1600元的部分不收税,月收入超过1600元但低于2100元的部分征收5%的所得税……如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-1600)×5%=18(元)
①当月收入大于1600元而又小于2100元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。
②某人某月收入为1760元,他应缴所得税多少元?
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?
根据所给条件写出简单的一次函数表达式是本节课的重点有事难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,教师巡视并予以个别指导,关注学生的个体发展。
经学生分析:
(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);
(2)当x=1760时,y=0.05×(1760-1600)=8(元);
(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600)
X=1984
第三个环节是课堂练习
通过以上环节的学习,学生对本课知识应已能基本掌握,要让学生真正理解、准确运用,还是需要进行适量的训练,因此我安排了教材第184页第1、2题这样的练习,并将根据学生课堂上掌握的实际情况,适当补充有关练习,尤其是针对学生可能出问题,如:
1、见下表:
x-2-1012……
y-5-2147……
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
第四个环节是课后小节
引导学生回忆一次函数、正比例函数的概念及关系。并能根据已知简单信息,写出一次函数的表达式。
现在我谈一下本课的板书设计,
一次函数
1、y=0.5x+31、y=60x1、y=0.05×(x-1600)
2、y=100-0.18x2、y=πx22、y=0.05×(1760-1600)=8(元)
y=kx+b(k,b为常数k≠0)3、y=50+2x3、19.2=0.05×(x-1600)
当b=0时,称y是x的正比例函数x=1984

以上是我对《一次函数》一课的认识与教学设计,整个的设计力图体现教学设计的结构性。
敬请各位评委予以指导,谢谢大家
JaB88.coM

精选阅读

一次函数图像


班级_____________姓名_____________
课题:§5.3一次函数的图像(2)(初二数学上060)A版
课型:新课
学习目标:(学习重点)
1.能根据k、b的符号说出一次函数y=kx+b的图象(直线)的大致情况.
2.理解并掌握一次函数y=kx+b的性质.
补充例题:
例1.在同一直角坐标系中画出下列函数的图象.
①y=2x-4y=12x+1

观察直线y=2x-4:
(1)图象与x轴的交点坐标是,与y轴的交点坐标是
(2)图象经过这些点:(-3,);(-1,);(0,);(,-2);(,2)
(3)当x的值越来越大时,y的值越来越
(4)整个函数图象来看,是从左至右(填上升或下降)
(5)当x取何值时,y0?
②y=-2x+2y=-13x-1

观察直线y=-2x+2:
(1)图象与x轴的交点坐标是,与y轴的交点坐标是
(2)图象经过这些点:(-3,);(-1,);(0,);(,-4);(,-8)
(3)当x的值越来越大时,y的值越来越
(4)整个函数图象来看,是从左至右(填上升或下降)
(5)当x取何值时,y0?
小结:一次函数y=kx+b有下列性质:1.当k>0时,y随x的增大而______,这时函数的图象从左到右_____;当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
2.当b>0时,这时函数的图象与y轴的交点在______
当b>0时,这时函数的图象与y轴的交点在_____.
当b=0时,这时函数的图象与y轴的交点在_____.
3.当k>0,b>0时,一次函数图像经过______________象限.
当k>0,b<0时,一次函数图像经过______________象限.
当k<0,b>0时,一次函数图像经过______________象限.
当k<0,b<0时,一次函数图像经过______________象限.
当k>0,正比例函数图像经过______________象限.
当k<0,正比例函数图像经过______________象限.
补充例题:
例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.
(2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()

例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.
(2)若k0,b>0,则直线y=kx+b的图象经过第___________象限.
(3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.

例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?

例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象与y轴的交点在x轴下方,求m的取值范围.
课后续助:
一、填空题:
1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.
2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.
3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.
4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.
5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.
(2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.
(3)一次函数y=kx+1的图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)
(4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.
(5)写出一个y随x的增大而减少的一次函数_______.
二、选择题:
1.直线y=x+1不经过的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
2.下列函数中,y随x的增大而增大的函数是()
A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2
3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1
4.已知一次函数y=kx+b,y随着x的增大而减小,且kb0,则它的大致图象是()

ABCD
三、解答题:
1.已知一次函数y=(p+8)x+(6-q).
①p、q为何值时,y随x的增大而增大?
②p、q为何值时,函数与y轴交点在x轴上方?
③p、q为何值时,图象过原点?
2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.

3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.
4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.
(1)求m的值;(2)当x取何值时,0<y<4?

11.2一次函数


11.2一次函数
§11.2.1正比例函数
教学目标
1.认识正比例函数的意义.
2.掌握正比例函数解析式特点.
3.理解正比例函数图象性质及特点.
4.能利用所学知识解决相关实际问题.
教学重点
1.理解正比例函数意义及解析式特点.
2.掌握正比例函数图象的性质特点.
3.能根据要求完成转化,解决问题.
教学难点
正比例函数图象性质特点的掌握.
教学过程
Ⅰ.提出问题,创设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
3.这只燕鸥飞行1个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600÷(30×4+7)≈200(km)
若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
y=200x(0≤x≤127)
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
y=200×45=9000(km)
以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
Ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长L随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.
3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
答应:1.根据圆的周长公式可得:L=2r.
2.依据密度公式p=可得:m=7.8V.
3.据题意可知:h=0.5n.
4.据题意可知:T=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportionalfunc-tion),其中k叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
[活动一]
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.
1.y=2x2.y=-2x
结论:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
x-3-2-10123
y-6-4-20246

画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x-3-2-10123
y6420-2-4-6

画出图象如图(2).
3.两个图象的共同点:都是经过原点的直线.
不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.
尝试练习:
在同一坐标系中,画出下列函数的图象,并对它们进行比较.
1.y=x2.y=-x
x-6-4-20246
y=x
-3-2-10123
Y=-x
3210-1-2-3

比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.
让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.
正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.
[活动二]
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.
结论:
经过原点与点(1,k)的直线是函数y=kx的图象.
画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.
Ⅲ.随堂练习
用你认为最简单的方法画出下列函数图象:
1.y=x2.y=-3x
Ⅳ.课时小结
本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.
Ⅴ.课后作业
1、习题11.2─1、2、6题.
2、《课堂感悟与探究》
Ⅵ.活动与探究
某函数具有下面的性质:
1.它的图象是经过原点的一条直线.
2.y随x增大反而减小.
请你举出一个满足上述条件的函数,写出解析式,画出图象.
解:函数解析式:y=-0.5x
x02
y0-1
板书设计
§11.2.1正比例函数
一、正比例函数定义
二、正比例函数图象特征
三、正比例函数图象特征与解析式的关系规律
四、随堂练习

备课资料
汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示
1.汽车用几小时可到达北京?速度是多少?
2.汽车行驶1小时,离开天津有多远?
3.当汽车距北京20千米时,汽车出发了多长时间?
解法一:用图象解答:
从图上可以看出4个小时可到达.
速度==30(千米/时).
行驶1小时离开天津约为30千米.
当汽车距北京20千米时汽车出发了约3.3个小时.
解法二:用解析式来解答:
由图象可知:S与t是正比例关系,设S=kt,当t=4时S=120
即120=k×4k=30
∴S=30t.
当t=1时S=30×1=30(千米).
当S=100时100=30tt=(小时).
以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点.

一次函数


第十四章一次函数

课题:11.1.1变量

知识目标:理解变量与函数的概念以及相互之间的关系
能力目标:增强对变量的理解
情感目标:渗透事物是运动的,运动是有规律的辨证思想
重点:变量与常量
难点:对变量的判断
教学媒体:多媒体电脑,绳圈
教学说明:本节渗透找变量之间的简单关系,试列简单关系式
教学设计:
引入:
信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?
信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.
t/m12345
s/km

新课:
问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;
(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:1.分别指出下列各式中的常量与变量.
(1)圆的面积公式S=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.
2.写出下列问题的关系式,并指出不、常量和变量.
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.
思考:怎样列变量之间的关系式?
小结:变量与常量
作业:阅读教材5页,11.1.2函数

课题:11.1.2函数

知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
重点:函数的概念
难点:函数的概念
教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
教学设计:
引入:
信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?
周岁12345678910111213
体重(kg)9.311.813.515.416.718.019.621.523.22527.630.232.5

信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?
时间/min012345
高度/m
新课:
问题:(1)如图是某日的气温变化图。
①这张图告诉我们哪些信息?
②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:
波长l(m)30050060010001500
频率f(KHz)1000600500300200
①这表告诉我们哪些信息?
②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1判断下列变量之间是不是函数关系:
(5)长方形的宽一定时,其长与面积;
(6)等腰三角形的底边长与面积;
(7)某人的年龄与身高;
活动1:阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数的关系
思考:自变量是否可以任意取值
例2一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
解:(1)y=50-0.1x
(2)0≤x≤500
(3)x=200,y=30
活动2:练习教材9页练习
小结:(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
作业:18页:2,3,4题

文章来源:http://m.jab88.com/j/64451.html

更多

最新更新

更多