88教案网

平行四边形的判定导学案

做好教案课件是老师上好课的前提,大家正在计划自己的教案课件了。只有写好教案课件计划,可以更好完成工作任务!你们知道多少范文适合教案课件?为此,小编从网络上为大家精心整理了《平行四边形的判定导学案》,希望对您的工作和生活有所帮助。

18.1.2平行四边形的判定(二)
年级:九年级学科:数学课型:新授课时间:年月日
执笔:孙丽审核:马集中心校数学导学案审核组二次备课
【励志语录】
1、每天只看目标,别老想障碍。
2、只向最顶端的人学习,只和最棒的人交往,只做最棒的人做的事。
【学习目标】
学法指导:仔细阅读,做到有的放矢。
1.会用判定定理3、判定定理4来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3.通过平行四边形的性质与判定的应用,启迪思维,提高分析问题的能力.
【重点】平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
一、知识链接
1.用定义法证明一个四边形是平行四边形时,要什么条件?
2.用所学的判定方法一判定一个四边形的平行四边形的条件是什么?
3.平行四边形的一组对边平行且相等的逆命题如何表达?是否是真命题?平行四边形的两组对角相等的逆命题如何表达?是否是真命题?

二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
1、预习内容:自学课本88页例4前,完成P90练习2。
2、预习测试:
从定义出发可知两组对边分别平行的四边形是平行四边形。除此之外,我们可以通过研究平行四边形性质定理的逆命题得到平行四边形的其他判定方法:
判定定理3:。
几何语言为:

判定定理4:。
几何语言为:

4、用以前学过的知识证明:
判定定理3

判定定理4

合作探究
学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
探究点一:判定定理3的应用
平行四边形判定方法3两组对角分别相等的四边形是平行四边形。
下列条件中,能判断四边形ABCD是平行四边形的是()
(A)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D
(C)∠A=∠C,∠B=∠D(D)AB=AD,CB=CD

探究点二:判定定理4的应用
平行四边形判定方法4一组对边平行且相等的四边形是平行四边形。
已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.

变式:已知:如图3,E、F是平行四边形ABCD对角线AC上两点,且AE=CF。
求证:四边形BFDE是平行四边形。(你有几种证明方法,对比之下使用什么方法较简便)

探究点三:判定的综合应用
在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有哪些结合方式.(共有9对)
m.JAB88.COM

四.小结提升
学法指导:1、对照学习目标找差补缺。2、画出知识树。
通过本节课的学习,你有什么收获?你还有什么困惑?
画知识树

五、达标测试
学法指导:1、分层达标,敢于突破,横向比较,找出差距。
2、完成较早的小组与同学把答案写到小黑板上奖励分5’
3、对子互改,组长验收,教师查阅。
A.基础达标
1.判断题:
(1)相邻的两个角都互补的四边形是平行四边形;()
(2)两组对角分别相等的四边形是平行四边形;()
(3)一组对边平行,另一组对边相等的四边形是平行四边形;()
(4)一组对边平行且相等的四边形是平行四边形;()
(5)对角线相等的四边形是平行四边形;()
(6)对角线互相平分的四边形是平行四边形.()

2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.

B.能力测试
3.如图,E、F是四边形ABCD对角线AC上两点,AF=CE,DF∥BE,DF=BE.
求证:四边形ABCD是平行四边形。

4.已知:E、F分别为平行四边形ABCD两边
AD、BC的中点,连结BE、DF
求证:

C、拓展与提高
5.已知:在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.
求证:四边形AFCE是平行四边形.

精选阅读

平行四边形的判定(2)导学案


教案课件是老师不可缺少的课件,大家应该开始写教案课件了。只有写好教案课件计划,才能够使以后的工作更有目标性!你们知道哪些教案课件的范文呢?下面是小编为大家整理的“平行四边形的判定(2)导学案”,希望对您的工作和生活有所帮助。

6.4平行四边形的判定(二)

一、问题引入:
1.如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是_________,
根据是__________________________.
BC
2.四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD是平行四边形,则还需补充的条件是()
A.AC⊥BDB.OA=OBC.OC=ODD.OB=OD

二、基础训练:
1.(2010·东营)下列条件中,能判定四边形是平行四边形的是()
A.一组对角相等B.对角线互相平分
C.一组对边相等D.对角线互相相等

2.下列说法中,①一组对角相等;②两条对角线互相垂直;③两条对角线互相平分;④一组邻角互补;⑤两组对边都相等;⑥两组对边分别平行.这些说法中能判定四边形是平行四边形的有()个
A.5B.4C.3D.2

三、例题展示:

例.如图,E、F是ABCD对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.
AD
E
四、课堂检测:
1.(2012巴中)不能判定一个四边形是平行四边形的条件是()
A.两组对边分别平行B.一组对边平行另一组对边相等
C.一组对边平行且相等D.两组对边分别相等

2.如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.
AD
EOH
FG
BC
3.在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为AO、CO的中点,试说明.
(1)OE=OF
(2)四边形DEBF是平行四边形.
(3)如果E、F点分别在AC的延长线上时(如图2),且满足AE=CF,上述结论仍然成立吗?

平行四边形的判定(1)导学案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家在认真写教案课件了。将教案课件的工作计划制定好,就可以在接下来的工作有一个明确目标!适合教案课件的范文有多少呢?请您阅读小编辑为您编辑整理的《平行四边形的判定(1)导学案》,欢迎阅读,希望您能够喜欢并分享!

6.3平行四边形的判定(一)
一、问题引入:
1.下列几个条件中,不能判定一个四边形是平行四边形的是()
A.一组对边相等B.一组对边平行且相等
C.两组对边分别平行D.两组对边分别相等
2.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

3.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是_______________________________.
二、基础训练:
1.下列几个条件中,能判定一个四边形是平行四边形的是()
A.一组对边相等B.一组对边平行,另一组对边相等
C.一组对边平行D.两组对边分别平行

2.四边形ABCD中,AD∥BC,且AD=BC,AB=2cm,则DC=cm
三、例题展示:
例1.如图,在ABCD中,E、F分别为AD和CB的中点.求证:四边形BFDE是平行四边形.
AED
BFC

例2.在图中,AC=BD,AB=CD=EF,CE=DF.图中有哪些互相平行的线段?为什么.

四、课堂检测:

1.已知.四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,需添加一个条件是.(只需填一个你认为正确的条件即可).

2.如图,AC//ED,点B在AC上且AB=ED=BC,找出图中的平行四边形.

3.如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

平行四边形的判定


20.1.1平行四边形的判定(1)
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形;
2.理解并掌握用二组对边分别相等的四边形是平行四边形
3.能运这两种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性质和判定的区别及熟练应用。
教学过程
(一)复习提问:
1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)
2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
(二)新课
一.平行四边形的判定:
方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,
则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,AD=BC
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1)
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
判定一:二组对边分别相等的四边形是平行四边形
∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
练习:课本P103练习题第1题。
例题讲解:
例1已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。
求证:
分析:由我们学过平行四边形的性质中,对角相等,得若证明四边形EBFD为平行四边形,便可得到,哪么如何证明该四边形为平行边形呢?可通过证明ΔABE≌ΔCDF得BE=DF;由AD=BC,E、F分别为AD和BC的中点得ED=FB。
练习:2.已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:四边形EFGH是平行四边形。
(让学生板演)
图7
本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判定一个四边形是平行四边形。
作业布置:课本P100第4题、第7题。

文章来源:http://m.jab88.com/j/63285.html

更多
上一篇:平均数(2)教案 下一篇:湘夫人

最新更新

更多