学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《新人教版八年级数学下册第16章分式(期末复习)教案》,欢迎大家阅读,希望对大家有所帮助。
第16章分式(期末复习)
【教学任务分析】
教
学
目
标知识
技能1.熟练掌握分式的概念,会进行分式的混合运算;
2.会解分式方程并能应用到实际问题中去,发展应用意识,提高运算能力.
过程
方法1.经历复习分式概念、计算、“建模”等应用过程,探索数量关系和变化规律,发展
学生应用数学的意识与能力.
2.经历练习的过程,探索解题方法,学会从解题中归纳规律.
情感
态度1.培养学生主动参与意识,发展思想的条理性和灵活性;
2.培养学生的合作意识,鼓励学生多进行合作交流,提高自己分析问题的能力.
重点分式的混合运算、分式方程的解法和分式方程的应用.
难点1.异分母的分式的通分;2.分式方程的应用.
【教学环节安排】
环节教学问题设计教学活动设计
知
识
回
顾1.在代数式、、、中,分式共有()
A.1个B.2个C.3个D.4个
2.如果把分式中的x和y都扩大10倍,那么分式的值()
A.扩大10倍B.缩小10倍C.扩大2倍D.不变
3.下列分式中,是最简分式的是()
A.B.C.D.
4.用科学记数法表示:—0.000000108=__________________(保留2个有效数字).用科学记数法表示数:0.000000345=____________.
5.当x为何值时,下列分式有意义?
(1)(2)
6.当m为何值时,分式的值为零?
7.计算:
(1)(2)
8.解方程:
9.某人骑摩托车从甲地出发,去90千米外的工地执行任务,出发1小时后,发现按原来的速度前进,就要迟40分钟,于是立即将车速增加一倍,于是又提前20分钟到达,求摩托车原来的速度.学生独立完成
教师巡视,了解学生掌握的情况,指导学习成绩较差的学生.
指五名学生板演5、6、7、8、9题.
完成练习后,首先在小组内部进行交流,由组长协调小组成员相互帮助,共同修正错误答案,形成本小组的共同答案.并总结解决题目所用到的知识点
教师在听取答案后,给予各小组准确的评价,要了解学生是否把各题的知识点展示出来了.
综
合
应
用1.解方程:
2.有一道题:“先化简,再求值:其中x=-3,”小玲做题时把”x=“错抄成x=,但她的计算结果也是正确的,请你解释这是怎么回事.
3.在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?教师出示题目,把三道题目的板练任务分到三个小组,小组长根据试题的难易程度适当安排本小组的成员到黑板上练习.
教师重点讲解第3题:当设甲工程队单独完成该工程需x天时,如何用x表示出乙工程队单独完成该工程需多少天.
矫
正
补
偿1.计算:=_______.
2.x=______时,分式的值等于
3.计算:(1);(2)
4.解方程:(1);(2).
5.应用题:
甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑车的速度各是多少.教师根据课堂实际情况灵活安排.
完成后,由做题的小组进行讲解,其他小组待其讲完后,可进行补充讲解.
教师最后进行点评.
完
善
整
合分式有意义的条件
概念
分式值为0的条件异分母通分
加减
同分母
分分式的基本性质分式的运算
式
乘除约分最简分
去分母
解法整式方程验根
分式方程
应用
第20章数据的分析(期末复习)
保太中学高勇
【教学任务分析】
教
学
目
标知识
技能理解平均数、中位数、众数、极差、方差的概念及作用,能准确地求出一组数据的平均数、中位数和众数,以及极差和方差,能灵活运用它们来处理数据.
过程
方法使学生经历对问题的处理,体会分析数据的策略和方法,提高用样本解决问题的能力,发展学生的统计思想及创新实践能力.
情感
态度进一步渗透统计的重要数学思想方法,体验用数据的代表和波动的统计量来分析数据并作出决策,增强数学应用意识.
重点灵活运用数据的代表和波动的统计量来解决相关问题.
难点灵活运用数据的代表和波动的统计量来解决相关问题.
【教学环节安排】
环节教学问题设计教学活动设计
知
识
回
顾1.数据1,0,-3,2,3,2,-2的平均数是,中位数是,
众数是.
2.数据0,1,3,2,4的极差为,方差为.
3.已知样本为2,3,4,5,6,那么此样本的中位数与平均数是().
A.3,4B.4,4C.4,5D.4,3
4.某服装销售商中进行市场占有率的调查时,他最应该关注的是().A.服装型号的平均数B.服装型号的众数
C.服装型号的中位数D.最小的服装型号
5.在方差的计算公式中,数字10和20分别表示的意义是().
A.数据的个数和方差B.平均数和数据的个数
C.数据的个数和平均数D.数据的方差和平均数
6.一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的().
A.1个B.2个C.3个D.0个
反思归纳:
1.平均数计算要用到的数据,它的大小与一组数据中的都有关系,任何一个数据的变动都会相应引起平均数的,它能够充分利用所有的数据信息;
2.众数是当一组数据中时,人们往往关心的一个量,众数极端值的影响,这是它的一个优势;
3.中位数仅与有关,某些数据的移动对中位数没有影响,中位数可能出现中所给数据中,也可能不在所给的数据中,当一组数据中的时,可以用中位数描述其趋势.
总之,平均数、中位数、众数都是描述数据的的的统计量.
4.一组数据中的最大数据与最小数据的差叫做这组数据的,它反映了这组数据的.
5.当两组数据的个数相等、平均数相等或接近时,用方差可以比较其离散程度及稳定性.一般来说,一组数据的方差越大,这组数据离散程度就越,这组数据就越.教师出示回顾训练题
学生自主完成,并回顾题目所考查的知识点及解决的方法
教师关注:是否能通过回顾训练题的解决,唤醒学生对所学知识的记忆,学生是否能自主解决、加深理解所考查的知识与求解的方法.
答案:
1.,1,2;
2.4,2;
3.B;
4.B;
5.C;
6.A.
教师引导学生进行组内交流,让学生罗列所复习的主要知识点、方法及规律,培养学生分析、总结、归纳的能力,从而奠定学生可持续发展的基础.
综
合
应
用【例1】个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资:王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.
(1)计算工作人员的平均工资;
(2)计算出的平均工资能否反映出工作人员这个月收入的一般水平?
(3)去掉王某的工资后,再计算平均工资;
(4)后一个平均工资能代表一般工作人员的收入吗?
(5)根据以上计算,从统计的观点看,你对(3)、(4)的结果有什么看法?
【解析】(1)=(3000+450+400+320+350+320+410)7=750
(2)因为工作人员月工资都低于平均水平,所以计算出的平均工资不能反映工作人员这个月的月收入的平均水平.
(3)=(450+400+320+350+320+410)6=375(元).
(4)由于该平均数接近于工作人员的月工资的收入,能代表一般工作人员的收入.
(5)从本题的计算中可见,个别特殊值对平均数具有很大的影响.
教师提出问题.
教师要求学生先尝试独立思考,再小组讨论、交流、做出判断,并说明原因,进而归纳出方法规律、技巧.
各小组推荐代表展示成果,教师多找几名同学叙述,加深印象,最后教师点评、详细讲解.
教师深入小组当中,了解他们讨论的情况,如遇有困难的可给与提示.
充分讨论后,各小组推选代表展示他们的成果.
矫
正
补
偿1.若3,4,5,的平均数是12,则的平均数是.
2.已知的方差为2,数据的方差是.
3.一组数据的的极差是8,则另一组数据+1的极差是.
4.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余的学生的平均分为60分,求学生A的得分.
教师出示问题.
学生自己独立思考完成,然后小组交流,小组派代表展示,全班师生共同评价、总结(一组数据的平均数、方差与各数据发生变化后的情况)
完
善
整
合小结与反思:请大家反思一下,通过本节课的学习,谈一下你对《数据的分析》的认识和理解.
总结:若数据,的平均数为,方差为,则数据的平均数是,方差为,而数据的平均数是,方差为.在前面的基础上,教师引导学生总结对“数据的分析”的认识,各抒己见,集思广益.
教师关注:学生的描述情况.(引导学生表达,提高对数据的代表和波动的认识)
第17章反比例函数(期末复习)
【教学任务分析】
教
学
目
标知识
技能1.巩固反比例函数的概念,会求反比例函数表达式并能画出图象.
2.巩固反比例函数图象的变化其及性质并能运用解决某些实际问题.
过程
方法反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义.
情感
态度培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值.
重点反比例函数的定义、图像性质.
难点反比例函数增减性的理解.
【教学环节安排】
环节教学问题设计教学活动设计
知
识
回
顾
1.反比例函数的图象经过点,则这个函数的图象位于()
A.第一、三象限B.第二、三象限
C.第二、四象限D.第三、四象限
2.已知反比例函数的图像经过(1,-2),则下列各点中,在反比例函数图象上的是()
A.B.CD.
3.反比例函数y=的图象是,分布在第象限,在每个象限内,y都随x的增大而;若p1(x1,y1)、p2(x2,y2)都在第二象限且x1x2,则y1y2.
4.已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为.
5.如图,若点在反比例函数的图象上,轴于点,的面积为3,则.
6.已知直线与双曲线的一个交点A的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.
7.如图,A为双曲线上一点,过A作AC⊥x轴,垂足为C,且S△AOC=2.
(1)求该反比例函数解析式;
(2)若点(-1,y1),(-3,y2)在双曲线上,试比较y1、y2的大小.
总结归纳:以上题目所用到的知识点,并形成知识结构.
教师出示题目.
学生独立完成
教师巡视,了解学生掌握的情况,指导学习成绩较差的学生.
完成练习后,首先在小组内部进行交流,由组长协调小组成员相互帮助,共同修正错误答案,形成本小组的共同答案.
教师引导学生总结解决题目所用到的知识点.并形成知识结构.
综合
应用例1.如图,一次函数y=kx+b的图像与反比例函数y=的图像相交于A、B两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像写出使一次函数的值小于反比例函数的值的x的取值范围.(3)求△AOB的面积.
矫
正
补
偿1.在反比例函数的图象上有两点和,若时,,则的取值范围是.
2.如图,A为反比例函数图象上一点,AB垂直轴于B点,若=5,则的值为()
A.10B.C.D.-2.5
3.已知反比例函数的图像经过点(,),则它的图像一定也经过()
A.(-,-)B.(,-)C.(-,)D.(0,0)
4.若M(,)、N(,)、P(,)三点都在函数(k0)的图象上,则、、的大小关系是()
A.B.
C.D.
5.已知,与成正比例,与成反比例,且当时,当时,求与之间的函数关系式.
教师根据课堂实际情况灵活安排.
教师利用学案出示题目,让学生独立完成,1、2、3、4由学生口答,第5指一生板演.
后师生共同纠错.
完善
整合表达式y=kx(k≠0)
图象k0k0
性质
1.图象在第一、三象限;
2.每个象限内,函数y的值随x的增大而减小.1.图象在第二、四象限;
2.在每个象限内,函数y
值随x的增大而增大.
在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|k|
反比例函数既是轴对称图形,又是中心对称图形.
师生共同总结
文章来源:http://m.jab88.com/j/63051.html
更多