88教案网

三角形全等的判定:ASA、AAS学案

每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“三角形全等的判定:ASA、AAS学案”,仅供参考,欢迎大家阅读。

使用说明:学生利用自习先预习课本第11页-12页10分钟,然后35分钟独立做完学案。正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3、积极投入,激情展示,体验成功的快乐。
教学重点:已知两角一边的三角形全等探究.
教学难点:灵活运用三角形全等条件证明.
【学习过程】
一、自主学习
1、复习思考
(1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
(2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?
2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?
(1)动手试一试。
已知:△ABC
求作:△,使=∠B,=∠C,=BC,(不写作法,保留作图痕迹)

(2)把△剪下来放到△ABC上,观察△与△ABC是否能够完全重合?
(3)归纳;由上面的画图和实验可以得出全等三角形判定(三):
两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)
(4)用数学语言表述全等三角形判定(三)
在△ABC和中,
∵∴△ABC≌
3、探究二。两角和其中一角的对边对应相等的两三角形是否全等
(1)如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?

(2)归纳;由上面的证明可以得出全等三角形判定(四):
两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)

(3)用数学语言表述全等三角形判定(四)
在△ABC和中,
∵∴△ABC≌

二、合作探究
1、例1、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
2.已知:点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:BD=CE
三、学以致用

3、如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠1=∠C,求证AC=AB+CE

四、课堂小结
(1)今天我们又学习了两个判定三角形全等的方法是:

(2)三角形全等的判定方法共有
五、课后检测

4.满足下列哪种条件时,就能判定△ABC≌△DEF()
A.AB=DE,BC=EF,∠A=∠E;B.AB=DE,BC=EF,∠C=∠F
C.∠A=∠E,AB=EF,∠B=∠D;D.∠A=∠D,AB=DE,∠B=∠E
5.如图所示,已知∠A=∠D,∠1=∠2,那么要
得到△ABC≌△DEF,还应给出的条件是:()
A.∠B=∠EB.ED=BC
C.AB=EFD.AF=CD
6.如6题图,在△ABC和△DEF中,AF=DC,∠A=∠D,
当_____________时,可根据“ASA”证明△ABC≌△DEF

扩展阅读

14.2全等三角形的判定2(ASA)课件导学案


14.2《全等三角形的判定2》(ASA)导学案
使用说明与学法指导
1.课前完成自主学习,牢记基础知识,掌握基本题型,时间不超过15分钟。
2.组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.人人参与,合作学习,人人都有收获,人人都有进步。
一、教材分析
(一)学习目标
1.通过画图,经历探究ASA的过程,会运用“ASA”识别三角形全等,为证明线段相等或角相等创造条件
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.选择SAS或SAS判定两个三角形全等。
(二)学习重点和难点:
教学重点:已知两角一边的三角形全等探究.
教学难点:灵活运用三角形全等条件证明
二、自主学习:阅读P101—102页回答下列问题:
1.画一画:如图,△ABC是任意一个三角形,画△A1B1C1,
使A1B1=AB,∠A1=∠A,∠B1=∠B,把画的△A1B1C1剪下来放在△ABC进行比较,它们是否重合?由此你能得出什么结论?(用自己的方法画出或参考P101页步骤画出,必须能复述画法.)
得出结论:对应相等的两个三角形全等(简称“角边角”或“ASA”)
2.用数学语言表述全等三角形判定(三)
在△ABC和中,
∵∴△ABC≌
3.探究二:两角和其中一角的对边对应相
练一练
1.如图2,O是AB的中点,要使通过角边角(ASA)来判定△OAC≌△OBD,需要添加一个条件,下列条件正确的是()
A、∠A=∠BB、AC=BDC、∠C=∠D
2.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法()
A、选①去,B、选②C、选③去
3.已知:如图AB是∠CAD的平分线,∠C=∠D.
求证:BC=BD.
证明:∵AB是∠CAD的平分线,
∴∠=∠.
在△ABC和△ABD中,
∴△ABC≌△ABD().
∴=.
三、课内探究
活动一合作探究
如图,已知AB∥DC,AD∥BC.
求证:△ABD≌△CDB.

活动二学以致用
1、如图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.

2、如图,是D上AB一点,DF交AC于点E,DE=DF,FC∥AB,AE与CE是否相等?证明你的结论。
活动三变式训练
如图,已知∠ABC=∠D,∠ACB=∠CBD,判断
图中的两个三角形是否全等,如果全等请说明理由.
如果不全等,可以改变什么条件可使这两个三角形全等。

小组讨论交流
活动四本节课小结(我的收获)
(1)知识方面:

(2)学习方法方面:

四、课后训练
1.已知:点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:BD=CE

2.如图,要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长度就是AB的长度,为什么?

五、延伸拓展
如图,已知△ABC≌△,CF、分别是△ABC的∠C和△的∠的角平分线,那么线段CF和相等吗?

三角形全等的判定学案


学习目标
理解三角形全等的“边边边”的条件,并利用其解决问题;理解作一个角等于已知角的理由.
了解三角形的稳定性.
知识梳理:
1.三角形全等的条件:对应相等的两个三角形全等,简写为边边边或;
2.三角形具有稳定性;
3.尺规作图:
(1)只用直尺和作图的方法称为尺规作图;
(2)用直尺和圆规作一个角等于已知角:
学法指导:
例题如图,在四边形中,AB=DB,AC=DC,请问∠A和∠D相等吗?若相等,请写出证明过程;若不相等,请说明理由.

分析:要看∠A和∠D是否相等,可看△ABC和△DBC是否全等,又已知两边对应相等,可考虑是否第三边对应相等.
当堂训练1.如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.

2.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?

达标训练:
1.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是___________.
2.如图,已知OA=OB,AC=BC,∠1=30°,则∠ACB的度数是________.
3.如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?

4.已知如图,小明根据条件“AB=DC,AC=DB,AC、BD交于点O”,探索图形中的三角形全等关系时,他发现△ABC≌△DCB,而且△AOB≌△DOC.你同意小明的发现吗?请写出探索过程,并说明理由.

课后作业(夯实基础)
1.如图,中,,,
则由“”可以判定()
A.B.
C.D.以上答案都不对
2.如图,是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将分成两个全等三角形,则这样的点共有()
A.1个B.3个C.6个D.9个
3.下列结论错误的是()
A.全等三角形对应角所对的边是对应边B.全等三角形两条对应边所夹的角是对应角
C.全等三角形是一种特殊三角形D.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等
4.小明用四根竹棒扎成如图所示的风筝框架,已知,,下列判断不正确的是()..
(第4题)(第5题)(第6题)
A.B.C.D.
5.如图,中,,,,则________,__________.
6.如图,,,,找出图中的一对全等三角形,并说明你的理由.

7.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE的度数为__________.

8.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.

能力提高
9.在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在坐标平面内,当点C的坐标为或时,由点B、O、C组成的三角形与△AOB全等。
10.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD.
(1)求证:△ADB≌△ADC;(2)求证:∠ADB=∠ADC=90°;

11.如图,AD=CB,E、F是AC上两动点,且有DE=BF.
(1)若E、F运动至如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF.
(2)若E、F运动至如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?
(3)若E、F不重合,AD和CB平行吗?说明理由。
12.如图,在中,,分别为上的点,且,,.
求证:.

思维拓展
13.如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成一对全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.你能把它分成两对全等的三角形吗?试试看.

全等三角形的判定


19.2全等三角形的判定(2)
【教学目标】
1.使学生掌握SAS的内容,会运用SAS来判定两个三角形全等;
2.通过判定全等三角形的判定的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;
3.经历如何总结出全等三角形判定方法,体会如何探讨、实践、总结,培养学生的合作能力.
【重点难点】
1.难点:三角形全等的判定:SAS;
2.重点:对全等三角形的判定的理解和运用.
【教学过程】
一、复习
1.什么叫全等图形?什么叫做全等三角形?
(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形).
2.将全等的△ABC与△DEF重合,再沿BC方向将△DEF推移如图位置,问线段AD与BE数量关系怎样?BC与EF位置关系怎样?为什么?
[,BC∥EF
∵△ABC≌△DEF



又∵△ABC≌△DEF

∴BC∥EF]
3.已知:如图,,,,,求的大小.
[,,
∴△ACB≌△AED



∴]
二、新授
1.引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况.情况如何呢?
(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)
如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我们要探讨的课题.
2.问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢?
(应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,形成两边一对角.)
每一种情况下得到的三角形都全等吗?
3.做一做
(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为和,它们的夹角为,你能画出这个三角形吗?你画的与同伴画的一定全等吗?
换两条线段和一个角试试,你发现了什么?
同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的.
这就是判别三角形全等的另外一种简便的方法:
如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为(S.A.S.)
你能用相似三角形的判定法来解释这种“SAS”判定三角形全等的方法吗?
(一个角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,夹这个角的两边对应相等,这两个三角形的形状、大小都相同,即为全等三角形)
(2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为和,长度为的边所对的角为,情况会怎样呢?
请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
(两边及其中一边的对角对应相等,两个三角形不一定全等.)
4.范例
如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD.
解已知AB=AC,∠BAD=∠CAD,又AD为公共边,由(S.A.S.)全等判定法,可知
△ABD≌△ACD

三、巩固练习
四、小结
学生谈收获、体会、疑惑后,进一步总结本节学习了三角形全等的判定的另一种SAS,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件.
五、作业

文章来源:http://m.jab88.com/j/62762.html

更多

最新更新

更多