88教案网

全等三角形的判定

老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“全等三角形的判定”,仅供您在工作和学习中参考。

19.2全等三角形的判定(2)
【教学目标】
1.使学生掌握SAS的内容,会运用SAS来判定两个三角形全等;
2.通过判定全等三角形的判定的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;
3.经历如何总结出全等三角形判定方法,体会如何探讨、实践、总结,培养学生的合作能力.
【重点难点】
1.难点:三角形全等的判定:SAS;
2.重点:对全等三角形的判定的理解和运用.
【教学过程】
一、复习
1.什么叫全等图形?什么叫做全等三角形?
(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形).
2.将全等的△ABC与△DEF重合,再沿BC方向将△DEF推移如图位置,问线段AD与BE数量关系怎样?BC与EF位置关系怎样?为什么?
[,BC∥EF
∵△ABC≌△DEF



又∵△ABC≌△DEF

∴BC∥EF]
3.已知:如图,,,,,求的大小.
[,,
∴△ACB≌△AED



∴]
二、新授
1.引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况.情况如何呢?
(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)
如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我们要探讨的课题.
2.问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢?
(应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,形成两边一对角.)
每一种情况下得到的三角形都全等吗?
3.做一做
(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为和,它们的夹角为,你能画出这个三角形吗?你画的与同伴画的一定全等吗?
换两条线段和一个角试试,你发现了什么?
同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的.
这就是判别三角形全等的另外一种简便的方法:
如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为(S.A.S.)
你能用相似三角形的判定法来解释这种“SAS”判定三角形全等的方法吗?
(一个角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,夹这个角的两边对应相等,这两个三角形的形状、大小都相同,即为全等三角形)
(2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为和,长度为的边所对的角为,情况会怎样呢?
请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
(两边及其中一边的对角对应相等,两个三角形不一定全等.)
4.范例
如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD.
解已知AB=AC,∠BAD=∠CAD,又AD为公共边,由(S.A.S.)全等判定法,可知
△ABD≌△ACD

三、巩固练习
四、小结
学生谈收获、体会、疑惑后,进一步总结本节学习了三角形全等的判定的另一种SAS,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件.
五、作业

精选阅读

三角形全等的判定学案


学习目标
理解三角形全等的“边边边”的条件,并利用其解决问题;理解作一个角等于已知角的理由.
了解三角形的稳定性.
知识梳理:
1.三角形全等的条件:对应相等的两个三角形全等,简写为边边边或;
2.三角形具有稳定性;
3.尺规作图:
(1)只用直尺和作图的方法称为尺规作图;
(2)用直尺和圆规作一个角等于已知角:
学法指导:
例题如图,在四边形中,AB=DB,AC=DC,请问∠A和∠D相等吗?若相等,请写出证明过程;若不相等,请说明理由.

分析:要看∠A和∠D是否相等,可看△ABC和△DBC是否全等,又已知两边对应相等,可考虑是否第三边对应相等.
当堂训练1.如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.

2.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?

达标训练:
1.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是___________.
2.如图,已知OA=OB,AC=BC,∠1=30°,则∠ACB的度数是________.
3.如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?

4.已知如图,小明根据条件“AB=DC,AC=DB,AC、BD交于点O”,探索图形中的三角形全等关系时,他发现△ABC≌△DCB,而且△AOB≌△DOC.你同意小明的发现吗?请写出探索过程,并说明理由.

课后作业(夯实基础)
1.如图,中,,,
则由“”可以判定()
A.B.
C.D.以上答案都不对
2.如图,是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将分成两个全等三角形,则这样的点共有()
A.1个B.3个C.6个D.9个
3.下列结论错误的是()
A.全等三角形对应角所对的边是对应边B.全等三角形两条对应边所夹的角是对应角
C.全等三角形是一种特殊三角形D.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等
4.小明用四根竹棒扎成如图所示的风筝框架,已知,,下列判断不正确的是()..
(第4题)(第5题)(第6题)
A.B.C.D.
5.如图,中,,,,则________,__________.
6.如图,,,,找出图中的一对全等三角形,并说明你的理由.

7.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE的度数为__________.

8.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.

能力提高
9.在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在坐标平面内,当点C的坐标为或时,由点B、O、C组成的三角形与△AOB全等。
10.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD.
(1)求证:△ADB≌△ADC;(2)求证:∠ADB=∠ADC=90°;

11.如图,AD=CB,E、F是AC上两动点,且有DE=BF.
(1)若E、F运动至如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF.
(2)若E、F运动至如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?
(3)若E、F不重合,AD和CB平行吗?说明理由。
12.如图,在中,,分别为上的点,且,,.
求证:.

思维拓展
13.如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成一对全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.你能把它分成两对全等的三角形吗?试试看.

12.2.2三角形全等的判定(2)


每个老师需要在上课前弄好自己的教案课件,到写教案课件的时候了。教案课件工作计划写好了之后,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编帮大家编辑的《12.2.2三角形全等的判定(2)》,希望能对您有所帮助,请收藏。

12.2三角形全等的判定
第2课时三角形全等的判定(2)

【教学目标】
1.经历探索三角形全等的判定方法的过程,培养学生观察分析图形的能力和动手能力.
2.能灵活地运用三角形全等的条件,进行有条理的思考和简单推理,并能利用三角形的全等解决实际问题,体会数学与实际生活的联系.
3.培养学生的动手实践能力和严密的逻辑思维能力,进一步激发学习兴趣,培养良好的思维品质.
【重点难点】
重点:会用“边角边”证明两个三角形全等,得到线段或角相等.
难点:指导学生分析问题,寻找判定三角形全等的条件.

┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
问题:已知任意△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.
分析:(1)作∠MB′N=∠B;
(2)在射线B′M上截取B′A′=AB,在射线B′N上截取B′C′=BC;
(3)连接B′C′.采用学生操作确认的方式及直观演示验证法,让学生理解这一结论.加深学生对“边角边”公理的理解.在作图过程中,可能有的同学有困难,教师在巡视过程中,对有困难的学生及时指导,使学生操作规范.
二、师生互动,探究新知
探究1:让学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否能够完全重合.回忆作图过程,分析△ABC和△A′B′C′中相等的条件,与同伴交流.
分析:满足的条件:∠MB′N=∠B,B′A′=AB,B′C′=BC.
得到的结论:△ABC≌△A′B′C′.
学生总结.
板书:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”).
符号语言:学生自主写出,教师巡视指导.学生通过预习教材,知道了SAS公理,却不知该公理是怎样得到的,教师应让学生明确,明知正确的结论为什么还要去探究,因为探究的过程是对新知的重新理解的过程,也是个人体验的过程,别人不可能替代,另外探求问题的方法也是我们注意学习的内容,将注意力集中在表层的那一点内容上是不合适的.
三、运用新知,解决问题
例1如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
思路点拨:(1)证明线段相等、角相等的基本思路是证明三角形全等.
(2)从已知中可以得到几个条件?还差什么条件?
(3)图中有没有隐含条件?是什么?
例2是不是两条边和一个角对应相等,这样的两个三角形一定全等?你能举例说明吗?
如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B.
那么△ABC与△ABD全等吗?两边和其中一边的对角对应相等的两个三角形全等吗?
分析:通过学生观察和多媒体动画演示,可知两三角形不全等,所以不能作为判定三角形全等的依据,这里有一个思维跨度,学生不容易接受,只要让学生认可就行.通过测量池塘两端的距离这样一个实际问题,让学生综合应用了三角形全等的判定和性质,体验了数学来源于实践,又服务于实践的思想,同时使学生进一步熟悉推理论证的模式,进一步完善学生的证明书写.同时通过例题的讲解培养学生的审题、审图的习惯和能力.
此题目的设计主要是让学生了解两边和一边的对角对应相等,不能判定两个三角形全等,并进一步培养学生分析问题的能力.
四、课堂小结,提炼观点
判定三角形全等的方法有哪些?要注意什么问题?证明线段、角相等有什么思路?通过学生之间的交流、探讨活动,培养学生的协作精神,同时也释解心中的疑惑.
五、布置作业,巩固提升
(1)必做题:习题12.2第2、3题.
(2)选做题:
图1图2
如图1,点C在线段AB上,△ACM,△CBN都是等边三角形.求证:①△ACN≌△MCB;②如图2,若将△CBN绕点C旋转任意角度后,△ACN和△MCB还是全等的吗?若是,请给予证明.

【板书设计】
三角形全等的判定(2)
一、判定定理2:
两边及其夹角对应相等的两个三角形全等(简称为“边角边”或“SAS”).
二、几何符号语言:
三、例题:
【教学反思】
本节课的教学设计把学习中的发现、探究、研究等活动凸显出来,更多地由学生自己来发现问题、提出问题、分析和解决问题.通过学生参与探究,相互交流,突出学生是学习的主人,将课堂还给学生,体现学生的主体地位.抓住学生的好奇心,以疑激学,激起学生的求知欲,让学生主动建构、主动学习.同时,通过深入有效的评价,及时强化和矫正课程与教学的信息,更好地实现课程目的,提高教学质量,促进学生提高自我意识、自我调节、自我完善.

三角形全等的判定:SSS学案


老师会对课本中的主要教学内容整理到教案课件中,大家应该要写教案课件了。我们要写好教案课件计划,才能在以后有序的工作!你们会写多少教案课件范文呢?急您所急,小编为朋友们了收集和编辑了“三角形全等的判定:SSS学案”,欢迎您参考,希望对您有所助益!

【使用说明与学法指导】:
1.学生利用自习先预习课本第6、7页完成《课前预习案》(15分钟)。
2.组内探究、合作学习完成《课内探究》(20分钟)
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】1、能自己试验探索出判定三角形全等的SSS判定定理。
2、会应用判定定理SSS进行简单的推理判定两个三角形全等
3、会作一个角等于已知角.
【学习重点】:三角形全等的条件.
【学习难点】:寻求三角形全等的条件.
【学习过程】:
《课前预习案》
一、自主学习
1、复习:什么是全等三角形?全等三角形有些什么性质?
如图,△ABC≌△DCB那么
相等的边是:
相等的角是:
2、讨论三角形全等的条件(动手画一画并回答下列问题)
(1).只给一个条件:一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?

(2).给出两个条件画三角形,有____种情形。按下面给出的两个条件,画出的两个三角形一定全等吗?
①一组对应边相等和一组对应角相等

②两组对应边相等

③两组对应角相等

(3)、给出三个条件画三角形,有____种情形。按下面给出三个条件,画出的两个三角形一定全等吗?
①三组对应角相等

②三组对应边相等
已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
a.作图方法:

b.以小组为单位,把剪下的三角形重叠在一起,发现,这说明这些三角形都是的.
c.归纳:三边对应相等的两个三角形,简写为“”或“”.
d、用数学语言表述:
在△ABC和中,
∵∴△ABC≌()
用上面的规律可以判断两个三角形.“SSS”是证明三角形全等的一个依据.

《课内探究》
二、合作探究
1、如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.
证明:∵D是BC
∴=
∴在△和△中
AB=
BD=
AD=
∴△ABD△ACD()
温馨提示:证明的书写步骤:
①准备条件:证全等时需要用的间接条件要先证好;
②三角形全等书写三步骤:
A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。

2、如图,OA=OB,AC=BC.
求证:∠AOC=∠BOC.

3、尺规作图。
已知:∠AOB.求作:∠DEF,使∠DEF=∠AOB

4.本节课小结(我的收获)
(1)知识方面:
(2)学习方法方面:

三、课堂巩固练习.
1、如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC
《课后训练》
1、下列说法中,错误的有()个
(1)周长相等的两个三角形全等。(2)周长相等的两个等边三角形全等。(3)有三个角对应相等的两个三角形全等。(4)有三边对应相等的两个三角形全等
A、1B、2C、3D、4
2.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
解:∵BE=CF(_____________)
∴BE+EC=CF+EC
即BC=EF
在ΔABC和ΔDEF中
AB=________(________________)
__________=DF(_______________)
BC=__________
∴ΔABC≌ΔDEF(_____________)
3.如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。

﹡4.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.

文章来源:http://m.jab88.com/j/62560.html

更多

最新更新

更多