一名优秀的教师在每次教学前有自己的事先计划,作为教师就要好好准备好一份教案课件。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的教师教学。那么如何写好我们的教案呢?下面是小编为大家整理的“高考物理第一轮圆周运动专项复习”,相信能对大家有所帮助。
4.4圆周运动(二)
审核人:上课时间:编号:23
考纲要求与解读:
1、掌握竖直面圆周运动处理问题的方法。
2、熟练掌握两种模型的处理
【基础知识疏理】
一.常见竖直平面内的圆周运动最高点临界条件分析:
竖直平面内的圆周运动,是典型的变速圆周运动,对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现有关最高点的临界问题.
1.轻绳约束、单轨约束条件下,小球过圆周最高点:
(1)临界条件:小球达最高点时绳子的拉力或单轨的弹力刚好等于零,小球的重力提供向心力.
即:mg=mv临2/r
临界速度v临=(gr)1/2
(2)能过最高点的条件:v>v临(此时绳、轨道对球分别产生拉力、压力).
(3)不能过最高点的条件:v<v临(实际上球还没有到最高点就脱离了轨道).
2.轻杆约束、双轨约束条件下,小球过圆周最高点:
(1)临界条件:由于轻杆和双轨的支撑作用,小球恰能达最高点的临界速度v临=0.
(2)轻杆约束小球过最高点时,杆对小球的弹力:
①当v=0时,杆对小球有竖直向上的支持力,N=mg.
②当0<v<(gr)1/2时,杆对小球的支持力的方向竖直向上,大小随速度的增大而减小,其取植范围是mg>N>0.
③当v=(gr)1/2时,N=0.
④当v>(gr)1/2时,杆对小球有指向圆心的拉力,其大小随速度的增大而增大.
(3)图(b)所示的小球过最高点时,双轨对小球的弹力情况:
①当v=0时,内轨对小球有竖直向上的支持力,N=mg.
②当0<v<(gr)1/2时,内轨对小球有竖直向上的支持力N,大小随速度的增大而减小,其取植范围是mg>N>0.
③当v=(gr)1/2时,N=0.
④当v>(gr)1/2时,外轨对小球有竖直向下的压力,其大小随速度的增大而增大.
二.竖直平面内的圆周运动任意动力学问题处理方法:正交分解法.
将牛顿第二定律F=ma用于变速圆周运动,F是物体所受的外力,不一定是向心力,a是物体运动的加速度,不一定是向心加速度.采用正交分解法,沿法向(正方向沿着半径指向圆心),切向分解.法向合力为向心力,其作用是改变速度的方向,法向加速度即为向心加速度an,其大小反映速度方向变化的快慢.切向合力使物体产生切向加速度aτ,其作用是改变速度的大小.
【典型例题】
1、绳(单轨,无支撑)
例1:如图所示,小球以初速度为v0从光滑斜面底部向上滑,恰能到达最大高度为h的斜面顶部。右图中A是内轨半径大于h的光滑轨道、B是内轨半径小于h的光滑轨道、C是内轨半径等于h光滑轨道、D是长为的轻棒,其下端固定一个可随棒绕O点向上转动的小球。小球在底端时的初速度都为v0,则小球在以上四种情况中能到达高度h的有()
变式训练1、如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂.现让环与球一起以的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L.不计空气阻力,已知当地的重力加速度为.试求:
(1)在环被挡住而立即停止时绳对小球的拉力大小;
(2)在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
变式训练2、光滑的水平轨道AB,与半径为R的光滑的半圆形轨道BCD相切于B点,其中圆轨道在竖直平面内,B为最低点,D为最高点。一质量为m的小球以初速度v0沿AB运动,恰能通过最高点,则()
A.R越大,v0越大
B.R越大,小球经过B点后的瞬间对轨道的压力越大
C.m越大,v0越大
D.m与R同时增大,初动能Ek0增大
2、杆(双轨,有支撑)
例2轻杆OA长0.5m,在A端固定一小球,小球质量m为0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为v=0.4m/s,求在此位置时杆对小球的作用力.(g取10m/s2)
例3、(东台市2008届第一次调研)一内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径略小于细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,重力加速度用g表示.
(1)若此时B球恰好对轨道无压力,题中相关物理量满足何种关系?
(2)若此时两球作用于圆管的合力为零,题中各物理量满足何种关系?
(3)若m1=m2=m,试证明此时A、B两小球作用于圆管的合力大小为6mg,方向竖直向下.
变式训练3、如图所示,两个3/4圆弧轨道固定在水平地面上,半径R相同,A轨道由金属凹槽制成,B轨道由金属圆管制成,均可视为光滑轨道。在两轨道右侧的正上方分别将金属小球A和B由静止释放,小球距离地面的高度分别用hA和hB表示,对于下述说法,正确的是()
A.若hA=hB≥2R,则两小球都能沿轨道运动到最高点
B.若hA=hB=3R/2,由于机械能守恒,两小球在轨道上升的最大高度均为3R/2
C.适当调整hA和hB,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处
D.若使小球沿轨道运动并且从最高点飞出,A小球的最小高度为5R/2,B小球在hB2R的任何高度均可
3、外轨(单轨,有支撑)
例4在用高级沥青铺设的高速公路上,汽车的设计时速是108km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
变式训练4如图所示,小物块位于半径为R的半球形物体顶端,若给小物块一水平速度,则物块()
A.立即做平抛运动B.落地时水平位移为
C.落地速度大小为2D.落地时速度方向与地面成45°角
4、竖直面圆周运动的推广
例5如图所示,倾斜放置的圆盘绕着中轴匀速转动,圆盘的倾角为37°,在距转动中心0.1m处放一小木块,小木块跟随圆盘一起转动,小木块与圆盘的动摩擦因数为0.8,木块与圆盘的最大静摩擦力与相同条件下的滑动摩擦力相同。若要保持木块不相对圆盘滑动,圆盘转动的角速度最大值约为()
A.8rad/sB.2rad/s
C.D.
例6半径为R的光滑半圆球固定在水平面上,如图所示,顶部有一小物块.若使小物块无速度向右滑下,则物块是否能沿着球面一直滑到M点?如若不能,物块在何处与半圆球分离.
例7如图所示为电动打夯机的示意图,在电动机的转动轴O上装一个偏心轮,偏心轮的质量为m,其重心离轴心的距离为r,除偏心轮之外,整个装置其余部分的质量为M。当电动机匀速转动时,打夯机的底座在地面上跳动而将地面打实夯紧。分析并回答:
(1)为了使底座刚好跳离地面,偏心轮的最小角速度,应是多少?
(2)如果偏心轮始终以这个角速度ω0转动,底座对地面压力的最大值为多少?
教案课件是老师不可缺少的课件,大家应该要写教案课件了。在写好了教案课件计划后,这样接下来工作才会更上一层楼!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“高考物理第一轮运动图象专项复习”希望对您的工作和生活有所帮助。
第4课时运动图象
知识要点梳理
用图像研究物理现象、描述物理规律是物理学的重要方法,运动图象问题主要有:s-t、v-t、a-t等图像。
1.s-t图象。能读出s、t、v的信息(斜率表示速度)。
2.v-t图象。能读出s、t、v、a的信息(斜率表示加速度,曲线下的面积表示位移)。可见v-t图象提供的信息最多,应用也最广。
要点讲练:
例1、有两个光滑固定斜面AB和BC,A、C两点在同一水平面上,
斜面BC比AB长,下面四个图中正确表
示滑块速率随时间t变化规律的是:()
例2、AB两物体同时同地沿同一方向运动,如图a所示为A物体沿直线运动时的位置与时间关系图,如图b为B物体沿直线运动的速度时间图试问:(1)AB两物体在0——8秒内的运动情况;(2)AB两物体在8秒内的总位移和总路程分别是多少?
【例3】一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC。已知AB和AC的长度相同。两个小球p、q同时从A点分别沿AB和AC由静止开始下滑,比较它们到达水平面所用的时间
A.p小球先到
B.q小球先到
C.两小球同时到
D.无法确定
习题强化:
1某物体的运动图象如图,若图中x表示物体的位移,则物体()
A做往返运动B做匀速直线运动
C朝某一方向做直线运动D做匀变速直线运动
2若上题中x表示物体运动的速度,则应选的答案为()
3将一物体竖直上抛后,能正确反应速度V随时间t的变化的图线是()
4一个小孩在蹦床上做游戏,他从高处落在蹦床上又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他的运动速度随
时间变化的图线如图,图中oa段和cd段为直线,则:
(1)根据图线可知小孩和蹦床接触的时间为()
At2—t4Bt1—t4Ct1—t5Dt2—t5
(2)根据图线可知小孩的加速度随时间变化的图线应是()
5如图所示,为甲、乙两质点的运动图象,由图可知()
A2—3秒内,甲做匀减速运动
B在第2秒末,乙运动方向改变
C在0—2秒内,甲的加速度大小为2米/秒2
D在第3。5秒时刻,乙的速度大小为3米/秒
6甲、乙两质点同时同地沿同一直线运动,它们的V-t图象如图,则()
A甲在t1时刻改变运动方向B在t3时刻甲乙相距最远
C在t2时刻甲乙相距最远D甲在t2时刻改变运动方向
7有一物体做直线运动,其速度图象如图所示,那么,在什么时间内物体的加速度与速度同向()
A只有0<t<1sB只有2s<t<3s
C0<t<1s和2s<t<3s
D0<t<1s和3s<t<4s
9.三个质点同时同地沿直线运动的位移图像如图所示,则下列说法中正确的是()
A.在t0时间内,它们的平均速度大小相等B.在t0时间内,它们的平均速率大小相等
C.在t0时间内,Ⅱ、Ⅲ的平均速率相等D.在t0时间内,Ⅰ的平均速度最大
10.将物体竖直向上抛出后,如图所示,如果在上升阶段和下落阶段所受空气阻力大小相等,则:(1)能正确反映物体的速度(以竖直向上作为正方向)随时间变化的是()(2)能正确反映物体的速率随时间变化的是()
11、(扬州市2008届第四次调研)如图所示的位移(s)—时间(t)图象和速度(v)—时间(t)图象中,给出四条曲线1、2、3、4代表四个不同物体的运动情况,关于它们的物理意义,下列描述正确的是()
A.图线1表示物体做曲线运动B.s—t图象中t1时刻v1v2
C.v—t图象中0至t3时间内3和4的平均速度大小相等
D.两图象中,t2、t4时刻分别表示2、4开始反向运动
12、(苏北四市高三第三次调研)利用速度传感器与计算机结合,可以自动作出物体运动的图像.某同学在一次实验中得到的运动小车的速度—时间图像如图所示,以下说法错误的是()
A.小车先做加速运动,后做减速运动
B.小车运动的最大速度约为0.8m/s
C.小车的位移一定大于8m
D.小车做曲线运动
13、(南通、扬州、泰州三市2008届第二次调研)一质点自x轴原点出发,沿正方向以加速度a加速,经过to时间速度变为v0,接着以-a加速度运动,当速度变为-v0/2时,加速度又变为a,直至速度变为v0/4时,加速度再变为-a。,直至速度变为-v0/8……,其v-t图象如图所示,则下列说法中正确的是()
A.质点一直沿x轴正方向运动
B.质点将在x轴上—直运动,永远不会停止
C.质点最终静止时离开原点的距离一定大于v0t0
D.质点运动过程中离原点的最大距离为v0t0
14、(镇江市2008届期初教学情况调查)如图所示,光滑轨道MO和ON底端对接且ON=2MO,M、N两点高度相同,小球自M点由静止自由滚下,忽略小球经过O点时的机械能损失,以v、s、a、Ek分别表示小球的速度、位移、加速度和动能四个物理量的大小.下列图象中能正确反映小球自M点到N点运动过程的是()
15、(南通市2008届基础调研测)一辆汽车由静止开始运动,其v-t图象如图所示,则汽车在0~1s内和1s~3s内相比()
A.位移相等
B.平均速度相等
C.速度变化相同
D.加速度相同
16.(2008宁夏理综)甲乙两年在公路上沿同一方向做直线运动,它们的v-t图象如图所示。两图象在t=t1时相交于P点,P在横轴上的投影为Q,△OPQ的面积为S。在t=0时刻,乙车在甲车前面,相距为d。已知此后两车相遇两次,且第一次相遇的时刻为t′,则下面四组t′和d的组合可能是
A.t′=t1,d=SB.t′=
C.t′D.t′=
17.(2008广东物理)某人骑自行车在平直道路上行进,图6中的实线记录了自行车开始一段时间内的v-t图象。某同学为了简化计算,用虚线作近似处理,下列说法正确的是
A.在t1时刻,虚线反映的加速度比实际的大
B.在0-t1时间内,由虚线计算出的平均速度比实际的大
C.在t1-t2时间内,由虚线计算出的位移比实际的大
D.在t3-t4时间内,虚线反映的是匀速运动
第4课时原子核
【基础知识回顾】
一、原子核的组成
1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。核反应方程______________。
2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。核反应方程_________________。
3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。
4、天然放射现象
(1)人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。
(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽居里和皮埃尔居里经过研究发现了新元素钋和镭。
(3)用磁场来研究放射线的性质(图见3-5第74页):
①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。
二、原子核的衰变半衰期
1、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。)。γ射线是伴随α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。)。α衰变举例;β衰变举例。
2、半衰期:放射性元素的原子核有半数发生衰变需要的时间。放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。N=,m=。
三、放射性的应用与防护放射性同位素
1、放射性同位素的应用:a、利用它的射线(贯穿本领、电离作用、物理和化学效应);b、做示踪原子。
2、放射性同位素的防护:过量的射线对人体组织有破坏作用,这些破坏往往是对细胞核的破坏,因此,在使用放射性同位素时,必须注意人身安全,同时要放射性物质对空气、水源等的破坏。
四、核力与结合能质量亏损
1、由于核子间存在着强大的核力(核子之间的引力,特点:①核力与核子是否带电无关②短程力,其作用范围为,只有相邻的核子间才发生作用),所以核子结合成原子核(例_______________________)或原子核分解为核子(例____________)时,都伴随着巨大的能量变化。核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量叫原子核的结合能,亦称核能。
2、我们把核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。爱因斯坦在相对论中得出物体的质量和能量间的关系式_________________,就是著名的质能联系方程,简称质能方程。1u=_____________kg相当于____________MeV(此结论在计算中可直接应用)。
五、原子核的人工转变原子核在其他粒子的轰击下产生新核的过程,称为核反应(原子核的人工转变)。在核反应中电荷数和质量数都是守恒的。举例:(1)如α粒子轰击氮原子核发现质子;(2)1934年,约里奥居里和伊丽芙居里夫妇在用α粒子轰击铝箔时,除探测到预料中的中子外,还探测到了正电子。核反应方程_________________________这是第一次用人工方法得到放射性同位素。
六、重核的裂变轻核的聚变
1、凡是释放核能的核反应都有质量亏损。核子组成不同的原子核时,平均每个核子的质量亏损是不同的,所以各种原子核中核子的平均质量不同。核子平均质量小的,每个核子平均放的能多。铁原子核中核子的平均质量最小,所以铁原子核最稳定。凡是由平均质量大的核,生成平均质量小的核的核反应都是释放核能的。
2、1938年德国化学家哈恩和斯特拉斯曼发现重核裂变,即一个重核在俘获一个中子后,分裂成几个中等质量的核的反应过程,这发现为核能的利用开辟了道路。铀核裂变的核反应方程_____________________。
3、由于中子的增殖使裂变反应能持续地进行的过程称为链式反应。为使其容易发生,最好使用纯铀235。因为原子核非常小,如果铀块的体积不够大,中子从铀块中通过时,可能还没有碰到铀核就跑到铀块外面去了,因此存在能够发生链式反应的铀块的最小体积,即临界体积。
发生链式反应的条件是裂变物的体积大于临界体积,并有中子进入。应用有原子弹、核反应堆。
4、轻核结合成质量较大的核叫聚变。(例:________)发生聚变的条件是:超高温(几百万度以上),因此聚变又叫热核反应。太阳的能量产生于热核反应。可以用原子弹来引起热核反应。应用有氢弹、可控热核反应。
要点讲练:
【例1】铀裂变的产物之一氪90()是不稳定的,它经过一系列衰变最终成为稳定的锆86(),这些衰变
是()
A.1次衰变,6次衰变B.4次衰变
C.2次衰变D.2次衰变,2次衰变
【例2】放射性同位素在技术上有很多应用,不同的放射源可用于不同的目的,下表列出一些放射性同位素的半衰期和可供利用的射线:
对于以下几种用途,分别选取表中哪一种放射性元素作放射源.
(1)塑料公司生产聚乙烯薄膜,方法是让较厚的聚乙烯膜通过轧辊压薄,利用适当的放射线来测定通过轧辊后的薄膜厚度是否均匀.
(2)医生用放射性方法治疗肿瘤.
(3)放射源和控制器间相隔很小一段距离,若它们之间烟尘浓度比达某一设定的临界值,探测器探测到的射线强度将比正常情况下小得多,从而可通过自动控制装置,触发电铃,可发生火灾警报,预防火灾.
(4)用放射性同位素作示踪原子,用来诊断人体内的器官是否正常.方法是给被检查者注射或口服附有放射性同位素的元素的某些物质,当这些物质的一部分到达要检查的器官时,可根据放射性同位素的射线情况分析器官正常与否.
例3.一个U原子核在中子的轰击下发生一种可能的裂变反应,其裂变方程为U+n→X+Sr+n,则下列叙述正确的是()
A.X原子核中含有86个中子
B.X原子核中含有141个核子
C.因为裂变时释放能量,根据E=mc2,所以裂变后的总质量数增加
D.因为裂变时释放能量,出现质量亏损,所以生成物的总质量数减少
【例4】一个质子和一个中子聚变结合成一个氘核,同时辐射一个光子.已知质子、中子、氘核
的质量分别为m1、m2、m3,普朗克常量为h,真空中的光速为c.下列说法正确的是()
A.核反应方程是B.聚变反应中的质量亏损Δm=m1+m2-m3
C.辐射出的光子的能量E=(m3-m1-m2)cD.光子的波长=
【例5】有下列4个核反应方程
(1)a、b、c、d四种粒子依次是()
(2)上述核反应依次属于()
A.衰变、人工转变、人工转变、聚变B.裂变、裂变、聚变、聚变
C.衰变、衰变、聚变、聚变D.衰变、裂变、人工转变、聚变
强化练习:
1.2006年美国和俄罗斯的科学家利用回旋加速器,通过Ca(钙48)轰击Cf(锎249)发生核反应,成功合成了第118号元素,这是迄今为止门捷列夫元素周期表中原子序数最大的元素.实验表明,该元素的原子核先放出3个相同的粒子x,再连续经过3次衰变后,变成质量数为282的第112号元素的原子核,则上述过程中的粒子x是()
A.中子B.质子C.电子D.粒子
2.U放射性衰变有多种可能途径,其中一种途径是先变成Bi,而Bi可以经一次①衰变变成X(X代表某种元素),也可以经一次②衰变变成Ti,X和Ti最后都变成Pb,衰变路径如图所示.则图中的()
A.a=84,b=206
B.①是β衰变,放出电子,电子是由中子转变成质子时产生的
C.②是β衰变,放出电子,电子是由中子转变成质子时产生的
D.U经过10次β衰变,8次衰变可变成Pb
4.正电子(PET)发射计算机断层显像,它的基本原理是:将放射性同位素15O注入人体,参与人体的代谢过程.15O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图象.根据PET原理,回答下列问题:
(1)写出15O的衰变和正负电子湮灭的方程式.
(2)将放射性同位素15O注入人体,15O的主要用途是()
A.利用它的射线B.作为示踪原子C.参与人体的代谢过程D.有氧呼吸
(3)设电子质量为m,电荷量为q,光速为c,普朗克常量为h,则探测到的正负电子湮灭后生成的光子的波长=.
(4)PET中所选的放射性同位素的半衰期应(填“长”或“短”或“长短均可”)
5.在下列四个核反应方程中,x表示He,且属于聚变的反应是()
A.U+n→Sr+Xe+3xB.H+H→x+nC.P→Si+xD.Mg+x→Al+H
12.一个原来静止的锂核()俘获一个速度为7.7×104m/s的中子后,生成一个氚核和一个氦核,已知氚核的速度
大小为1.0×103m/s,方向与中子的运动方向相反.
(1)试写出核反应方程.
(2)求出氦核的速度.
(3)若让一个氘核和一个氚核发生聚变时,可产生一个氦核同时放出一个中子,求这个核反应释放出的能量.(已知氘核质量为mD=2.014102u,氚核质量为mT=3.016050u,氦核的质量mHe=4.002603u,中子质量mn=1.008665u,1u=1.6606×10-27kg)
4.1曲线运动运动的合成与分解
审核人:上课时间:编号20
考纲要求:
1、知道物体做曲线运动的条件
2、会对具体的运动进行运动的合成与分解
【基础知识梳理】
1.曲线运动的条件:,
2.曲线运动的特点:
①在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的方向。
②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。
③做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
④做曲线运动的质点,其加速度方向一定指向曲线凹的一方。
3.运动的合成和分解:物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做;由已知的合运动求跟它等效的分运动叫做。
4.运动的合成与分解基本关系:
①分运动的独立性;②运动的等效性;③运动的等时性;④运算法则。
5.互成角度的两分运动合成的几种情况
①两个匀速直线运动的合运动是
②两个初速度为零的匀加速直线运动的合运动是
③一个匀加速直线运动和一个匀速直线运动的合运动是
④两个初速度不为零的匀加速直线运动的合运动可能是运动,也可能是运动。
【典型例题】
1、对曲线运动的理解:
例1下列关于运动和力的叙述中,正确的是()
A.做曲线运动的物体,其加速度方向一定是变化的
B.物体做圆周运动,所受的合力一定指向圆心
C.物体所受合力方向与运动方向相反,该物体一定做直线运动
D.物体运动的速率在增加,所受合力方向一定与运动方向相同
例2.水滴自高处由静止开始下落,至落地前的过程中遇到水平方向吹来的风,则()
A.风速越大,水滴下落的时间越长B.风速越大,水滴落地时的瞬时速度越大
C.水滴着地时的瞬时速度与风速无关D.水滴下落的时间与风速无关
变式训练1.一个物体以初速度v0从A点开始在光滑水平面上运动,一个水平力作用在物体上,物体的运动轨迹如图1中的实线所示,图中B为轨迹上的一点,虚线是过A、B两点并与轨迹相切的直线,虚线和实线将水平面划分5个区域,则关于施力物体的位置,下面说法正确的是()
A.如果这个力是引力,则施力物体一定在④区域
B.如果这个力是引力,则施力物体一定在②区域
C.如果这个力是斥力,则施力物体可能在②区域
D.如果这个力是斥力,则施力物体一定在④区域
2、运动的合成
例3、质量为1kg的物体在水平面直角坐标系内运动,已知两互相垂直方向上的的速度-时间图象如图所示.下列说法正确的是()
A.质点的初速度为5m/s
B.质点所受的合外力为3N
C.2s末质点速度大小为7m/s
D.质点初速度的方向与合外力方向垂直
例4如图所示,一玻璃管中注满水,水中放一软木做成的小圆柱体R(圆柱体的直径略小于玻璃管的直径,轻重大小适宜,使它在水中能匀速上浮)。将玻璃管的开口端用胶塞塞紧(图甲)。现将玻璃管图倒置(图乙),在软木塞上升的同时,将玻璃管水平向右匀加速移动,观察软木塞的运动,将会看到它斜向右上方运动。经过一段时间,玻璃管移至图丙中虚线所示位置,软木塞恰好运动到玻璃管的顶端,在四个图中,能正确反映软木塞运动轨迹的是()
变式训练2如图所示的塔吊臂上有一可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩。在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起,A、B之间的距离以d=H一2t2(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化,则物体做()
A.速度大小不变的曲线运动
B.速度大小增大的曲线运动
C.加速度大小、方向均不变的曲线运动
D.加速度大小、方向均变化的曲线运动
3、运动的分解
例5如图所示,在水平面上小车A通过光滑的定滑轮用细绳拉一物块B,小车的速度为v1=5m/s。当细绳与水平方向的夹角分别为30°和60°时,物块B的速度v2为________m/s。
变式训练3如图所示,已知小车A和物体B的质量分别为M和m,小车A在物体B的牵引下以速度v水平向左匀速运动(不计滑轮和绳子质量以及滑轮和轴之间的摩擦),在此过程中()
A.B匀速下降B.绳子的拉力大于B的重力
C.B重力做的功与A克服摩擦力做的功相等
D.B机械能的减少与A克服摩擦力做的功相等
例9船在静水中速度为v1,水流速为v2,河宽为d,求:
(1)当v1>v2时,渡河最短时间与最短位移.
(2)当v1<v2时,渡河最短时间与最短位移.
(3)若已知水流速为v1,船要沿与河岸成α角的方向到达下游对岸某处,则船速至少应多大?
跟踪练习:
1、在地面上观察下列物体的运动,其中物体做曲线运动的是()
A.正在竖直下落的雨滴突然遭遇一阵北风
B.向东运动的质点受到一个向西方向力的作用
C.河水匀速流动,正在河里匀加速驶向对岸的汽艇
D.在以速度v前进的列车尾部,以相对列车的速度v水平向后抛出的小球
2、一质点在某段时间内做曲线运动,则在这段时间内()
A.速度一定不断改变,加速度也一定不断改变B.速度一定不断改变,加速度可以不变
C.速度可以不变,加速度一定不断改变D.速度可以不变,加速度也可以不变
3、一个质量为2kg的物体,在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15N和20N的两个力,关于此后该物体运动的说法中正确的是()
A.一定做匀变速直线运动,加速度大小可能是5m/s2
B.可能做匀减速直线运动,加速度大小是2m/s2
C.一定做匀变速运动,加速度大小可能是15m/s2
D.可能做匀速圆周运动,向心加速度大小可能是5m/s2
4、一只小船在静水中的速度大小始终为5m/s,在流速为3m/s的河中航行,则河岸上的人能看到船的实际航速大小可能是()
A.1m/sB.3m/sC.8m/sD.10m/s
5、(如图所示,河水的流速为4m/s,一条船要从河的南岸A点沿与河岸成30°角的直线航行到北岸下游某处,则船的开行速度(相对于水的速度)最小为()
A.2m/sB.3m/sC.4m/sD.5m/s
6、我国“嫦娥一号”探月卫星经过无数人的协作和努力,终于在2007年10月24日晚6点多发射升空。如图所示,“嫦娥一号”探月卫星在由地球飞向月球时,沿曲线从M点向N点飞行的过程中,速度逐渐减小。在此过程中探月卫星所受合力方向可能的是()
★7.如图,以速度v沿竖直杆匀速下滑的物体A,用钢绳通过定滑轮拉物体B在水平面上运动,当绳与水平面夹角为θ时,物体B运动速率为多少?
★8、如图甲所示,在一端封闭、长约lm的玻璃管内注满清水,水中放一个蜡烛做的蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.假设从某时刻开始计时,蜡块在玻璃管内每1s上升的距离都是10cm,玻璃管向右匀加速平移,每1s通过的水平位移依次是2.5cm、7.5cm、12.5cm、17.5cm.图乙中,y表示蜡块竖直方向的位移,x表示蜡块随玻璃管通过的水平位移,t=0时蜡块位于坐标原点.
(1)请在图乙中画出蜡块4s内的轨迹;
(2)求出玻璃管向右平移的加速度;
(3)求t=2s时蜡块的速度v.
★9.在光滑水平面上放一滑块,其质量m=1kg,从t=0时刻开始,滑块受到水平力F的作用,F的大小保持0.1N不变.此力先向东作用1s,然后改为向北作用1s,接着又改为向西作用1s,最后改为向南作用1s.以出发点为原点,向东为x轴正方向,向北为y轴正方向,建立直角坐标系.求滑块运动4s后的位置及速度,并在图中画出其运动轨迹.
文章来源:http://m.jab88.com/j/60860.html
更多