88教案网

八年级数学下册《一元一次不等式和一元一次不等式组》知识点归纳北师大版

老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“八年级数学下册《一元一次不等式和一元一次不等式组》知识点归纳北师大版”,仅供参考,希望能为您提供参考!

八年级数学下册《一元一次不等式和一元一次不等式组》知识点归纳北师大版

第一章一元一次不等式和一元一次不等式组

一、不等关系

1、一般地,用符号(或≤),(或≥)连接的式子叫做不等式.

2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

3、准确翻译不等式,正确理解非负数、不小于等数学术语.

非负数===大于等于0(≥0)===0和正数===不小于0

非正数===小于等于0(≤0)===0和负数===不大于0

二、不等式的基本性质

1、掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果ab,那么a+cb+c,a-cb-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果ab,并且c0,那么acbc,.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果ab,并且c0,那么ac

2、比较大小:(a、b分别表示两个实数或整式)

一般地:

如果ab,那么a-b是正数;反过来,如果a-b是正数,那么ab;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

ab===a-b0

a=b===a-b=0

aa-b0

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

三、不等式的解集:

1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

3、不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:(合同范本网 36gH.CoM)

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

四、一元一次不等式:

1、只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.

2、解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

3、解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(不等号的改变问题)

4、一元一次不等式基本情形为axb(或ax

①当a0时,解为;

②当a=0时,且b0,则x取一切实数;

当a=0时,且b≥0,则无解;

③当a0时,解为;

5、不等式应用的探索(利用不等式解决实际问题)

列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意.

五、一元一次不等式与一次函数

六、一元一次不等式组

1、定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

2、一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.

几个不等式解集的公共部分,通常是利用数轴来确定.

3、解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.

两个一元一次不等式组的解集的四种情况(a、b为实数,且a

一元一次不等式解集图示叙述语言表达

xb两大取较大

xa两小取小

a

无解在大小分离没有解

(是空集)

延伸阅读

《一元一次不等式和一元一次不等式组》期末复习提纲


《一元一次不等式和一元一次不等式组》期末复习提纲

第一章一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本
性质1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac
不等式的其他性质:反射性:若ab,则b传递性:若ab,且bc,则ac
三、解不等式的步骤:
1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

一元一次不等式组


9.3一元一次不等式组(1)
一、学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;
3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:
1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:
问题情境:
现有两根木条a和b,a长10cm,b长3cm.如果再找一根木条。,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?
如果设木条长xcm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10-3.类似于方程组引出一元一次不等式组的概念和记法.
探究新知:
解下列不等式组

解:解不等式(1),得x>1,
解不等式(2),得x>-4.
在同一条数轴上表示不等式(1)、(2)的解集如图:
所以,原不等式组的解是x>1

巩固新知:P140,1,P141,1
归纳总结:不等式解集取值法则“同大取大,同小取小,大小取中,矛盾无解”。若ab:
①当时,则不等式的公共解集为;②当时,不等式的公共解集为;
③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,2
2、解不等式组:(1);(2)
(3);(4)
3、若不等式组无解,求m的取值范围。

4、解不等式组,并将解集在数轴上表示出来。

5、解不等式组:(1);(2)
6、解不等式:(1);(2)

★7、若关于x的不等式组的解集是,则下列结论正确的是()
A.B.C.D.
8、若方程组的解是负数,则的取值范围是()
A.B.C.D.无解
★9、若,则x为()
A.B.C.或D.
10、已知方程组的解为负数,求m的取值范围.
11、若解方程组得到的x,y的值都不大于1,求m的取值范围.

12、解不等式:★(1)(2)

★13、若不等式组的解集为,求的值.

14、已知方程组的解满足,求m的取值范围.
15、在中,已知,试求x的取值范围.

★16、解不等式组:(1)(2)

9.3一元一次不等式组(2)

一、学习目标:
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
二、学习难点:
1、重点:建立不等式组解实际问题的数学模型。
2、难点:正确分析实际问题中的不等关系,列出不等式组。
三、学习过程:
问题情境:
阅读教科书第139页例2。
(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

巩固新知:P140,2,P141,4,5,6,9
归纳总结:应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)。
作业:
1、已知方程组有正整数解,则k的取值范围是_________。
2、若不等式组无解,求a的取值范围。
3、当2(m-3)时,求关于x的不等式x-m的解集。

4、某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?

5、某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数。

6、乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内都需付10元车费),达成或超过5km后,每增加1km,加价1.2元(不足1km部分按1km计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?

不等式与不等式组测试

一、选择题(每题4分,共32分)
1.不等式的解集是,那么a的取值范围是…………………()
A.B.C.D.
2.不等式的正整数解的个数是………………………………()
A.1B.2C.3D.4
3.把不等式组的解集表示在数轴上,正确的是…………………()
4.三个连续正整数的和小于15,这样的正整数组有几组…………………()
A.1B.2C.3D.4
5.若不等式组的解集是,则a的取值范围是…………………()
A.B.C.D.
6.足球比赛的记分规则是胜一场得3分,平一场得1分,负一场得0分.一个队共进行14场比赛,得分不少于20分,那么该队至少胜了………………()
A.3场B.4场C.5场D.6场
7.如果2m、m、1-m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围…………………………………………………………………()
A.m>0B.m>C.m<0D.0<m<
8.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打………………()
A.6折B.7折C.8折D.9折
二、填空题(每题3分,共18分)
9.用不等式表示“x与8的差是非负数”_______________.
10.若代数式的值不小于0,则x的取值范围是_____________.
11.若不等式的解集是,则a的取值范围是_________.
12.若大于,则x的取值范围是_______.
13.如果关于x的方程的解是正数,则k的取值范围是_________.

14.若的解集是,则a的取值范围是_________.

三、解下列不等式(组),并把解集在数轴上表示出来(每题8分,共32分)
15.

四、解答下列各题(每题6分,共18分)
19.某公园的票价是:每人10元;一次购票满30张,每张可少收2元.某班有26名同学
去公园游玩,当班长准备好了钱到售票处买26张票时,爱动脑筋的数学课代表喊住班长,他提议买30张票,但有的同学不明白,明明只有26人,买30张票,岂不是“浪费”吗?咱们不妨帮他算一算.
按实际人数买票26张,要付260元;买30张票付8×30=240(元),显然买30张票合算.
我们自然想到这样的问题:如果某班的同学不超过30人去公园,那么去多少人买30张票合算呢?请你帮助解决这个问题.

20.按国家的有关规定,个人发表文章、出版图书获得的稿费的纳税计算方法是:⑴稿费不
高于800元的不纳税;⑵稿费高于800元又不高于4000元的应缴纳超过800元的那一部分的稿费的14%的税;⑶稿费高于4000元应缴纳全部稿费的11%的税.今王老师获得一笔稿费,并缴纳个人所得税不超过420元,问王老师这笔稿费最多是多少元?

21.七(2)班共有50名学生,老师安排每人制作一件型或型的陶艺品,学校现有甲
种制作材料36,乙种制作材料29,制作、两种型号的陶艺品用料情况如下表:
需甲种材料需乙种材料
1件型陶艺品0.90.3
1件型陶艺品0.41
(1)设制作型陶艺品件,求的取值范围;
(2)请你根据学校现有材料,分别写出七(2)班制作型和型陶艺品的件数.

文章来源://m.jab88.com/j/59613.html

更多

猜你喜欢

更多

最新更新

更多