88教案网

八年级下册《众数与中位数》教案分析

八年级下册《众数与中位数》教案分析

教学内容和地位:
众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。
教学重点和难点:
本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。
教学目标分析:
认知目标:
(1)使学生认知众数、中位数的意义;
(2)会求一组数据的众数、中位数。
能力目标:
(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。
(2)在问题解决的过程中,培养学生的自主学习能力;
(3)在问题分析的过程中,培养学生的团结协作精神。
情感目标:
(1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;
(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。
教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库
教法与学法:
根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。
教学过程:

教学过程:

教学内容及教师活动

学生活动

设计意图

1.创设情境,提出问题:

[引入]首先我们一起看生活中的一个故事。(多媒体网络课件通过网络广播演示)

[内容]王老板有一个工厂,管理人员有王老板、6个亲戚;工作人员有5个领工、10个工人和1名徒。现在需要增加一名新的工人。小张应征而来,与王老板交谈。王老板说:“我们这里的工资很高,平均每月300元。”小张工作一个月后,找王老板说:“你骗了我,每一个工人的工资都不超过200元,平均工资怎么可能超过300元呢?”王老板说:“平均工资是300元,不信你可以看工资表。”

人员

老板

亲戚

领工

工人

学徒

合计

工资

2200

25

220

200

100

----

人数

1

6

5

10

1

23

合计

2200

1500

1100

2000

100

6900

(多媒体展示问题)请大家根据表中的数据讨论:

(1)王老板说每月工资是300元是否欺骗了小张?

(2)平均工资300元能否客观地反映工人的平均工资?

(3)若不能,你认为应该用什么工资反映比较合适?

2.合作讨论,探索新知

[问]为什么?请你说一说你的理由?

教师通过网络观察部分典型问题,进行个别点评。

[评价]分析正确,有理有据,那么你以为应该根据什么反映工资比较合理呢?

教师选择比较有典型意义的讨论重点实验广播,让全班同学对其进行评价。使学生认识到平均数已不能反映这样一组数据的特征。

[评价]大家分析的都不错,尤其是学生3和4的分析很有见解。用“大多数人的工资”以及用“中等水平的工资”来反映比较合理。这就是今天我们要学习的内容——中位数、众数(展出课题)

3.理性概括,纳入系统

[出示目标](前文有,略)(通过网络广播向学生展示)

[出示学习思考问题]

(1)用自己的语言阐述中位数、众数的概念;

以下(1)-(4)的问题请学生将内容答案填写在课件主页的Word表格中。

[问]定义中位数时,为什么要补充中间两个数的平均数。

[练习](通过网络广播向学生展示)

①在一次数学考试中,20名学生的成绩如下:

708010060709050808070709080908070906080求这次考试的众数。

②10名工人某天生产同一种零件的个数:

15171410151917161412求这一天10名工人生产零件的中位数。

(2)指出两个概念的联系和区别;

(3)在一组数据中,平均数、中位数、众数都是唯一的吗?

[问]你能举出实例吗?

从BBS上找出优秀的例子进行点评。

(4)在同一组数据中,平均数、中位数、众数可不可能都是同一个数?试举例说明。

教师对平均数、中位数、众数的联系和区别进行总结。(发布在公告栏上)

4.指导应用,鼓励创新【m.jz139.cOM 迷你句子网】

讨论如下几道题。(从资源库中抽取)

①某工厂生产销售一批女鞋30双,其中各种尺码的销售量如下表:(单位:双)

尺寸

22

22.5

23

23.5

24

24.5

25

1

2

5

11

7

3

1

(1)计算30双女鞋尺寸的平均数、中位数和众数。

(2)从实际出发,请回答(1)中三种统计特征量对指导生产有否实际意义?

(3)试举例说明众数在日常生活生产中的应用。

教师进行有针对性点评,肯定好的想法与设想。并在BBS上公布。

②甲、乙两个班进行电脑汉字录入速度比赛,参赛学生每分钟录入电脑中的字数统计后得下表:

思考:比较两个班级的学生的平均成绩,优秀率(每分钟录入汉字数≥150)的高低。

班级

参加人数

中位数

平均数

55

149

135

55

151

135

③某工厂为了改变管理状况,准备采用每天任务定额,超产的有奖措施,以提高工作效率。下面是该厂15个工人一天内生产零件的个数:6、7、7、8、8、8、8、9、10、10、13、14、16、16、17,如果你是管理者,每天每人标准生产多少件为最好?

通过网络监察选择平均数的学生的答案[问]如果你是工人,你愿意吗?

通过网络监察选择众数的学生的答案[问]如果你是老板,你愿意吗?

[总结]用数据说话时,要结合具体的实际问题进行全面的分析,制定科学的决策。

5.归纳小结,反思提高

[结]请大家回忆一下本节课我们学到了什么?

[结]刚才两位同学小结比较全面。其实我们通过本节课的学习,发现我们生活在一个神奇的数学世界中,你若用心地以数学的眼光观察它,生活中到处都充满了数学的原理,我们不但要学好数学,还要学会如何应用数学。

[作业]

(1)如果你去找工作,你会怎样了解工资报酬?

(2)课后大家到市场或单位对一些产品的有关数据进行统计,然后利用我们所的知识进行分析,能不能制定一个合理的决策。

边听教师讲解,边看引导画面。

听讲,思考问题。此问题激起学生认知的矛盾,学生非常兴奋,思非常活跃。

将自己的见解发表在BBS上。

算一算;议一议。

学生1:平均工资是300元,老板没有欺骗小张;

学生2:不对,因为300元不能客观地反映工人的平均收入;

学生2:因为老板每月2200元,而剩下的22人的工资之和也只有4700元,这样放在一起计算不公平,它把所有工人的平均工资都提高了。

学生2:去掉老板和学徒的工资,求剩下的21个人的平均工资——219元比较合适。

学生3:我认为用领的工资反映比较合理,220元比亲戚的工资低,但比工人的工资高,处于中等水平。

学生4:我认为小张是当工人的,应该用工人的工资反映比较合理。

学习学习目标,认识本节课的学习任务。

根据学习目标,带着问题,自学课本。

学生5:在一组数据中出现次数最多的数是众数。将一组数据按大小顺序排列,把处在中间的一个数(或两个数的平均数)叫这组数据的中位数。

学生6:因为数据个数可能是偶数

根据问题,根据学习内容在BBS或论坛上发表自己的看法与想法。

学生6:因为在这一组中80出现了7次,次数最多,所以众数是80

学生7:将这一组数据按从小到大的顺序排列,排在中间的两个数都是15,所以中位数是15。

学生8:众数是一组数据中出现次数最多的,强调的“出现次数”,中位数是一组数据中间的一个数。(按大小顺序排列)

学生9:平均数的中位数都是唯一的,众数不一定。

学生10:例如一组数1、1、2、2平均数是1.5,中位数是1.5,但众数却是1和2。

学生11:平均数、中位数、众数可能为同一个数。例如;1、1、1、1四个数。

认真审题,弄清题目的要求。

通过计算说明:

学生12:中位数、众数、平均数都是23.5

学生13:我认为众数有实际意义,它能说明尺码是23.5的鞋好卖。

学生大胆想象,将自己的想法发表在BBS上。

学生16:平均数都一样,都是135。优秀率乙班要比甲班好一些。甲班第28个人的成绩是149,乙班第28个人的成绩是151,它后面的数都超过150,所以乙班优秀的人数要比甲班多。

分组讨论,积极思考,将自己的见解发表在BBS上。

学生17:用平均数,平均数是10.5,这样工厂每天可以生产更多的产品。

学生18:不愿意,因为这个数全厂只有5个人可以完成任务。

学生19:用众数8。

学生20:不愿意,因为这样会降低本厂的效益。

学生21:用中位数9比较合适。

学生21:本节课我们学习了中位数、众数的概念,学会如何求一组数据的中位数与众数。

学生22:还学习了中位数、众数在日常生活中的应用,要注意结合实际的问题选择合适的统计量进行评价一个问题。

准备材料,回家调查研究问题。将自己选择的作业完成后发送到[emailprotected]中。

新课伊始,通过创设情境,可以为学生提供一个活生生的生活情境,提供一个真实的问题。激起学生认知的矛盾。因为疑问是建构教学的起点,它可以提示学生认知上的矛盾,可以对学生的心理智力产生刺激,问题是知识递进的需要,也是学生在先前的探索活动中产生的疑点。在问题的情培中发现,有利于建立新的认知结构。

学生可以通过BBS或论坛发表自己的见解,及时在一起交流。

学生之间各自发表自己的见解,相互评价,相互完善,相互学习在自主探索中发现概念的形成过程,在合作学习中提高学生的整体认识水平。同时教师作为主导作用参与到论坛中去,以让学生形成比较全面的、正确的认知结构。

向学生展示学习目标是为了避免信息技术的形式使教学目标淡化,造成学习目标不明确。

通过自学的形式,学生自己对两个概念进行归纳整理,通过比较概念之间的区别和联系,提示实质,形成新的认知结构。并且学生之间在讨论中相互补充,使学生的知识和能力得到不断的完善和提高,同时也培养了团结协作精神。

体现了网络信息的工具性,提高学生学习的积极性、主动性和创造性,有利于学生自主的去构建知识网络。

问题(1)在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别。

问题(2)带有很强的生活色彩,体现了众数在日常生活中的指导意义。

问题(3)培养学生的迁移能力。

由已知中位数估计“中间”位置,对培养学生的逆向思维有一定的作用。

本题是一个开放性问题,要求学生会用数据从多角度万里长城分析,制定科学决策,在用数学中学会创新。以上三个题目,循序渐进,强化学生对知识的理解,促进知识的迁移、深化、巩固、完善知识结构。鼓励学生用数学的眼光分析实际问题,增强用数学的意识,在问题解决的过程中学会创新。

主要让学生总结本节课两个概念的发现过程,运用概念分析问题的过程。唯有反思,才能控制思维的操作过程。

设计两个开放性的总理,可以强化教学内容,也体现了对学生未来生存能力和研究性学习能力的培养。

相关知识

中位数与众数


第八章数据的代表
总课时:4课时使用人:
备课时间:第十五周上课时间:第十六周
第3课时:
教学目标
知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。
过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。
情感态度与价值观:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度。
教学重点:求出一组数据的中位数、众数
教学难点:利用平均数、中位数、众数解决问题
教学过程
第一环节:情境引入(5分钟,学生小组合作探究)
内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。下面请看一例:
某次数学考试,小英得了78分。全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。小英对妈妈说的情况属实吗?你对此有何看法?
引导学生展开讨论,作出评判:
平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的。原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。
怎样说明这个问题呢?我们需要学习新的数据代表—中位数与众数。
第二环节:合作探究(20分钟,教师点拨,学生合作解决,全班交流)
内容:问题:某公司员工的月工资如下:
员工经理副经理职员A职员B职员C职员D职员E职员F杂工G
月工资/元60004000170013001200110011001100500

经理说:我公司员工收入很高,月平均工资为2000元。
职员C说:我的工资是1200元,在公司算中等收入。
职员D说:我们好几个人工资都是1100元。
一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?
你怎样看待该公司员工的收入?
学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励。
在学生讨论交流的基础上,教师进行点拨:
上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:
(1)月平均工资2000元,指所有员工工资的平均数是2000元,但只有正副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了。
(2)职员C的工资是1200元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1200元是这组数据的中位数。
(3)9个员工中有3个人的工资为1100元,出现的次数最多,我们称1100元是这组数据的众数。
议一议:你认为用哪个数据表示该公司员工收入的平均水平更合适?
让学生讨论,充分发表不同的观点,然后归纳起来:用中位数1200元或众数1100元表示该公司员工收入的平均水平更合适些,因为平均数2000元受到了极端值的影响。
结合上述问题的探究,引入中位数、众数的概念:
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两
个数据的平均数)叫做这组数据的中位数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”。
让学生用中位数、众数的概念回头望,解释引例中小英的数学成绩的问题。
第三环节:运用提高(10分钟,学生独立完成,全班交流)
内容:1.对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法正确的是()
A.这组数据的众数是3;
B.这组数据的众数与中位数的数值不等;
C.这组数据的中位数与平均数的数值相等;
D.这组数据的平均数与众数的数值相等。
答案:A
2.2000—2001赛季上海东方大鲨鱼篮球队队员身高的中位数、众数分别是多少?(课本213页)
3.(1)你课前所调查的50名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?
(2)你认为学校商店应多进哪种尺码的男式运动鞋?
第四环节:课堂小结(5分钟,学生思考问题,总结回顾)
内容:议一议:平均数、中位数和众数有哪些特征?
学生讨论交流,师生共同总结特征:
1.用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响。
2.用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势”。
3.用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响。当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量。
要根据不同的实际需要,确定是用平均数、中位数还是众数来映数据的平均水平。
第五环节:布置作业
课本习题8.3。

中位数与众数(1)教案


§20.1.2中位数与众数(1)
年级:八年学科:数学课型:新授课设计:

教师寄语:能够在解决问题的过程中获得某些结论,才真正达到数学学习的目的!

一、学习目标及重、难点:
1、掌握中位数的概念,会求一组数据的中位数。
2、能应用中位数知识分析解决实际问题。
3、初步感受中位数的特点及其与平均数的区别与联系。
重点:掌握中位数的概念,能应用中位数知识分析解决实际问题。
难点:感受中位数的特点及其与平均数的区别与联系。
二、自主学习:
(一)知识我先懂:
平均数:。
给力小贴士:1、若数据的个数是偶数,则中间两个数据的称为这组数据的中位数。
2、求解中位数应先将所有数据。
(二)自主检测小练习:
1、数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是。
2、一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。
三、新课讲解:
引例:在一次数学竞赛中,5名学生的成绩从低分到高分排列顺序是:55,57,61,62,98,处在最中间的数是。如果是6名学生的成绩从低分到高分排列顺序是:55,57,61,62,75,98,处在最中间的数有和,这两个数的平均数是。
归纳:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的数;如果数据的个数是偶数,则中间两个数据的称为这组数据的数。
(一)例题讲解:
例1、10名工人某天生产同一零售,生产的件数是:
15,17,14,10,15,19,17,16,14,12
求这一天10名工人生产的零件的中位数。
解:将10个数据按从小到大的顺序排列,得到:
最中间两个数据都是,它们的平均数是,即这组数据的中位数是(件).

答:这一天10人生产的零件的中位数是件。

例2、在一次男子马拉松长跑比赛中,抽得12名选手的成绩(单位:分)如下:
136140129180124154146145158175165148
(1)样本数据(12名选手的成绩)的中位数是多少?
(2)一名选手的成绩是142分,他的成绩如何?

(二)小试身手
1、一组数据5,7,7,x的中位数与平均数相等,则x=____。
2、在一次测试中,全班平均成绩是78分,小妹考了83分,她说自己的成绩在班里是中上水平,
你认为小妹的说法合适吗?下面是小妹她们班所有学生的成绩:
20,35,35,40,40,52,63,65,74,79,80,83,84,84,85,85,85,85,85,85,86,87,87,87,87,87,87,87,87,87,87,87,87,87,88,88,90,91,92,93,95.
由数列可知,小妹的成绩在全班是中上水平吗?多少分才是中上水平?

(三)课堂小结
求中位数的步骤:
(1)将数据由小到(或由大到)排列,
(2)数清数据个数是奇数还是数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的值作为中位数。
给力小贴士:中位数只能有一个
四、每课一首诗:中位数计算很简单,关键步骤分两步;
先给数据排大小,再数数据奇偶个;
奇个中间为所求,偶个中间取平均;
两步做好就可以,计算准确很重要。
五、课堂检测:
1、随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
温度(℃)-8-1715212430
天数3557622
请你根据上述数据回答问题:
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
2、跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的()
A、平均数B、众数C、中位数D、加权平均数
六、课后作业:必做题:教材131页练习选做题:练习册对应部分习题
七、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

中位数与众数(2)教案


§20.1.2中位数和众数(2)
年级:八年学科:数学课型:新授课设计:

教师寄语:用心去发现,你就回感到数学是无比精彩的!

一、学习目标及重、难点:
1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
重点:了解平均数、中位数、众数之间的差异。
难点:灵活运用这三个数据代表解决问题。
二、自主学习:
(一)知识我先懂:
平均数:。
中位数:。
众数:。
(二)自主检测小练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分5060708090100110120
人数2361415541
分别求出这些学生成绩的众数、中位数和平均数.

三、新课讲解:
引例:3、某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
(1)、求这15个销售员该月销量的中位数和众数。
(2)、假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
解:(1)中位数是,众数是。(2)答:
理由:因为15人中有人的销售额达不到件(虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
归纳:平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。
给力提示:平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
(一)例题讲解:
例1、某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩。为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(单位:万元),数据如下:
171816132415282618192217161932301614152615322317151528281619
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定位多少合适?说明理由.

(二)小试身手
1、某公司的33名职工的月工资(以元为单位)如下:
职员董事长副董事长董事总经理经理管理员职员
人数11215320
工资5500500035003000250020001500
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

(三)课堂小结
平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。另外要注意:
平均数计算要用到所有的数据,它能够充分利用数据提供的信息,但它受.影响大。
众数是当一组数据中某些数据___较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势.
中位数是一组数据___________上的代表值,不易受极端值的影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.(注意:实际问题中求得的平均数,众数,中位数应带上单位.)
四、课堂检测:教材135页练习

五、课后作业:必做题:教材135页习题20.1选做题:练习册对应部分习题

六、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

文章来源://m.jab88.com/j/57113.html

更多

猜你喜欢

更多

最新更新

更多