课题
1.1.2等比数列性质
课型
新课
课程
分析
等比数列是又一特殊数列,它与前面我们刚刚所探讨过的等差数列仅有一字之差,所以我们可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握等比数列的性质。
学情
分析
学生已经学习了等差数列,对于等比数列学生对比等差数列学习较容易接受。
设计
理念
采用比较式数学法,从而使学生抓住等差数列与等比数列各自的特点,以便理解、掌握与应用.
学习目标
知识目标
掌握等比数列的性质
能力目标
会求等比数列的通项公式,运用等比数列的性质。
德育目标
1.培养学生的发现意识、提高学生创新意识、提高学生的逻辑推理能力、增强学生的应用意识。
板书设计
3.1.2课题探究一练习性质1探究二性质2应用举例探究三性质3
课后反馈
解:设这个等比数列的首项是a1,公比是q,
①②
则:②÷①得:q=③③代入①得:a1=,∴an=a1·qn-1=,8.答:这个数列的第1项与第2项分别是和8.评述:要灵活应用等比数列定义式及通项公式.课堂练习1.求下面等比数列的第4项与第5项:(1)5,-15,45,……;(2)1.2,2.4,4.8,……;(3),……;(4)…….2.(1)一个等比数列的第9项是,公比是-,求它的第1项.解:由题意得a9=,q=-∵a9=a1q8,∴,∴a1=2916答:它的第1项为2916.组织教学导入新课讲授新课归纳小结布置作业
备注
一.导入新课(一)回顾等比数列的有关概念
(1)定义式:
(2)通项公式:
导入本课题意:与等差数列类似,等比数列也是特殊的数列,它还有一些规律性质,本节课,就让我们一起来探寻一下它到底有一些怎样的性质。
二.推进新课
题:就任一等差数列{an},计算a7+a10和a8+a9,a10+a40和a20+a30,你发现了什么一般规律,能把你发现的规律作一般化的推广吗?类比猜想一下,在等比数列中会有怎样的类似结论?
引导探:…性质1(板书):在等比数列中,若m+n=p+q,有aman=apaq
探究二.(引导学生通过类比联想发现进而推证出性质2)
已知{an}是等比数列.
(1)是否成立?成立吗?为什么?
(2)是否成立?你据此能得到什么结论?是否成立?你又能得到什么结论?)
合作探:…性质2(板书):在等比数列中(本质上就是等比中项)
探究三:一位同学发现:若是等差数列的前n项和,则也是等差数列。在等比数列中是否也有这样的结论?为什么?
性质数列是公比为的等比数列,为的前项之和,则新构成的数列仍为等比数列,且公比为。
组织教学导入新课讲授新课归纳小结布置作业
备注
证明①当时,,则(常数),所以数列是以为首项,1为公比的等比数列;②当时,则(常数),所以数列是以为首项,为公比的等比数列;
由①②得,数列为等比数列,且公比为。三.应用举例:(理解、巩固)
例1.1)在等比数列{an}中,已知
2)在等比数列{bn}中,b4=3,求该数列的前7项之积。例2在等比数例中,求
例3等比数列{an}的各项均为正数,且,求
的值
例4、在等比数列中,,求的值.解:因是等比数列,所以是等比数列,所以
组织教学导入新课讲授新课归纳小结布置作业
备注
四.练习(掌握,应用)1、下列命题中:(1)常数列既是等差数列又是等比数列;
(2)若{an}是等差数列,则{3-2an}也是等差数列;
(3)若{an}是等比数列,则{an+an+1}也是等比数列;
(4)若{an}是等比数列,则也是等比数列.
其中正确的命题是_____________(填命题序号)
2、在等比数列中,,则的值为_______
3、在等比数列中,,,求的值.解:因为由上述等比数列性质知,构造新数列其是首项为,公比为的等比数列,是新数列的第5项,所以。4、已知等比数列前项的和为2,其后项的和为12,求再后面项的和.解:由,,因成等比数列,其公比为,所以问题转化为:求的值.因为得,所以或,于是.
组织教学导入新课讲授新课归纳小结布置作业
备注
五.课堂小结(1)等比数列的性质1、性质2性质3内容及推导方法归纳。
(2)等比数列三性质的探寻,我们是通过类比等差联想到等比,猜想在等比数列中可能存在的性质规律。然后先从简单的等比数列加以验证,再推出一般式,并加以严格的逻辑证明。这个过程所用的类比、联想、猜想、从特殊到一般,最后给予证明得出结论的想法和方法,我们称为数学思想方法。是解决问题、科学发现、探究自然的一种重要的思维方法和手段。它无处不体现在我们解决问题的思维过程中,希望大家今后留心思考,对提高你们的学习能力及分析解决问题的能力将有极大的帮助。
俗话说,居安思危,思则有备,有备无患。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,有效的提高课堂的教学效率。你知道怎么写具体的教案内容吗?下面是小编精心收集整理,为您带来的《等比数列教学案》,供大家参考,希望能帮助到有需要的朋友。
第2课时等比数列的性质
知能目标解读
1.结合等差数列的性质,了解等比数列的性质和由来.
2.理解等比数列的性质及应用.
3.掌握等比数列的性质并能综合运用.
重点难点点拨
重点:等比数列性质的运用.
难点:等比数列与等差数列的综合应用.
学习方法指导
1.在等比数列中,我们随意取出连续三项及以上的数,把它们重新依次看成一个新的数列,则此数列仍为等比数列,这是因为随意取出连续三项及以上的数,则以取得的第一个数为首项,且仍满足从第2项起,每一项与它的前一项的比都是同一个常数,且这个常数量仍为原数列的公比,所以,新形成的数列仍为等比数列.
2.在等比数列中,我们任取下角标成等差的三项及以上的数,按原数列的先后顺序排列所构成的数列仍是等比数列,简言之:下角标成等差,项成等比.我们不妨设从等比数列{an}中依次取出的数为ak,ak+m,ak+2m,ak+3m,…,则===…=qm(q为原等比数列的公比),所以此数列成等比数列.
3.如果数列{an}是等比数列,公比为q,c是不等于零的常数,那么数列{can}仍是等比数列,且公比仍为q;?{|an|}?也是等比,且公比为|q|.我们可以设数列{an}的公比为q,且满足=q,则==q,所以数列{can}仍是等比数列,公比为q.同理,可证{|an|}也是等比数列,公比为|q|.
4.在等比数列{an}中,若m+n=t+s且m,n,t,s∈N+则aman=atas.理由如下:因为aman=a1qm-1a1qn-1
=a21qm+n-2,atas=a1qt-1a1qs-1=a21qt+s-2,又因为m+n=t+s,所以m+n-2=t+s-2,所以aman=atas.从此性质还可得到,项数确定的等比数列,距离首末两端相等的两项之积等于首末两项之积.
5.若{an},{bn}均为等比数列,公比分别为q1,q2,则
(1){anbn}仍为等比数列,且公比为q1q2.
(2){}仍为等比数列,且公比为.
理由如下:(1)=q1q2,所以{anbn}仍为等比数列,且公比为q1q2;(2)=,
所以{}仍为等比数列,且公比为.
知能自主梳理
1.等比数列的项与序号的关系
(1)两项关系
通项公式的推广:
an=am(m、n∈N+).
(2)多项关系
项的运算性质
若m+n=p+q(m、n、p、q∈N+),
则aman=.
特别地,若m+n=2p(m、n、p∈N+),
则aman=.
2.等比数列的项的对称性
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积(若有中间项则等于中间项的平方),即a1an=a2=ak=a2(n为正奇数).
[答案]1.qn-mapaqa2p
2.an-1an-k+1
思路方法技巧
命题方向运用等比数列性质an=amqn-m(m、n∈N+)解题
[例1]在等比数列{an}中,若a2=2,a6=162,求a10.
[分析]解答本题可充分利用等比数列的性质及通项公式,求得q,再求a10.
[解析]解法一:设公比为q,由题意得
a1q=2a1=a1=-
,解得,或.
a1q5=162q=3q=-3
∴a10=a1q9=×39=13122或a10=a1q9=-×(-3)9=13122.
解法二:∵a6=a2q4,
∴q4===81,
∴a10=a6q4=162×81=13122.
解法三:在等比数列中,由a26=a2a10得
a10===13122.
[说明]比较上述三种解法,可看出解法二、解法三利用等比数列的性质求解,使问题变得简单、明了,因此要熟练掌握等比数列的性质,在解有关等比数列的问题时,要注意等比数列性质的应用.
变式应用1已知数列{an}是各项为正的等比数列,且q≠1,试比较a1+a8与a4+a5的大小.
[解析]解法一:由已知条件a10,q0,且q≠1,这时
(a1+a8)-(a4+a5)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4)
=a1(1-q)2(1+q+q2)(1+q+q2+q3)0,
显然,a1+a8a4+a5.
解法二:利用等比数列的性质求解.
由于(a1+a8)-(a4+a5)=(a1-a4)-(a5-a8)
=a1(1-q3)-a5(1-q3)=(1-q3)(a1-a5).
当0q1时,此正数等比数列单调递减,1-q3与a1-a5同为正数,
当q1时,此正数等比数列单调递增,1-q3与a1-a5同为负数,
∵(a1+a8)-(a4+a5)恒正.
∴a1+a8a4+a5.
命题方向运用等比数列性质aman=apaq(m,n,p,q∈N+,且m+n=p+q)解题
[例2]在等比数列{an}中,已知a7a12=5,则a8a9a10a11=()
A.10B.25C.50D.75
[分析]已知等比数列中两项的积的问题,常常离不开等比数列的性质,用等比数列的性质会大大简化运算过程.
[答案]B
[解析]解法一:∵a7a12=a8a11=a9a10=5,∴a8a9a10a11=52=25.
解法二:由已知得a1q6a1q11=a21q17=5,
∴a8a9a10a11=a1q7a1q8a1q9a1q10=a41q34=(a21q17)2=25.
[说明]在等比数列的有关运算中,常常涉及次数较高的指数运算,若按照常规解法,往往是建立a1,q的方程组,这样解起来很麻烦,为此我们经常结合等比数列的性质,进行整体变换,会起到化繁为简的效果.
变式应用2在等比数列{an}中,各项均为正数,且a6a10+a3a5=41,a4a8=5,求a4+a8.
[解析]∵a6a10=a28,a3a5=a24,∴a28+a24=41.
又∵a4a8=5,an0,
∴a4+a8===.
探索延拓创新
命题方向等比数列性质的综合应用
[例3]试判断能否构成一个等比数列{an},使其满足下列三个条件:
①a1+a6=11;②a3a4=;③至少存在一个自然数m,使am-1,am,am+1+依次成等差数列,若能,请写出这个数列的通项公式;若不能,请说明理由.
[分析]由①②条件确定等比数列{an}的通项公式,再验证是否符合条件③.
[解析]假设能够构造出符合条件①②的等比数列{an},不妨设数列{an}的公比为q,由条件①②及a1a6=a3a4,得
a1+a6=11a1=a1=
,解得,或
a1a6=a6=a6=.
a1=a1=
从而,或.
q=2q=
故所求数列的通项为an=2n-1或an=26-n.
对于an=2n-1,若存在题设要求的m,则
2am=am-1+(am+1+),得
2(2m-1)=2m-2+2m+,得
2m+8=0,即2m=-8,故符合条件的m不存在.
对于an=26-n,若存在题设要求的m,同理有
26-m-8=0,即26-m=8,∴m=3.
综上所述,能够构造出满足条件①②③的等比数列,通项为an=26-n.
[说明]求解数列问题时应注意方程思想在解题中的应用.
变式应用3在等差数列{an}中,公差d≠0,a2是a1与a4的等比中项,已知数列a1,a3,ak1,ak2,…,akn,……成等比数列,求数列{kn}的通项kn.
[解析]由题意得a22=a1a4,
即(a1+d)2=a1(a1+3d),
又d≠0,∴a1=d.
∴an=nd.
又a1,a3,ak1,ak2,……,akn,……成等比数列,
∴该数列的公比为q===3.
∴akn=a13n+1.
又akn=knd,∴kn=3n+1.
所以数列{kn}的通项为kn=3n+1.
名师辨误做答
[例4]四个实数成等比数列,且前三项之积为1,后三项之和为1,求这个等比数列的公比.
[误解]设这四个数为aq-3,aq-1,aq,aq3,由题意得
a3q-3=1,①
aq-1+aq+aq3=1.②
由①得a=q,把a=q代入②并整理,得4q4+4q2-3=0,解得q2=或q2=-(舍去),故所求的公比为.
[辨析]上述解法中,四个数成等比数列,设其公比为q2,则公比为正数,但题设并无此条件,因此导致结果有误.
[正解]设四个数依次为a,aq,aq2,aq3,由题意得
(aq)3=1,①
aq+aq2+aq3=1.②
由①得a=q-1,把a=q-1代入②并整理,得4q2+4q-3=0,解得q=或q=-,故所求公比为或-.
课堂巩固训练
一、选择题
1.在等比数列{an}中,若a6=6,a9=9,则a3等于()
A.4B.C.D.3?
[答案]A?
[解析]解法一:∵a6=a3q3,
∴a3q3=6.?
a9=a6q3,
∴q3==.
∴a3==6×=4.
解法二:由等比数列的性质,得
a26=a3a9,
∴36=9a3,∴a3=4.
2.在等比数列{an}中,a4+a5=10,a6+a7=20,则a8+a9等于()
A.90B.30C.70D.40
[答案]D
[解析]∵q2==2,?
∴a8+a9=(a6+a7)q2=20q2=40.
3.如果数列{an}是等比数列,那么()?
A.数列{a2n}是等比数列B.数列{2an}是等比数列
C.数列{lgan}是等比数列D.数列{nan}是等比数列
[答案]A
[解析]数列{a2n}是等比数列,公比为q2,故选A.
二、填空题
4.若a,b,c既成等差数列,又成等比数列,则它们的公比为.?
[答案]1?
2b=a+c,
[解析]由题意知
b2=ac,
解得a=b=c,∴q=1.
5.在等比数列{an}中,公比q=2,a5=6,则a8=.?
[答案]48
[解析]a8=a5q8-5=6×23=48.
三、解答题
6.已知{an}为等比数列,且a1a9=64,a3+a7=20,求a11.?
[解析]∵{an}为等比数列,?
∴a1a9=a3a7=64,又a3+a7=20,?
∴a3,a7是方程t2-20t+64=0的两个根.?
∴a3=4,a7=16或a3=16,a7=4,?
当a3=4时,a3+a7=a3+a3q4=20,?
∴1+q4=5,∴q4=4.?
当a3=16时,a3+a7=a3(1+q4)=20,
∴1+q4=,∴q4=.?
∴a11=a1q10=a3q8=64或1.
课后强化作业
一、选择题
1.在等比数列{an}中,a4=6,a8=18,则a12=()
A.24B.30C.54D.108?
[答案]C?
[解析]∵a8=a4q4,∴q4===3,
∴a12=a8q4=54.
2.在等比数列{an}中,a3=2-a2,a5=16-a4,则a6+a7的值为()
A.124B.128C.130D.132
[答案]B?
[解析]∵a2+a3=2,a4+a5=16,?
又a4+a5=(a2+a3)q2,
∴q2=8.?
∴a6+a7=(a4+a5)q2=16×8=128.
3.已知{an}为等比数列,且an0,a2a4+2a3a5+a4a6=25,那么a3+a5等于()
A.5B.10C.15D.20?
[答案]A?
[解析]∵a32=a2a4,a52=a4a6,?
∴a32+2a3a5+a52=25,
∴(a3+a5)2=25,?
又∵an0,∴a3+a5=5.
4.在正项等比数列{an}中,a1和a19为方程x2-10x+16=0的两根,则a8a10a12等于()
A.16B.32C.64D.256?
[答案]C?
[解析]由已知,得a1a19=16,?
又∵a1a19=a8a12=a102,
∴a8a12=a102=16,又an0,?
∴a10=4,
∴a8a10a12=a103=64.
5.已知等比数列{an}的公比为正数,且a3a9=2a25,a2=1,则a1=()?
A.B.C.D.2?
[答案]B?
[解析]∵a3a9=a26,又∵a3a9=2a25,?
∴a26=2a25,∴()2=2,?
∴q2=2,∵q0,∴q=.
又a2=1,∴a1===.
6.在等比数列{an}中,anan+1,且a7a11=6,a4+a14=5,则等于()
A.B.C.D.6
[答案]A
a7a11=a4a14=6
[解析]∵
a4+a14=5
a4=3a4=2
解得或.
a14=2a14=3
又∵anan+1,∴a4=3,a14=2.
∴==.
7.已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9等于()
A.2B.4C.8D.16
[答案]C
[解析]∵a3a11=a72=4a7,∵a7≠0,
∴a7=4,∴b7=4,
∵{bn}为等差数列,∴b5+b9=2b7=8.
8.已知0abc,且a,b,c成等比数列的整数,n为大于1的整数,则logan,logbn,logcn成
()
A.等差数列?B.等比数列?
C.各项倒数成等差数列?D.以上都不对?
[答案]C?
[解析]∵a,b,c成等比数列,∴b2=ac.?
又∵+=logna+lognc=lognac
=2lognb=,?
∴+=.
二、填空题
9.等比数列{an}中,an0,且a2=1+a1,a4=9+a3,则a5-a4等于.
[答案]27
[解析]由题意,得a2-a1=1,a4-a3=(a2-a1)q2=9,
∴q2=9,又an0,∴q=3.?
故a5-a4=(a4-a3)q=9×3=27.
10.已知等比数列{an}的公比q=-,则等于.
[答案]-3
[解析]=
==-3.
11.(2012株州高二期末)等比数列{an}中,an0,且a5a6=9,则log3a2+log3a9=.
[答案]2
[解析]∵an0,∴log3a2+log3a9=log3a2a9
=log3a5a6=log39=log332=2.
12.(2011广东文,11)已知{an}是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=.
[答案]2?
[解析]本题主要考查等比数列的基本公式,利用等比数列的通项公式可解得.
解析:a4-a3=a2q2-a2q=4,?
因为a2=2,所以q2-q-2=0,解得q=-1,或q=2.
因为an为递增数列,所以q=2.
三、解答题
13.在等比数列{an}中,已知a4a7=-512,a3+a8=124,且公比为整数,求a10.
[解析]∵a4a7=a3a8=-512,
a3+a8=124a3=-4a3=128
∴,解得或.
a3a8=-512a8=128a8=-4
又公比为整数,
∴a3=-4,a8=128,q=-2.
∴a10=a3q7=(-4)×(-2)7=512.
14.设{an}是各项均为正数的等比数列,bn=log2an,若b1+b2+b3=3,b1b2b3=-3,求此等比数列的通项公式an.?
[解析]由b1+b2+b3=3,?
得log2(a1a2a3)=3,
∴a1a2a3=23=8,
∵a22=a1a3,∴a2=2,又b1b2b3=-3,
设等比数列{an}的公比为q,得?
log2()log2(2q)=-3.
解得q=4或,
∴所求等比数列{an}的通项公式为
an=a2qn-2=22n-3或an=25-2n.
15.某工厂2010年生产某种机器零件100万件,计划到2012年把产量提高到每年生产121万件.如果每一年比上一年增长的百分率相同,这个百分率是多少?2011年生产这种零件多少万件?.
[解析]设每一年比上一年增长的百分率为x,则从2010年起,连续3年的产量依次为a1=100,a2=a1(1+x),a3=a2(1+x),即a1=100,a2=100(1+x),a3=100(1+x)2,成等比数列.
由100(1+x)2=121得(1+x)2=1.21,
∴1+x=1.1或1+x=-1.1,?
∴x=0.1或x=-2.1(舍去),?
a2=100(1+x)=110(万件),?
所以每年增长的百分率为10%,2011年生产这种零件110万件.
16.等差数列{an}中,a4=10,且a3,a6,a10成等比数列.求数列{an}前20项的和S20.
[解析]设数列{an}的公差为d,则a3=a4-d=10-d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.
由a3,a6,a10成等比数列得a3a10=a26,?
即(10-d)(10+6d)=(10+2d)2,?
整理得10d2-10d=0,解得d=0或d=1.
当d=0时,S20=20a4=200,?
当d=1时,a1=a4-3d=10-3×1=7,?
于是,S20=20a1+d=20×7+190=330.
每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“等比数列中项”,仅供参考,欢迎大家阅读。
1.3.2等比数列中项
教学目标:
1.明确等比中项概念.
2.进一步熟练掌握等比数列通项公式.
3.培养学生应用意识.
教学重点:1.等比中项的理解与应用
2.等比数列定义及通项公式的应用
教学难点:灵活应用等比数列定义及通项公式解决一些相关问题.
教学方法:启发引导式教学法
教学过程:
(I)复习回顾:我们共同来回忆上节课所学主要内容.
生:等比数列定义:等比数列通项公式:
(Ⅱ)讲授新课:与等差数列对照,看等比数列是否也具有类似性质?
生:(1)成等差数列
如果在中间插入一个数G,使成等比数列,即
若,则,即成等比数列∴成等比数列
师:综上所述,如果在中间插入一个数G,使成等比数列,那么G叫做的等经中项.
生:(2)若m+n=p+q,则
师:若在等比数列中,m+n=p+q,有什么关系呢?
生:由定义得:
(2)若m+n=p+q,则
师:下面来看应用这些性质可以解决哪些问题?
例1:一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.
解:设这个等比数列的第1项是,公比是q,那么:,①,②
由②÷①可得第③把③代入①可得
答:这个数列的第1项与第2项是和8.
例2:已知是项数相同的等比数列,求证是等比数列.
证明:设数列的首项是,公比为q1;的首项为b1,公比为q2,那么数列的第n项与第n+1项分别为:
它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列.
(Ⅲ)课堂练习:课本P23练习1.(老师结合学生所做,讲评练习.)
书面练习:课本P25练习1、2、3
(Ⅳ)课时小结:
(1)若a,G,b成等比数列,则叫做与的等经中项.
(2)若m+n=p+q,
2.预习提纲:①等比数列前n项和公式;
②如何推导等比数列的前n项公式?
小结:
课题
一、定义
等比中项
成等比数列若m+n=p+q
则
二、例题
例1
例2复习回顾
,A,b成等差数列
则
作业:P30习题A组7题
文章来源:http://m.jab88.com/j/56780.html
更多