88教案网

八年级上册《平面直角坐标系》学案冀教版

每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“八年级上册《平面直角坐标系》学案冀教版”,仅供参考,大家一起来看看吧。

八年级上册《平面直角坐标系》学案冀教版

18.2平面直角坐标系
〖教学目标〗
(-)知识目标
1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.
2.能在方格纸上建立适当的直角坐标系,描述表示物体的点的位置
3.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
4.认识并能画出平面直角坐标系.
(二)能力目标
1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识
(三)情感目标
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
〖教学重点〗
理解平面直角坐标系的有关知识.
〖教学难点〗
横(或纵)坐标相同的点的连线与坐标轴的关系的探究.
〖教学过程〗
一、课前布置
自学:阅读课本P132~P134,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).
二、师生互动
(一)一起交流课本P132的“大家谈谈”
(二)
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义.
[师]大家通过预习肯定对这部分内容已经掌握,下面请一位同学加以叙述.
[生]在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置、取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,两条数轴的交点O称为直角坐标系的原点.
对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序实数对(a,b)叫做点P的坐标.

2.小结[师生共析]
(1)数轴与直角坐标系既有区别又有联系.
直角坐标系是由相互垂直的两条数轴组成;数轴上点的坐标是一个实数,直角坐标系中点的坐标是一对有序实数;数轴上的点与实数是一一对应的,坐标平面内的点与有序实数对是一一对应的,这就建立了“数”与“形”的联系.
(2)怎样确定坐标平面内点的坐标?
在直角坐标系中求点的坐标,首先过这点分别向x轴、y轴作垂线,然后把x轴上垂足的坐标作为点的横坐标,把y轴上垂足的坐标作为点的纵坐标,按横坐标在前、纵坐标在后的顺序写在小括号内,并用逗号分开,即可得到点在坐标平面内的坐标.
有序实数就是有先后顺序的实数,也就是说(a,b)与(b,a)的意义一般说来是不相同的.(a,b)表示这个点的横坐标是a,纵坐标是b,而(b,a)表示这个点的横坐标是b,纵坐标是a.“先横后纵”这个规定必须记牢
(3)点的坐标的意义
自坐标平面内P向x轴作垂线,垂足在x轴上的坐标xP叫做点P的横坐标,自点P作y轴的垂线,垂足在y轴上的坐标yP叫做点P的纵坐标,横坐标写在纵坐标前面,用括号括起来,就构成一对有序实数对,它就叫做点P的坐标.记作P(xP,yP).
点的坐标是一对有序实数,如点A(3,2)其横坐标是3,纵坐标是2;点B(2,3)其横坐标是2,纵坐标是3,因此(3,2)与(2,3)是不同的有序对,它们表示不同的两点
(4)坐标平面内的点与有序实数对的关系
坐标平面内的点与有序实数对是一一对应的,即一个点对应一个有序实数对,一个有序实数对也对应惟一的点.
(三)鼓励学生讲解教师提供的例题.(例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充)
例1此图是某市旅游景点示意图.
以“中心广场”为原点,以“西—东”方向
直线为横轴,以“南—北”方向直线为纵轴,
一个方格的边长看作是一个单位长度,建立
直角坐标系,请你表示“碑林”和“大成
殿”的位置.
分析:“大成殿”在“中心广场”南、西各
两个格;“碑林”在“中心广场”北1个格,
东3个格.
解:“碑林”的位置可表示为(3,1);
大成殿的位置可表示为(-2,-2).

例2写出图中的多边形ABCDEF各个顶点的坐标.

解:各个顶点的坐标分别为:
A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).
[师]上图中各顶点的坐标是否永远不变?
[生]不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.
[师]你能举个例子吗?
[生]可以,若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,则六个顶点的坐标分别为:

A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).
[师]那大家再思考这位同学的结论是否是永恒的呢?
[生]不是.还能再改变坐标轴的位置,得出不同的坐标.
[师]请大家在课后继续进行坐标轴的变换,总结一下共有多少种.(为以后的学习做铺垫)
三、补充练习
作业:P135习题
〖分层练习〗
基础知识
1.选择题
平面内点的坐标是()
A.一个点B.一个图形C.一个实数D.一对有序实数
2.写出图中A、B、C、D各点的坐标.

3.在直角坐标系中,描出下列各点.A(4,3),B(-2,3),C(-4,-1),D(2,-2)

4.小强在直角坐标系中描出下列各组点后,将各组内的点用线段依次连结起来,所得到的图形是一幅有趣的图案.在右边的网格里建立适当的坐标系,你能试着完成吗?
①(1,-1),(3,-1),(5,1),(5,5),
(4,7),(3,5),(1,5),(0,7),
(-1,5),(-1,1),(1,-1)
②(0,2),(1,1),(3,1),(4,2)
③(0,3),(1,3),(1,4),(0,4),(0,3)
④(3,3),(4,3),(4,4),(3,4),(3,3)
⑤(2,2)

综合运用
5.在平面直角坐标系中,画出以点A(-2,0),B(1,0),C(2,2)为顶点的△ABC,
求△ABC的面积和周长.

6.国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比
中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,
而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方
格棋盘,图甲中的“皇后Q”能控制图中虚线所经过的每一个小方格.
(1)在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,
请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋
盘中不能被该“皇后Q”所控制的四个位置.

(2)如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q即可).

〖答案提示〗

1.D2.解:A(2,3)B(3,2)C(-2,1)D(-1,-2)
2.如图:

3.解:如图,形状像“猫脸”.

4.如图.
面积为3,
周长为.

5.(1)(2,3)表示“皇后Q”的位置在棋盘中的第2列、第3行.棋盘中不受该“皇后Q”控制的四个位置是:(1,1),(3,1),(4,2),(4,4).
(2)如图:

扩展阅读

平面直角坐标系学案


作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《平面直角坐标系学案》,供大家参考,希望能帮助到有需要的朋友。

第七章课题(1):有序数对
【学习目标】:
1.通过生活中的实例,认识到可以用有序数对表示点的位置。
2.会用有序数对确定平面内的点。
【重点难点】:
一、回头复习
1、如图,在数轴上,点A的坐标为,点B的坐标为。
在图中,标出数-1表示的点C。

二、学习新课
知识点1.有序数对
例1:如右图,完成下面练习。
(1)小明的座位在第一排,你能找到他的座位吗?
(2)小明的座位在第三列,你能找到他的座位吗?
(3)小明的座位在第一排第三列,你能找到他的座位吗?
(4)座位(2,4)和(4,2)在同一位置吗?
*有序数对:用含有两个数的词表示一个确定的位置,其中两个数表示不同的含义,我们把这种的两个数a与b组成的数对,叫做有序数对,记作()。
练习:
1、如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么请你用同样的方法写出由A到B的其他两条路径.

三、课堂练习
【基础训练】
1、如果用(8,4)表示八年级四班,则七年级三班可表示成________.
2、在电影票上,将“7排6号”简记为(7,6),则6排7号可表示为。
(8,6)表示的意义是。
3、如图1,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()
A.(4,5);B.(5,4);C.(4,2);D.(4,3)
4、如图1,D的位置是()
A.(4,5);B.(5,3);C.(2,2);D.(5,5)
5、如图1,(4,3)表示的位置是()
A.AB.BC.CD.D

6、如图,小亮从学校到家所走最短路线是()
A.(2,2)→(2,1)→(2,0)→(0,0)
B.(2,2)→(2,1)→(1,1)→(0,1)
C.(2,2)→(2,3)→(0,3)→(0,1)
D.(2,2)→(2,0)→(0,0)→(0,1)

7、如图,A的位置为(2,6),小明从A出发,经
(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),
(1)用不同颜色的笔画出两人行走的路线;
(2)则此时两人相距个格
第七章课题(2):平面直角坐标系(1)
【学习目标】:
1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.
2.认识并能画出平面直角坐标系.
【重点难点】:能画出平面直角坐标系.
一、回头复习
1、规定了、、的直线叫做数轴。
2、如图,数轴上点A表示的数是;点B表示的数是;
-0.5表示点C,请在数轴上标出来.
二、学习新课
知识点1.平面直角坐标系
例1:(1)数轴上的点可以用一个来表示,这个数叫做这个点的。
(2)平面内画两条互相、原点的数轴,组成平面直角坐标系;水平的数轴称为或,习惯上取向为正方向;竖直的数轴为或,取向为正方向;两个坐标轴的交点为平面直角坐标系的。
(3)点的坐标:我们用一对表示平面上的点,这对数叫。表示方法为(a,b).a是点对应上的数值,b是点在上对应的数值。
练习:
1、在平面直角坐标系中:
(1)请写出A、B、C的坐标:
(2)若D、E的坐标分别为:(2,-2)、(-2,-3),请在图中标出来;
(3)原点O的坐标是(,),横轴上的点的坐标为(x,),纵轴上的点坐标为(,y)
知识点2.象限
例2.建立平面直角坐标系后,平面被坐标轴分成四部分,
分别叫
(注意:坐标轴上的点不属于任何一个象限)
三、课堂练习
【基础训练】
1、如图1,点A的坐标是()
A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)
2、如图1,坐标是(-2,2)的点是()
A.点AB.点BC.点CD.点D
3、如图1,点B在第()象限
A、第一象限B、第二象限
C、第三象限D、第四象限
4、如图1,在第三象限的点是()
A.点AB.点BC.点CD.点D

5、如图,在直角坐标系中,描出下列各点:
A(4,3),B(-2,3),C(-4,-1),D(2,-2),E(0,-1)并说出A、B、C、D、E各点在第几象限.

6、原点O的坐标是_______,点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C(3,2)在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上,点F(2,0)在______轴上.点M(a,0)在______轴上.
7、已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()
A.第一象限B.第二象限C.第三象限D.第四象限

第七章课题(3):用坐标表示地理位置
【学习目标】:
1.了解用平面直角坐标系来表示地理位置的意义
2.培养解决实际问题的能力,发展空间观念
【重点难点】:培养解决实际问题的能力,发展空间观念
一、回头复习
1、如图,写出A,B,C,D,E这五个点的坐标.
2、上题的图中,标出点F(2,3)、
G(-2,-3)、H(0,-3)K(-2,0).

二、学习新课
知识点1.用坐标表示地理位置
例1:(课本“探究”问题)

解:以()为坐标原点,以正东、正北方向为()轴、()轴正方向建立直角坐标系,取比例尺为1:10000,则小刚家(150,200),小强家(,),小敏家(,)。
归纳:利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.
(1)建立坐标系,选择一个__________为原点,确定x轴、y轴的___方向;(2)根据具体问题确定_______,在坐标轴上标出__________;
(3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称.

三、课堂练习
【基础训练】
1、根据以下条件在图中画出小玲、小敏、小凡家的位置,并标明它们的坐标.
小玲家:出校门向西走150米,再向北走100米.
小敏家:出校门向东走200米,再向北走300米.
小凡家:出校门向南走100米,再向西走300米,最后向北走250米.
2、上图是某市旅游景点示意图,请建立适当的坐标系,写出各景点的坐标.

3、小亮同学利用暑假参观了某种植基地.他从苹果园出发,沿(1,3),(-3,3),(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点,看看能得到什么图形?

第七章课题(4):用坐标表示平移(1)
【学习目标】:
1.探究点的平移引起的点的坐标的变化规律。
2.能写出图形运动后的各个顶点的坐标
【重点难点】:能写出图形运动后的各个顶点的坐标
一、回头复习
1、画图:网格中将△ABC,
(1)向上平移2个单位长度.
(2)再向右移3个单位长度.

二、学习新课
知识点1.平移中坐标的变化
例1:已知点,将点A向右平移2个单位长度后得点(____,___),再将向下平移3个单位长度后得点(____,____).
练习:
1、已知点向左平移4个单位长度后点A的坐标变为(_________),再向上平移5个单位长度后得(,)
2、在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到点(,);将点(x,y)向上平移b个单位长度,可以得到点(,).
知识点2.
例2.三角形ABC三个顶点的坐标A(4,3),B(3,1),C(1,2)
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,则A1,B1,C1。猜想:三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系,
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,则A2,B2,C2。猜想:三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
三、课堂练习
【基础训练】
1、将点Q(0,3)向_____平移1个单位长度,得到点Q′(-1,3).
2、点(x0-3,y0+2)是把点(x0,y0+2)向____平移_____单位,或把(x0-3,y0)向_____平移_____单位得到的.
3、在平面直角坐标系中,有一点P(-4,2),若将P先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_______
4、将点A(3,-4)沿着x轴负方向平移3个单位,得到点A′的坐标
为(_____,_____),再将A′沿着y轴正方向平移4个单位,得到A″
的坐标为(____,_____).
5、在平面直角坐标系中,若将点A(6,6)的坐标变为(-2,6),你认为应该怎样平移?

【拓展训练】
6、如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿y轴正方向平移3个单位长度,各个顶点的坐标变为多少?画出平移后的图形.

《平面直角坐标系》学案分析


《平面直角坐标系》学案分析

[教学目标]
认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
渗透对应关系,提高学生的数感.
[教学重点与难点]
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
[教学设计]
[设计说明]一.利用已有知识,引入
1.如图,怎样说明数轴上点A和点B的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangularcoordinatesystem).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法

正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
例2在平面直角坐标系中描出下列各点。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三.深入探索
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]
教材49页习题6.1——第1题
教材50页——第2,4,5,6。
[小结]
平面直角坐标系;
点的坐标及其表示
各象限内点的坐标的特征
坐标的简单应用
[作业]
必做题:教科书50页:3题
教案编写:莫大勇
(教材51页综合运用7,8,9,10为练习课内容)

明确点的坐标的表示法

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

平面直角坐标系(1)学案


4.3平面直角坐标系(1)学案
学习目标:1.会正确画出平面直角坐标系.
2.会在给定的直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标.
学习重点:1、会正确画出平面直角坐标系
2、会由点的坐标描出点的位置,会由点的位置写出点的坐标.
自学课本后完成以下测试:
一、填空题:
1.平面上且有的两条数轴构成平面直角坐标系。称为X轴,称为Y轴,称为坐标原点。
2.平面直角坐标系中,一对有序实数对可以确定点的位置;反之,任意一点的位置都可以用有序实数对来表示。叫做点的坐标。点P的坐标为(a,b),其中a称为点P的,b称为点P的。坐标写在坐标的前面。
3.两条坐标轴将平面分成个区域称为象限。按顺序分别记为第一、二、三、四象限。坐标轴上的点任何象限。
4.若电影院座位中的8排10号用(8,10),那么10排8座可用表示,(5,4)指排座。
5.点A(一l,4)在第象限,B(-1,一4)在第象限;点C(1,-4)在第象限,D(1,4)在第象限;点E(-2,0)在轴上,点F(0,2)在轴上
6.已知点A(a,b).若点A在第一象限,则a_0,b_0。若点A在第二象限,则a_0,b_0。若点A在第三象限,则a_0,b_0。若点A在第四象限,则a_0,b_0;若点A在x轴的负半轴上,则a_0,b_0。若点A在y轴的正半轴上,则a_0,b_0。
7.已知P点坐标为(2a+1,a-3)
(1)点P在x轴上,则a=;(2)点P在y轴上,则a=;
(3)点P在第三象限内,则a的取值范围是;
(4)点P在第四象限内,则a的取值范围是。
二、选择题
8.在平面直角坐标系中,点P(-1,2)的位置在()
A、第一象限B、第二象限C、第三象限D、第四象限
9.点在第二象限,则的取值范围是()
A.B.C.D.
10.对任意实数,点一定不在()
A.第一象限B.第二象限C.第三象限D.第四象限
11.如图1,下列各点在阴影区域内的是()
A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)
12.在直角坐标系中,点在第一象限内,且与轴正半轴的夹角为,则的值是()
(A)(B)(C)8(D)2

三、解答题
13.如图在直角坐标系中,写出点出下列各点的坐标。

[14..在直角坐标系中,描出下列各点的位置:
A(1,2);B();C(4,4);
D();E(0,3)

15.(1)已知点A(a+1,a2-4)在x轴的正半轴上,求A的坐标。
(2)已知点B(a,3),点C(-2,b),直线BC平行于y轴,求a的值,并确定b的取值范围。

文章来源:http://m.jab88.com/j/56766.html

更多

最新更新

更多