每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《八年级上册数学期末知识点:一次函数》,仅供参考,大家一起来看看吧。
八年级上册数学期末知识点:一次函数
第六章一次函数
6.1函数
常量:在变化过程中,保持不变取值的量叫常量。
变量:在变化过程中,可以不断变化取值的量叫变量。
函数:一般地,设在一个变化的过程中有两个变量x和y。如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们称y是x的函数。其中,x是自变量,y是因变量。
6.2一次函数
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k不为零)的形式,则称y是x的一次函数。x为自变量,y为因变量。特别地,当b=0时,称y是x的正比例函数(正比例函数是特殊的一次函数)。
6.3一次函数的图像
1.一次函数的性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小;
(3)函数图象经过定点(0,b)。
2.正比例函数的性质:
(1)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图象经过第二、四象限,y随x的增大而减小;
(3)函数图象经过定点(0,0)。
3.作正比例函数图像:
对于正比例函数y=kx,通常取两个点(0,0),(1,k),两点的连线就是其图象(两点确定一条直线),所以正比例函数的图象是一条直线。
4.作一次函数图像:
通常取直线与坐标轴的交点来画它的图象。在x轴上的交点(-b/k,0),y轴上的交点(0,b)
5.一次函数y=kx+b的图像的位置与k,b符号的关系:
(1)k﹥0,b﹥0时,图象经过第一、二、三象限;
(2)k﹥0,b﹤0时,图象经过第一、三、四象限;
(3)k0,b﹥0时,图象经过第一、二、四象限;
(4)k0,b﹤0时,图像经过第二、三、四象限;
(5)k﹥0,b=0时,图象经过第一、三象限;
(6)k0,b=0时,图象经过第二、四象限。
6.一元一次方程与一次函数:
议一议:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
从”数”的方面看,当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解;从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解。
八年级上册数学期末知识点:生活中的轴对称
第一章生活中的轴对称
1.1轴对称现象
1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径(×)直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);
②角的对称轴是它的角平分线(×)角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);
③正方形的对角线是正方形的对称轴(×)对角线也是线段而不是直线。
2.轴对称:(1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:
①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;
②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形
有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;
(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
5.30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。
1.3探索轴对称的性质
1.对应点所连的线段被对称轴垂直平分;
2.轴对称图形对应线段相等,对应角相等。
1.4利用轴对称设计图案
1.画点A关于直线L的对应点A:1、过点A作对称轴L的垂线,垂足为B
2、延长AB至A,使得BA=AB
3、点A就是点A关于直线L的对应点
2.画线段AB关于L的对应线段AB:1、过点A作对称轴L的垂线AA,使CA=CA
2、过点A作对称轴L的垂线BB,使DB=DB
3、连接AB,AB即是关于直线L的对应线段。
老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“八年级数学上册知识点:勾股定理”,欢迎阅读,希望您能够喜欢并分享!
八年级数学上册知识点:勾股定理
一、勾股定理:
1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理
1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.
2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:
(1)确定最大边;
(2)算出最大边的平方与另两边的平方和;
(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数
能够构成直角三角形的三边长的三个正整数称为勾股数.
四、一个重要结论:
由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用
解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法
(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
误区提醒
(1)忽略勾股定理的适用范围;(2)误以为直角三角形中的一定是斜边。
【典型例题】(2010湖北孝感)
[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。
[定理表述]
请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;
[知识拓展]
勾股定理
一、勾股定理概述
直角三角形中,两直边的平方和等于斜边的平方。
即令直角三角形ABC中,其中角C=90°,直边BC的长度为a,AC的长度为b,斜边AB的长度为c,则有a+b=c
①勾股定理应用的前提是这个三角函数必须是直角三角形,解题时,只能是同一直角三角形中时,才能利用它求第三边边长
②在式子a+b=c中,a、b代表直角三角形的两条直角边,c代表斜边,它们之间的关系不能弄错
③遇到直角三角形中线段求值问题(知识点详解见解直角三角形),要首先向到勾股定理,勾股定理把“数”与“形”有机结合起来,把直角三角形这一“形”与三边关系这一“数”结合起来,是属性结合思想方法的典型。
④勾股定理的变式
在Rt△ABC中,其中角C=90°,直边BC的长度为a,AC的长度为b,斜边AB的长度为c,则
c=a+b
a=c-b=(c-b)(c+b)
b=c-a=(c-a)(c=a)
c=根号下(a+b)
a=根号下(c-b)
b=根号下(c-a)
二、勾股定理证明方法
1.面积法
一个直角梯形由2个直角边分别为a、b,斜边为c的直角三角形和1个直角边为c的等腰直角三角形拼成。因为三个直角三角形的面积之和等于梯形的面积,所以可以列出等式
1/2c2+2*1/2ab=(a+b)(b+a)/2,化简c2=a2+b2
2.赵爽证明法
以a、b为直角边(ba),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于1/2ab.把这四个直角三角形拼成如图所示形状.
∵RtΔDAH≌RtΔABE,
∴∠HDA=∠EAB.
∵∠HAD+∠HAD=90,
∴∠EAB+∠HAD=90,
∴ABCD是一个边长为c的正方形,它的面积等于c2.
∵EF=FG=GH=HE=b―a,∠HEF=90.
∴EFGH是一个边长为b―a的正方形,它的面积等于(b-a)2.
∴4*1/2ab+(b-a)2=c2
∴a2+b2=c2
三、勾股定理的逆定理
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
勾股定理的逆定理是识别一个三角形是直角三角形的一种理论依据,它通过数形结合来确定三角形的形状,在运用这一定理时,可以用两短边的平方和a+b与较长边的平方c做比较,如果a+b=c,则此三角形为直角三角形,若a+b>c,此三角形为锐角三角形,若a+b<c,则此三角形为钝角三角形
文章来源:http://m.jab88.com/j/56512.html
更多