八年级数学上册《与三角形有关的线段》知识点整理人教版
新的学期开始了,经历了暑假的快乐时光,我们又回到了熟悉的学校开始进入学习状态了。莲山课件学习网初中频道为大家准备了与三角形有关的线段知识点,欢迎阅读与选择!
与三角形有关的线段知识点
一、三角形的有关概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:
①不在同一直线上;
②三条线段;
③首尾顺次相接;
④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高
(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:
①三角形的角平分线、中线、高都是线段;
②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、三角形的边和角
三边关系:三角形中任意两边之和大于第三边。
由三边关系可以推出:三角形任意两边之差小于第三边。
三、三角形内、外角的关系
1.三角形的内角和等于180°。
2.直角三角形的两个锐角互余。
3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。
4.三角形的外角和为360°。
四、等腰三角形与直角三角形:
1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。
说明:等边三角形是等腰三角形的特殊情况。
2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。
小练习
1.图中的三角形有()
A4个B6个C8个D10个
考查目的:本题考查学生对三角形概念的掌握.
答案:C.
解析:根据三角形相关概念由不在同一条直线上三条线段首尾顺次相连组成的图形叫三角形.
2.下列说法中正确的个数有()
①三角形按角分类可分为锐角三角形、直角三角形和钝角三角形
②三角形按边分类可分为等腰三角形、等边三角形和三边都不相等的三角形
③等腰三角形中至少有两边相等
④等边三角形是等腰三角形
A1个B2个C3个D4个
考查目的:本题考查学生按不同的标准对三角形进行分类.
答案:①③④是正确的,故选C
解析:三角形按角分类可分为锐角三角形、直角三角形和钝角三角形,按边分类可分为三边都不相等的三角形和等腰三角形,而等边三角形属于特殊的等腰的三角形.
莲山课件小编为大家提供的八年级数学上册与三角形有关的线段知识点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
八年级数学上册《全等三角形》知识点人教版
1.全等图形:能够完全重合的两个图形就是全等图形。
2.全等图形的性质:全等多边形的对应边、对应角分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:
全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:
(1)周长相等的两个三角形,不一定全等;
(2)面积相等的两个三角形,也不一定全等。
小练习
1.下列说法中正确的说法为()
①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,
A.①②③④B.①③④C.①②④D.②③④
2.一个正方形的侧面展开图有()个全等的正方形.
A.2个B.3个C.4个D.6个
3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()
①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.
A.1个B.2个C.3个D.4个
12.1全等三角形
【教学目标】
1.了解全等形和全等三角形的概念,能够找出全等三角形的对应元素,掌握全等三角形的性质.
2.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,在运用全等三角形性质的过程中感受数学活动的乐趣.
【重点难点】
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的识别.
┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
欣赏一组图片,提出问题1.
图(1)图(2)图(3)图(4)
问题1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是由另一个图形如何变化而来?它们能够完全重合吗?你能再举出一些类似的例子吗?
学生讨论分析,教师引导.
举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.用贴近学生生活的图案激发学生探究的兴趣,体验数学来源于生活.
二、师生互动,探究新知
1.由图(1)(2)(4)形成全等形的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.
2.由图(3)(4)形成全等三角形的概念,多媒体投影相关概念及全等三角形的符号表示.
3.多媒体演示三种全等变换(平移、翻折、旋转)并提出问题:平移、翻折、旋转前后的两个三角形全等吗?
4.学生小组活动:多媒体投影要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.
5.多媒体展示学生可能得到的图形(如图).
合作交流:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.
问题2:全等三角形的对应边、对应角有什么数量关系?
板书:全等三角形的对应边相等,全等三角形的对应角相等.1.通过动画演示全等变换的过程及学生动手实践,让学生形成直观感觉,培养学生动态研究几何图形的意识,在操作实践的过程中建立对应的概念,体会重合即全等,重合即对应这个本质规律;2.熟悉本章常见图形,为今后全等三角形的证明和计算奠定基础;3.培养学生的观察能力、概括能力和初步辨析图形的能力.
三、运用新知,解决问题
如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.
(1)试写出这两个三角形的对应边、对应角;
(2)求线段NM及HG的长度;
(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.进一步巩固全等三角形及其对应元素的概念,使学生在动脑、动手实践的过程中理解全等三角形的性质.
四、课堂小结,提炼观点
本节课学了哪些主要内容?你有哪些收获?怎样寻找全等三角形的对应边、对应角?
五、布置作业,巩固提升
教材第33、34页第1、2、5、6题.
┃教学过程设计┃
【板书设计】
全等三角形
1.全等三角形的有关概念例题
2.全等三角形的性质反思小结
3.寻找对应元素的方法作业
【教学反思】
1.本节课充分应用多媒体进行教学,促使学生从感性认识上升为理性认识.
2.课堂上重视学生的主体参与,学生是学习的主体,因此本节课从概念的形成、发展、应用等每个环节,都力求通过学生的动手实践、动脑思考、自主参与、合作探究来完成.
文章来源:http://m.jab88.com/j/56925.html
更多