88教案网

八年级数学上册11.2与三角形有关的角学案

11.2与三角形有关的角
一.学习目标
1.掌握三角形的内角和180°,外角与内角的关系;知道Rt△的判定。
2.应用三角形角的性质解决生活中的实际问题
3.在学习过程中培养学生的学习情趣和数学即生活的情感。
二.学习重难点
三角形角的性质及利用其性质解决生活中的问题
三.学习过程
第一课时三角形的内角
(一)构建新知
1.阅读教材11~13页
(1)用∠1,∠2,∠3标注△ABC的内角。
(2)三角形内角和等于_______。
(3)如图,Rt△ABC中,BD平分∠ABC,
且∠A=90°则∠ADB=______。

(二)合作学习
1.如图,是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。
(1)从B岛看A,C两岛的视角∠ABC是多少度?
(2)从C岛看A,B两岛的视角∠ACB多少度?

(三)课堂检查
1.如图1,在△ABC中,∠A=30°,∠B=50°,延
长BC到D,则∠ACD=______。
2.如图2,已知D、E在△ABC的边上,DE∥BC,
∠B=60°,∠AED=40°,则∠A的度数为________。
3.如图3直线l1∥l2,一块含45°角的直角三角板如图放
置,∠1=85°,则∠2=_______。
4.如图,AB∥CD,∠C=20°,
∠A=55°,则∠E=_______。
5.证明三角形的内角和为180°的定理,除了过顶点作
平行于角对边的直线外,如图(1)。还有其它作辅助线的方法,并在图(2)和图(3)中画出你的智慧。
6.一个零件的形状如图所示,要求∠A=90°,∠B=21°,
∠C=32°,检验员李伯伯量得∠BDC=148°,就说这个零
件不合格。你知道为什么吗?
(四)学习评价

(五)课后练习
1.学习指要5~6页
2.教材16~17页1题,3题,4题,5题,6题,7题

第二课时直角三角形
(一)构建新知
1.阅读教材13~14页
(1)在直角△ABC中,∠A=38°,∠B=_______。
(2)在△ABC中,已知∠A+∠B=90°则,这△ABC是_______三
角形,用_____符号表示。
(3)如图∠ACB=90°,CD是AB边上的高,仔细观察
找出图中相等的角_____________________________。
(4)Rt△的性质:____________________________________________。

(二)合作学习
1.如图,已知∠C=90°,∠1=∠2,
求证△ADE是Rt△。

(三)课堂检查
1.如图1,图中有_______个Rt△。
2.如图2,已知∠C=∠D=90°,BC,AD交于E
图中相等的角有____________________________。
3.如图3,将一副直角三角板如图放
置,使含30°角的三角板的短直角边
和含45°角的三角板的一条直角边重
合,则∠1的度数为________。
4.如图4,点B、C、D在同一条直线上,CE∥AB,
∠A=54°,如果∠ECD=36°,那么,△ABC是
______三角形。
5.如图5,AD,AE分别是△ABC的高和角平分线,且
∠B=76°,∠C=36°,则∠DAE的度数为()。
A.20°B.18°C.38°D.40°
6.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()。
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形
(四)学习评价
(五)课后练习
1.教材16~17页2题,9题,10题

第三课时三角形的外角
(一)构建新知
1.阅读教材14~15页
(1)如图,△ABC中,画出△ABC的外角,并写出其
名称_______________________________________。
(2)参照上图,∠A+∠B=_______,∠A+∠C=__________。
(3)三角形的内角和是________;外角和是____________。
【M.DG15.COM 工作总结之家】

(二)合作学习
1.如图,在△ABC中,已知∠A=36°BE平分∠ABC,CE平分∠ACD,求∠E的度数。

(三)课堂检查
1.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________。
2.如图,已知AB∥CD,若∠A=20°,
∠E=35°,∠C=______。
3.如图,将三角尺的直角顶点
放在直尺的一边上,∠1=30°,∠2=50°,则∠3=_______。
4.将一副直角三角尺如图放置,
已知AE∥BC,则∠AFD的度
数是_________。
5.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和
∠ACF的平分线交于点E,则∠AEC=_______。
6.如图,在△ABC中,已知∠B=∠C,∠BAD=40°,
且∠ADE=∠AED,求∠CDE的度数。

(四)学习评价

(五)课后练习
1.学习指要7~8页
2.教材16~17页8题,11题

延伸阅读

八年级数学上册11.1与三角形有关的线段学案


11.1与三角形有关的线段
一.学习目标
1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学,热爱生活的情感。
二.学习重难点
三角形的性质和分类及应用
三.学习过程
第一课时
三角形的边
(一)构建新知
1.阅读教材2~4页
(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?
(二)合作学习
1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。

(三)课堂检查
1.若一个三角形三边长分别为2,3,x,则x的值可以为____(只需填一个整数)。
2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为____cm。
4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A.三边不等的三角形B.只两边相等的三角形
C.三边相等的三角形D.不等边三角形和等腰三角形
5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,
不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,
且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏
此木框,则任两螺丝的距离之最大值为()。
A.5B.6C.7D.10
6.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。

(四)学习评价
(五)课后练习
1.学习指要1~2页
2.教材8~9页1题,2题,6题,7题
第二课时
三角形的高、中线与角平分线
(一)构建新知
1.阅读教材4~5页
(1)如图,在△ABC中,作BC边上的
高AD和中线AE;并作∠A的角平分线AF。
(2)三角形的高,中线,角平分线分别有________条。
(3)三角形的三条中线_______点,这点叫三角形的_____心。
(二)合作学习
1.作下列△ABC各边上的高。
(1)图(1)的三条高在△ABC的_________,图(2)三条高在△ABC的___________________,图(3)三条高在△ABC的______________________________。
(2)这三条高都__________一点;分别在三角形的______________________。

(三)课堂检查
1.如图,在△ABC中,BD是∠ABC的角平分线,
已知∠ABC=80°,则∠DBC=____°。
2.在△ABC中,AD为BC边的中线,若△ABD
与△ADC的周长差为3,AB=8,则AC=____________。
3.如图,在△ABC中,CD平分∠ACB,DE∥AC,DC∥EF,
则与∠ACD相等角有___________个。
4.三角形中的角平分线、中线、高都是三条()。
A.直线B.射线C.线段D.无法确定
5.下列说法正确的是()
①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部。
A.①②③B.①②C.②③D.①③
6.如图,AD为△ABC的中线,BE为△ABD的中线。若△ABC面
积为40,BD=5,则△BDE中BD边上的高是多少?

(四)学习评价
(四)课后练习
1.学习指要2~3页
2.教材8~9页3题,4题,8题,9题

第三课时三角形的稳定性
(一)构建新知
1.阅读教材6~7页
(1)在工程建筑中经常采用三角形的结构,这是因为_______________;伸缩门采用四边形的结构,这是因为_________________________。
(2)完成教材7页练习

(二)合作学习
1.要使六边形不变形至少要定几根木条,
有几种订法?

(三)课堂检查
1.小明用竹竿扎了一个平行四边形框架,其边长分别为40cm和30cm,由于四边形容易变形,学习过后,小明用一根竹竿做斜拉秆将四边形定形,则此斜拉秆的选择范围是___________cm。
2.不是利用三角形稳定性的是()
A.自行车的三角形车架B.三角形房架
C.照相机的三角架D.矩形门框的斜拉条
3.如图,在生活中,我们经常会看见在电线杆上拉两条钢
线,来加固电线杆,这是利用______________________。
4.要使八边形不变形,则至少要钉上______根木条。
5.图中的五角星是用螺栓将两端打有孔的5根木条连接而
构成的,它的形状不稳定.如果用在图中木条交叉点打孔
加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓
尽可能少,那么需要添加螺栓()
A.1个B.2个C.3个D.4个
6.如图,△ABC中,AB=AC,AC边上的中线把△ABC的
周长分为24和30两部分,求△ABC三边的边长。
(四)学习评价
(五)课后练习
1.学习指要4~5页
2.教材8~9页5题,10题

11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版”,希望能为您提供更多的参考。

11.2.2三角形的外角
1.探索并了解三角形的外角的两条性质.
2.利用学过的定理论证这些性质.
3.利用三角形的外角性质解决与其有关的实际问题.
阅读教材P14~15,完成预习内容.
1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做____________.
图1
如图2,一个三角形有________个外角.每个顶点处有________个外角.
图2

2.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=________.试猜想∠ACD与∠A,∠B的关系是____________.
3.试结合图形写出证明过程:
证明:过点C作CM∥AB,延长BC到D.
则∠1=∠A(两直线平行,内错角相等),
∠2=∠B(两直线平行,同位角相等),
所以∠1+∠2=∠A+∠B,
即________=∠A+∠B.
知识探究
一般地,由三角形内角和定理可以推出:
三角形的外角等于与它不相邻的________________.
自学反馈
1.判断下列∠1是哪个三角形的外角:
2.求下列各图中∠1的度数.
活动1小组讨论
1.如图∠1+∠2+∠3=?
解:∠1+∠BAC=180°,
∠2+∠ABC=180°,
∠3+∠ACB=180°,
三个式子相加得到:
∠1+∠2+∠3+∠BAC+∠ABC+∠ACB=540°.
而∠BAC+∠ABC+∠ACB=180°,
所以∠1+∠2+∠3=360°.
2.结论:三角形的外角和是360°.
活动2跟踪训练
1.求下列各图中∠1的度数.

2.求下列各图中∠1和∠2的度数.
3.已知三角形各外角的比为2∶3∶4,求它的每个外角的度数?
4.如图,AB∥CD,∠A=40°,∠D=45°,求∠1和∠2.
活动3课堂小结
三角形外角的性质:
1.三角形的一个外角等于与它不相邻的两个内角的和.
2.三角形的外角和是360°.
【预习导学】
1.三角形的外角622.120°∠A+∠B=∠ACD
3.∠ACD
知识探究
两个内角的和
自学反馈
1.略.2.略.
【合作探究】
活动2跟踪训练
1.∠1=90°∠1=80°∠1=95°.2.略.3.设三个外角度数分别为2x、3x、4x,由三角形外角和为360°,得2x+3x+4x=360°.解得x=40°.所以三个外角度数分别为80°,120°,160°.4.∠1=40°,∠2=85°.

八年级数学上册第11章三角形11.2三角形的内外角11.2.1三角形的内角学案新版新人教版


课题:11.2.1三角形的内角(1)
【学习目标】
1、了解三角形的内角;会用平行线的性质与平角的定义证明三角形内角和等于180;
2、了解辅助线的作用,能准确、规范地利用辅助线进行证明;
3、规范学生的推理过程,能够独立完成简单的证明过程。
【学习重点】
1、了解三角形的内角等于180;
2、利用三角形的内角等于180解答简单的数学问题。
【学习难点】
1、利用所学知识证明三角形的内角等于180;
2、认识辅助线,了解辅助线的做法和作用;
3、独立完成证明过程。
【学习过程】
※知识链接
阅读教材第11至第12页,用红笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑
※合作与探究
一、自主探究
探究1:三角形的内角和
1、请你画出一个任意三角形,测量各角的度数,并计算出它的内角和.

2、任意画一个三角形,将它的内角剪下拼合在一起,你可以得到什么结论?你有几种拼法?

3、请你用折叠的方法验证出三角形的内角和的度数

4、根据折叠的方法试证明三角形内角和定理“三角形内角和等于180度”,你能想出多少种方法。

二、合作探究
探究2:三角形内角和定理的应用
例题1:在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B的度数是多少?

例2:如图是A、B、C三岛的平面图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向。从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?

※随堂检测
1、在△ABC中,若∠B=40,∠C=80,则∠A的度数为()
A、30B、40C、50D、60
2、在△ABC中,若∠A=20,∠B=60,则△ABC的形状是()
A、等边三角形B、锐角三角形
C、直角三角形D、钝角三角形
3、在△ABC中,若∠A:∠B=2:1,∠C=60,则∠A=________。
4、如下图是一块三角形木板的残余部分,若量得∠A=100,∠B=45,则这块三角形木板的另外一个角的度数是_________。
5、如下图,在△ABC中,DE//BC,若∠A=35,∠ABC=65,则∠AED=________。

6、如图,∠1=20,∠2=25,∠A=35,求∠BDC的度数。

※拓展提高
1、如图1是一个任意的五角星,则它的五个角的和为()
A、50B、100C、180D、200
2、如图2,在△ABC中,∠ABC=∠C,若BD平分∠ABC,∠A=36,则
∠BDC=___________。

3、一个零件的形状如下图所示,按规定∠A=90,∠B和∠C分别是32和21,检验工人量得∠BDC=148,请你判断这个零件是否合格?为什么?

教(学)后反思:_____________________________________________________________________
_____________________________________________________________________(实际使用课时______节)
课题:11.2.1三角形的内角(2)

课型:新课计划课时:1节主备人:黄永玉审核人:___________
【学习目标】
1、理解并掌握三角形内角和定理的推论;
2、活用直角三角形两锐角互余的性质解决问题。
【学习重点】
直角三角形两锐角互余的性质
【学习难点】
直角三角形性质的应用
【学习过程】
※知识链接:
1、在△ABC中,若∠C=90,∠A=30,则∠B=________。
2、在△ABC中,若∠C=90,∠A=∠B,则∠B=________。
3、在△ABC中,若∠A=30,∠B=60,则△ABC是_______三角形。
※合作探究:
阅读教材第13至第14页,用红笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑
探究1:直角三角形的两个锐角互余
例1:如右图,在直角三角形中,∠C=90,请验证∠A与∠B的关系。

通过探究得到结论:直角三角形的两个锐角_________。

例2:如下图,∠C=∠D=90,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?

探究2:两个锐角互余的三角形是否是直角三角形
例3、已知CD⊥AB,∠A=∠BCD,试判断△ABC的形状,并说明理由。

通过探究得到结论:一个三角形中,如果两个锐角互余,那么这个三角形是_________三角形。

※随堂检测
1、若三角形两个内角的差等于第三个内角,则它是()
A、锐角三角形B、钝角三角形
C、直角三角形D、等边三角形
2、如图1,∠ACB=90,CD⊥AB,垂足为D下列结论错误的是()
A、图中有三个直角三角形B、∠1=∠2
C、∠1和∠B都是∠A的余角D、∠2=∠A
3、如图2,DB、EC交于点A,若∠B=∠E=90,∠C=42,则∠D的度数是()
A、48B、42C、84D、58
4、如图3,Rt△ABC中,∠ACB=90,DE过点C,且DE//AB,若∠ACD=60,则
∠B的度数是()
A、30B、45C、60D、65

5、如图4,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38,则∠A=_________。
6、如图5,有一底角为45的等腰三角形纸片,现过底边上一点E,沿与底边垂直的方向将其剪开,得到△DEC,则∠EDC=______________。
7、如图6,直线a//b,EF⊥CD于点F,若∠2=65,则∠1=______________。

8、如图7,在△ABC中,EF//AB,∠1=55,若∠B=35,则△ABC是________三角形。
9、如图8,把一根直尺与一块三角板如图8放置,若∠1=40,则∠2=______________。

※拓展提高
1、如图,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC,交CA的延长线于点D,求∠ABD的度数。

2、如图,已知∠A=27,∠D=20,∠B=43,求证:BC⊥ED。

教(学)后反思:________________________________________________________________
__________________________________________________________________(实际使用课时______节)

文章来源://m.jab88.com/j/56433.html

更多

猜你喜欢

更多

最新更新

更多